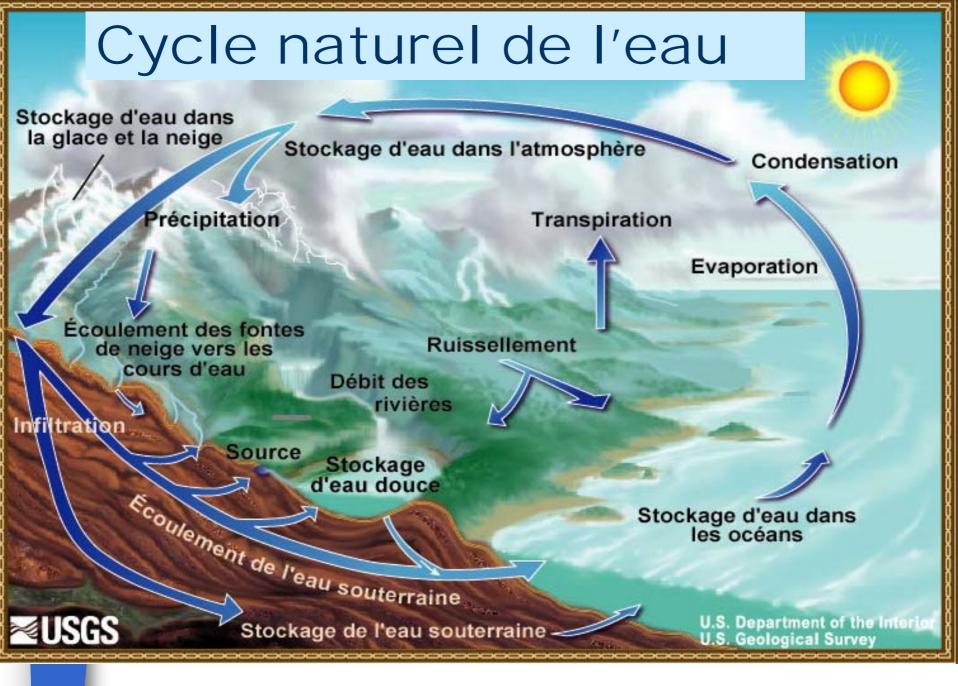


L'eau et la ville:

prise en compte de l'eau en ville... impacts de la ville sur l'eau...

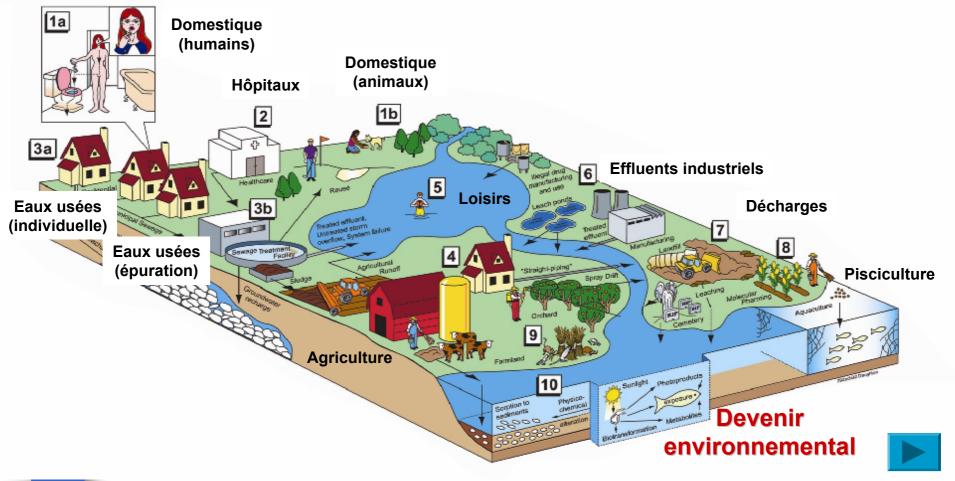
Daniel Thévenot Centre d'Enseignement et de Recherche Eau, Ville et environnement (Cereve)


Université Paris 12, Ecole des ponts, AgroParisTech (UMR-MA 102)

www.enpc.fr/cereve/

Sommaire

- 1- Introduction: cycle de l'eau
- 2- Prise en compte de l'eau en ville
- 3- Impacts de la ville sur l'eau
- 4- Conclusion


1. Introduction: cycle eau

■ Urbanisation ⇒ quels effets sur ce cycle ?

1. Cycle de l'eau: usages

En intégrant l'action de l'homme [Source] : US EPA

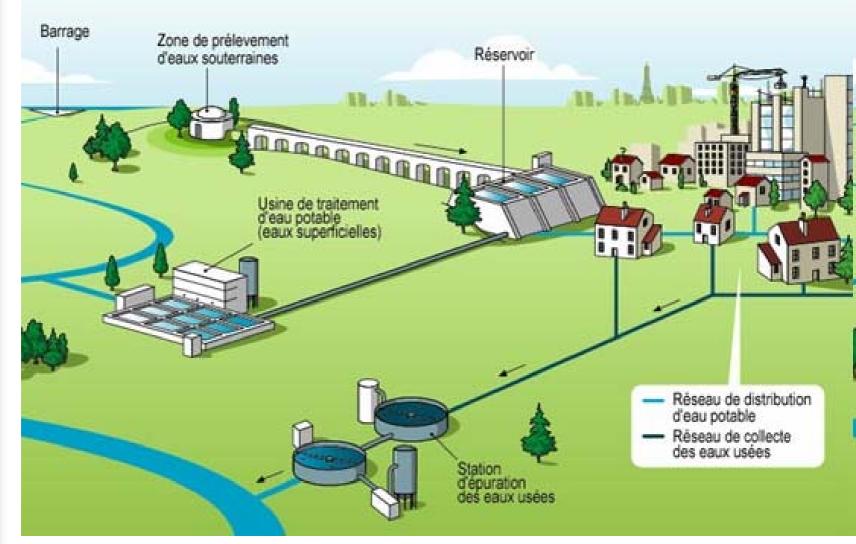
1. Effets de l'urbanisation sur le cycle hydrologique

Consommation d'eau potable

- Baisse des nappes, rejets d'eaux usées, augmentation des polluants
 - → contamination des eaux de surface & baisse des ressources en nappe

Imperméabilisation du sol

- Diminution de l'infiltration naturelle dans les sols, baisse du niveau des nappes
 - → inondations & baisse des ressources en nappe
- ⇒ Perte de potentialités d'usage de l 'eau


2- Prise en compte de l'eau en ville

- 2.1. Production d'eau potable
- 2.2. Collecte et traitement des eaux usées
- 2.3. <u>Gestion des risques de pollution</u> <u>des ressources en eau</u>
- 2.4. Gestion des risques d'inondation
- 2.5. Gestion des eaux pluviales urbaines

2.1. Eau potable - usée

2.1. Production d'eau potable

Ressource en eau

- Majoritairement eau de surface: Seine et Marne
- En été: qualité améliorée par vidange de barrages réservoirs (Seine, Aube, Marne)

Traitement

- Primaire: enlèvement de gros déchets
- Secondaire: enlèvement de fines particules et polluants dissous
- Finition: oxydation/fixation de la matière organique: ozonation et lit de sable/charbon actif

Stérilisation en usine et réseau

Destruction de micro-organismes: chloration

2.1. Production d'eau potable à partir eau de Seine et Marne

Choisy le Roy & Neuilly sur Marne (SEDIF)

2.1. Production d'eau potable: ultrafiltration

Vigneux/Seine: 55 000 m³/j

2.2. Collecte et traitement des eaux usées

- Assainissement: collecte des eaux usées domestiques et industrielles
 - Réseau unitaire : Paris intra muros
 - Réseaux séparatifs
 - Eaux usées → station épuration (Seine-Amont)
 - Eaux pluviales → rejet en rivière ± traitée
 - Réseaux: propriété, entretien, gestion
 - Commune → département → SIAAP

2.2. Collecte et traitement des eaux usées

Epuration des eaux usées (résiduaires)

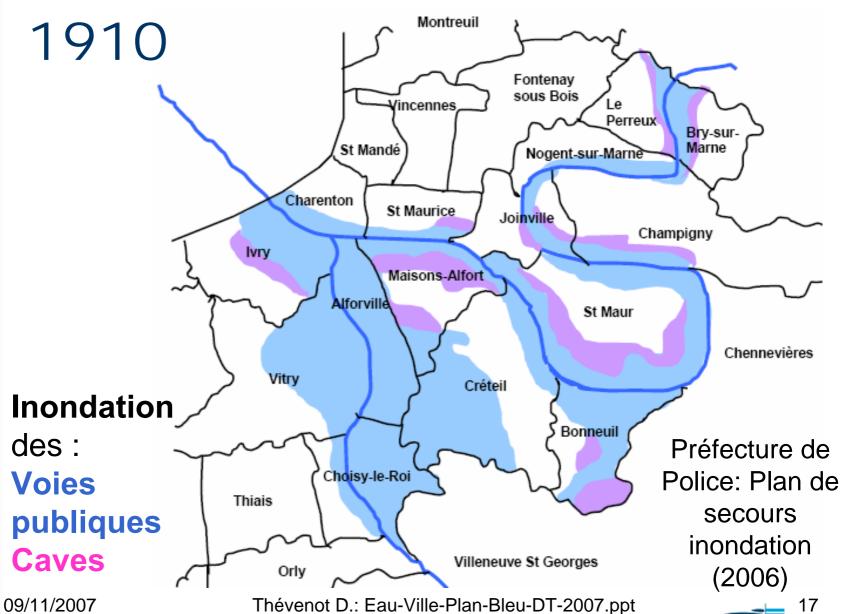
- Traitement primaire
 - Enlève déchets, sables, huiles et particules
- Traitement secondaire
 - Oxyde biologiquement la matière organique et les ions ammonium
- Traitement tertiaire
 - Fixe les phosphates et enlève les nitrates

2.2. STEP de Seine Amont

2.3. Gestion des risques de pollution

Risques de contamination aigue

- Interconnexion entre usines situées sur la Seine et la Marne
- Stockage d'eau de Seine avant traitement
- Risque de contamination chronique
 - Amélioration des procédés: charbon actif, ultra- ou nano-filtration
- Coût croissant de ces protections



2.4. Gestion des risques d'inondation

- Inondations par les rivières
 - Protection (partielle) par les barrages réservoir
 - Protections physiques: murettes
 - Protection réglementaire: plans de prévention
- Inondations par les eaux pluviales urbaines
 - Quelques exemples en région parisienne !

Zones inondées: crue de

Inondations pluviales

Source : pétition de riverains sur Internet

Inondations pluviales

Thévenot D.: Eau-Ville-Plan-Bleu-DT-2007.ppt

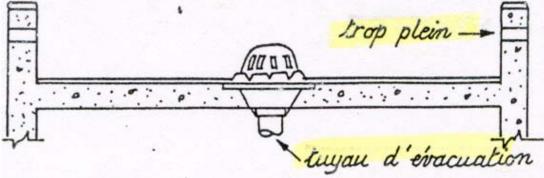
2.5. Gestion des eaux pluviales urbaines

- 2.5.1. Retenue à la source: toits verts, terrasses, chaussées
- 2.5.2. <u>Infiltration dans le sol</u>: fossés, puits, bassins enherbés
- 2.5.3. Stockage temporaire: zones inondables, bassins secs ou en eau
- 2.5.4. Réutilisation eau pluviale

2.5.1 Gestion à la source

■ Toiture enherbée: 'green roof'

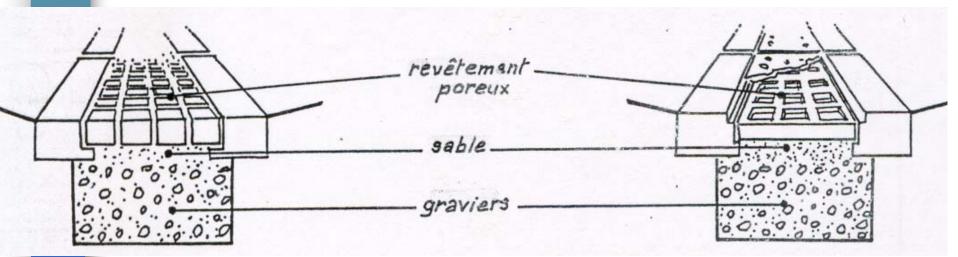
- Stockholm, Suède



2.5.1 Gestion à la source

Toitures en terrasse

- Stockage temporaire
- Ecoulement lent


Toiture terrasse - 1995

2.5.2 Gestion par infiltration

Infiltration: fossé drainant

- Infiltration & drainage lent
- Remplissage du fossé: sable & gravier
- Couverture: grille ou bande enherbée

2.5.2 Gestion par infiltration

Fossé drainant: Hoppegarten (Berlin)

Quartier industriel

2.5.2 Gestion par infiltration

Ralentisseur drainant

- Hoppegarten(Berlin) : quartierrésidentiel
- Ralentisseur routier
- Massif floral
- Puits d'infiltration
- Surverse en rivière

2.5.3 Gestion par stockage temporaire

- Zone inondable: parking, cour
- Bassins sec
 - En surface ou enterré
- Bassins en eau
 - Bétonné ou enherbé
 - Zone humide artificielle

2.5.3 Gestion par stockage tempor.

Partenariat avec service des sports et UCPA

Bassin golf inondable, La Poudrerie – Servan (capacité 55 000 m³)

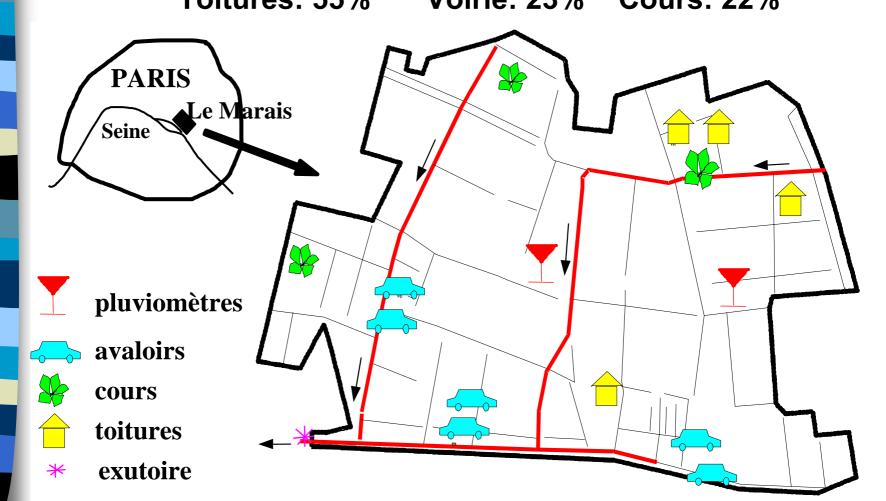
2.5.3 Gestion par stockage temporaire: bassin des Cormailles (mai 2004)

2.5.4 Réutilisation des eaux pluviales

- Usages possibles des eaux de ruissellement
 - Lavage de chaussée, cour, véhicule
 - Arrosage de jardin
 - Chasse d'eau de toilettes
 - → Nécessite une citerne, un 2nd réseau de distribution, entretien, étiquetage...
 - → Autorisation de la DDASS si immeuble collectif!

3- Impacts de la ville sur l'eau

- 3.1. Imperméabilisation des sols
- 3.2. Entretien des surfaces urbaines: herbicides
- 3.3. Rejets d'eaux pluviales urbaines
- 3.4. Rejets d'eaux usées domestiques et industrielles
- 3.5. Rejets du bassin de la Seine



3.1. Imperméabilisation

Bassin versant urbain expérimental : Le Marais (Gromaire, 1998) Surface: 42 ha Imperméabilisation: 91% Toitures: 55% Voirie: 23% Cours: 22%

3.1. Imperméabilisation

- Taux élevé : 30 à 60% (hors parcs)
 - Pas d'infiltration → inondations & rejets

3.2. Entretien des surfaces urbaines : herbicides

Usages urbains

- Voies ferrées
- Voiries
- Parcs

H. Blanchoud

1999

Thévenot D.: Eau-Ville-Plan-Bleu-DT-2007.ppt

3.3. Rejets d'eaux pluviales urbaines

- Eaux pluviales urbaines: ≠ types
 - Eau météorite: eau de pluie stricto sensus
 - Eau de ruissellement: toits, voirie, parkings
 - Déversoirs d'orage: rejets des réseaux par temps de pluie
 - Rejets des stations d'épuration par temps de pluie (traitement partiel ou faible)

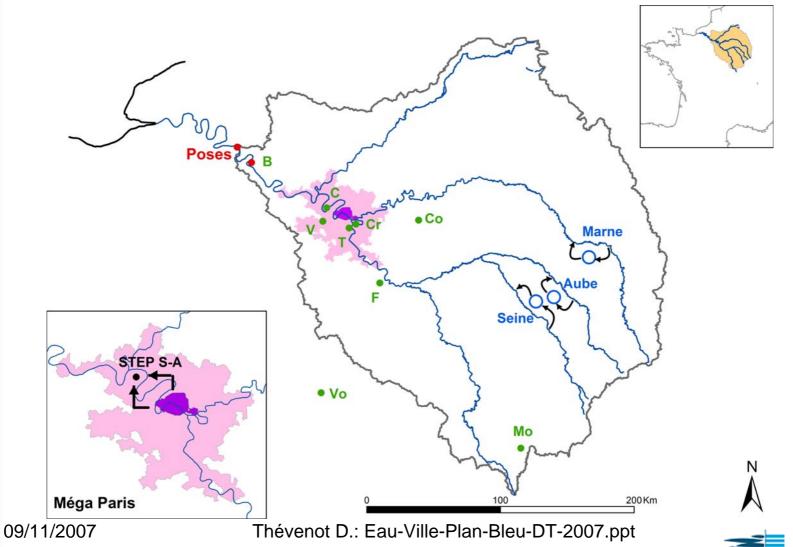
3.3. Rejets d'eaux pluviales urbaines

Impact quantitatif: inondations

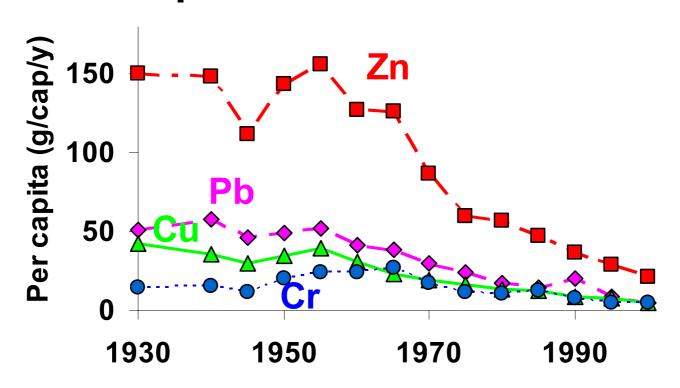
- Orages estivaux en France
- Pluies printanières sur sol gelé: Norvège
- Impact qualitatif: pollution
 - Flottants, matière organique et bactéries
 - → épuisement de l'oxygène dissous
 - Micropolluants métalliques et organiques
 - → impact immédiat ou différé (relargage par sédiments)

3.3. Rejets d'eaux pluviales urbaines

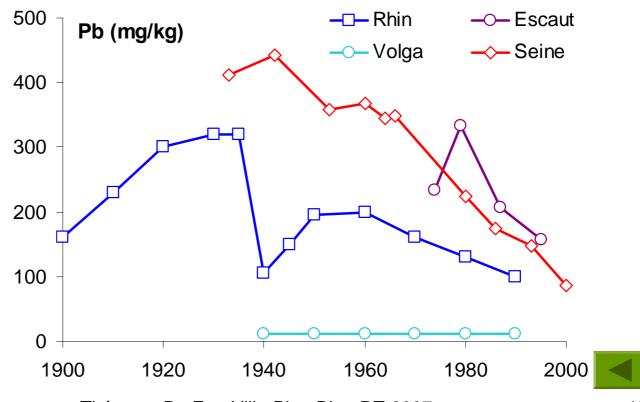
- Déversoirs d'orage et barrages à flottants
 - Seine à Clichy


3.4. Rejets d'eaux urbaines

- Méga Paris: forte concentration urbaine
 - 9,5 M hab sur 2740 km²
 - 7 + 3 + 21 = 31 m³/s de capacité de traitement par SIAAP
- Seine: fleuve à bas débit
 - 20 30 m³/s en été: débit naturel
 - 100 m³/s en été : vidange des barrages
- Seine: fleuve à faible courant
- Impact important de Méga Paris sur la qualité de la Seine



3.5. Rejets du bassin de la Seine : PIREN-Seine


3.5. Rejets du bassin de la Seine

 Diminution significative des rejets de métaux par habitant

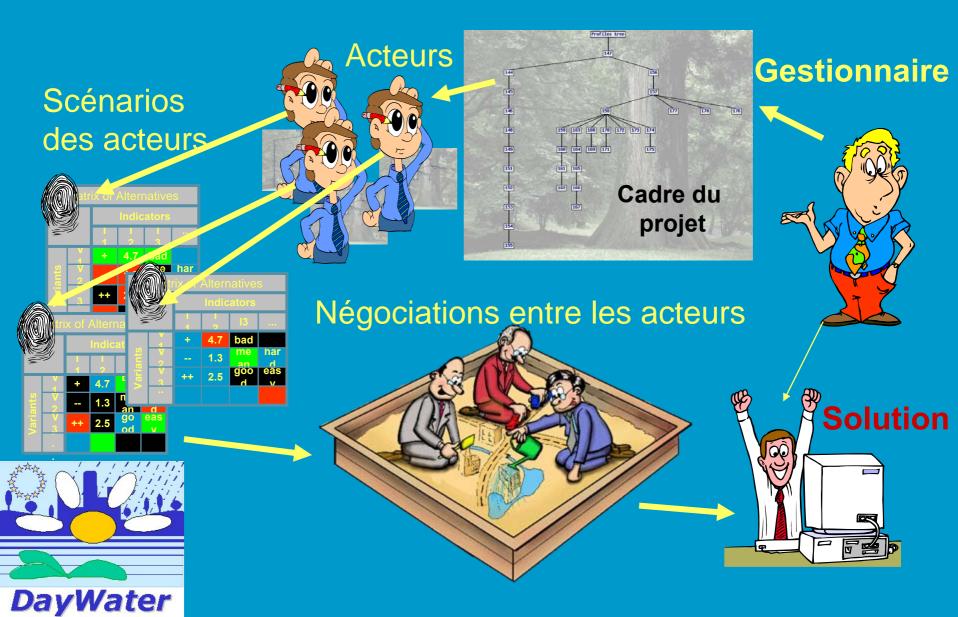
3.5. Rejets du bassin de la Seine

En progrès mais la Seine reste très contaminée : cas du plomb !

4- Conclusion: eau et ville

L'eau joue un rôle très important en ville

- Production d'eau potable, collecte et traitement des eaux usées
- Inondations
- Gestion des eaux pluviales urbaines
- La ville a un impact important sur l'eau
 - Rejet d'eaux usées et pluviales urbaines
 - Stocks urbains de pollution (sols, matériel...)


4- Conclusion: de l'hydraulique urbaine à la gestion durable

Changement de paradigme

- Depuis Belgrand jusqu'à 1980 :
 - Évacuer les eaux usées le plus vite possible vers la station d'épuration
 - Rejeter en rivière les eaux de ruissellement pluvial
- Depuis 1980:
 - Retenir temporairement les eaux pluviales pour éviter les inondations et les rejets non traités
 - Traiter/utiliser les eaux pluviales urbaines: infiltration, réutilisation pour arrosage, chasses d'eau
 - Impliquer tous les acteurs concernés pour assurer la durabilité / pérennité des ouvrages

4- Conclusion: concertation

4- Conclusion

Des questions ?

