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What is dispersion?

• Migration apart of particles under influence 
of fluid flow and molecular diffusion

Where is it relevant?
“underpins processes as diverse as cellular mitosis, blood perfusion in the brain, 
chromatography, filtration, secondary oil recovery, ground water remediation, 
catalysis, and the behavior of packed bed reactors.” degradation of building materials
tissue physiology, migration and epidemiology. 



Most common approach

• The advection-dispersion equation (ADE)
• It models solute transport on a continuum as 

due to diffusion like processes (Dh) and being 
carried along by the flow (advection) v.
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Are there problems with the ADE?

• Dh >> Dm has nothing to do with molecular diffusion, Dm.
• Dh depends in a non-trivial way on velocity.
• Dh increases with time (or transport distance) in a way that 

cannot be predicted from the ADE.
• The distribution tails are seldom, if ever, Gaussian, which 

underestimates solute arrivals at both short and long times.
• All these features drop out of a proper accounting for effects of 

heterogeneity and connectivity on solute paths through the 
medium; first term is extraneous.

• The chief lacks of the ADE are admitted to be its treatment of 
heterogeneity and connectivity.



Anything good about ADE?

• Works at scale of single pore, where it is 
used to evaluate relative effects of 
diffusion and advection (Peclet number).



Why percolation theory?

• Previous approaches (e.g., the ADE) have failed 
to predict the observed behavior

• Percolation theory (PT) is a mathematics of 
pathways and connections in disordered 
materials

• Can treat heterogeneity with a wide range of flow 
resistance (critical path analysis, CPA), even far 
from percolation threshold

• It accounts for tortuosity of flow paths
• It can incorporate geological correlations



Organization
• Introduce concept of critical path analysis (CPA) to find the 

critical conductance gc of a system.

1. Apply CPA framework to cluster statistics of percolation theory to find 
spanning probability, W (g ; x) that system of length x can be spanned 
by interconnected cluster of conductances of arbitrary smallest value, 
g. 

2. Apply critical scaling of percolation theory to find how the solute 
transit time, t, depends on the length of the system and the governing 
value, g.

3. Arrival time distribution W(t;x) = g W(g ; x) / ( dt(g)/dg )

• Analogous procedure gives spatial distribution.

• Calculate moments by standard procedures.
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On left a model 
porous medium.

In fractal medium we 
have “pore size 
distribution ”

rm: largest pore radius

D: fractal dimension
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The biggest pores don’t connect

Cluster with largest
“volume”
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The next-biggest still don’t connect

Cluster with largest
“volume”
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Something important happened

Now the 
system 

percolates

In other words: Largest cluster reaches infinite size
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Infinite cluster
(finite clusters have 

been deleted)

Bottleneck pore size
Critical radius rc

How big is the bottleneck pore?
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Backbone
•Bonds that actually 
conduct
•Dangling ends have 
been deleted

Bottleneck pore size
Critical conductance gc

Bottleneck pore has conductivity gc
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Percolation theory gives us

• cluster size statistics

• cluster topology

We just got

• critical conductance, gc

How can we work in PT using g and gc?



In percolation theory, quantities of interest are expressed in 
terms of p and pc. Results of previous slides transform p and pc
to g and gc. This transformation of variables allows representation 
of correlation length, cluster statistics, tortuosity, etc. in terms of 
a conductance value.



Cluster statistics
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Result (after integrating over all
clusters larger than system):

Result is not a power-law, exponential integral has logarithmic
divergence at g = gc



Logarithmic divergence



Calculate t(g), the time particles take to 
traverse a cluster characterized by g.
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There are two contributions: one from the conductance distribution W(g), 
and one from topology via percolation theory.



Power-law
divergence



Apply   Wp(t ; x) = g Wp(g ; x) / ( dt(g)/dg )





2-D flow, parameters from 2-D random percolation.
Navier-Stokes simulations on 2-D structure at Percolation threshold

Note that we do not
obtain power-law tail,
but our results match
such experimental 
results rather closely.
Example given has
slope  -1.56, almost
identical to what is 
seen in fracture flow
experiments.



No prediction here, only a fit, but to “classic” Nielsen and Biggar experiment
(cited by Cortis and Berkowitz)





Analogous procedure for spatial 
distribution at time t



Define longitudinal dispersion 
coefficient and dispersivity

α ≡ [ < x2 >  - < x > 2 ] / < x >. 

Dl(t) ≡ ½ d/dt [ < x2 > - < x > 2 ] ≈ [ < x2 > - < x > 2 ] / t. 

Averages performed over distributions derived above: for
Gaussian spreading, Dl(t) would be constant in time, making
α constant in space.
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Length Dependence of Typical 
System Crossing Time

not givenPfister and Scher132can't predict1.82

Polyvinyl carbazoleBos et al1311.641.61

a-SePfister1301.91.86

a-SePfister1301.91.91

not givenScher and Montroll65can't predict2.2

a-Si:HTiedje1291.92

As2Se3Pfister1281.92.1

Carbazole polymersPfister and Griffiths1271.641.72

Carbazole polymersPfister and Griffiths1271.641.67

MaterialReferencePredictedPower 



Summary
• Straightforward derivation in terms of known quantities from 

percolation theory leads to:
• Arrival time distribution consistent with simulations and experiments 

in soils and fracture flow
• Superlinear dependence of variance on time (at short times) in 

accord with experimental summaries and possibly predictive for 
Borden aquifer

• Dependence of dispersivity on length scale in accord with over 2400 
experiments over 10 orders of magnitude of length scale

• Dependence of dispersivity on heterogeneity which is in accord with 
experiment for small heterogeneity, but which may or may not be for 
large heterogeneity

• Dependence of typical transport time on system length which is 
observed in semiconductors/polymers.



Implications

• No need to invoke multiple scales of heterogeneity to produce 
continuing rise of dispersivity with length scale (trouble for 
stochastic subsurface hydrology and NSF).

• Tendency for all experiments at scales of centimeters and 
above to have same REV (1m3) implies the relevance of 
experimental apparatus (human size on order of 2m).

• No role of diffusion means trouble both for ADE users and for 
proponents of matrix diffusion to explain solute transport 
retardation in fracture flow (nuclear regulatory issue).

• Where is the importance of geological complexity?


