

Université Paris XII-Val de Marne

ENPC

Université Paris 7

Module Physico-chimie Chap. 2.7 Équilibres multiples Chap. 2.8. Conclusion

D. Thévenot & B. Aumont thevenot@cereve.enpc.fr aumont@lisa.univ-paris12.fr

Documents pédagogiques disponibles à : http://www.enpc.fr/cereve/HomePages/ thevenot/enseignement.html

D. Thévenot: SGE-M1-Physico-chimie-2-7.ppt

Chap. 2 Equilibres: Plan

- 2.1. Acide base
- 2.2. Dissolution des gaz: cas de CO₂
- 2.3. Dissolution précipitation
- 2.4. Complexation, chélation
- 2.5. Echange ionique et adsorption
- 2.6. Oxydo réduction
- 2.7. Equilibres multiples
- 2.8. Conclusion

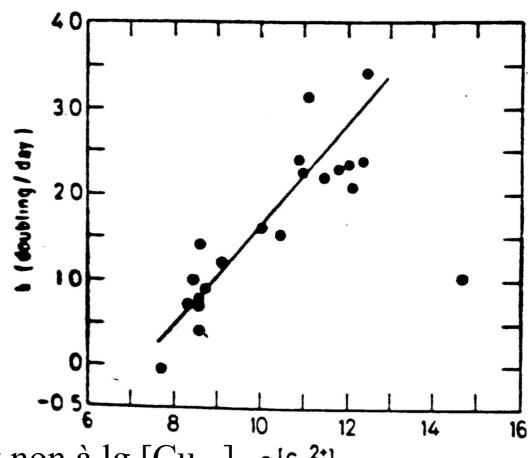
2.7. Equilibres multiples: Plan

- 2.7.1. Introduction: spéciation (rappel)
- 2.7.2. Equations d'équilibre
- 2.7.3. Equations de bilan matière
- 2.7.4. <u>Méthodes de résolution</u> et (MINEQL)
- 2.7.5. <u>Intérêt et limites</u>
- **2.7.6.** Conclusion

Objectif des résolutions d'équilibres multiples

- Calculer la composition chimique des **espèces** dissoutes dans une eau à l'équilibre
- A partir de mesures globales des métaux et d'ions majeurs (Na⁺, Ca²⁺, Cl⁻, SO₄²⁻, NH₄⁺, NO₃⁻...)
- ⇔Car
 - OLa **détermination directe** de toutes les formes chimiques est très longue, sinon impossible
 - OLa concentration de certaines formes (libres) est directement liée à leur **toxicité** (voir § 2.4.)

Objectif des résolutions d'équilibres multiples


- Les méthodes présentées antérieurement (§ 2.1 à 2.6) ne suffisent pas si le nombre d'espèces dépasse quelques unités
 - OConstantes d'équilibre et relations entre activités
 - OBilan matière et bilan de charges
 - OTracé des variations de lg [] vs pH ou pL ou pε (E)
 - OSimplification des bilans en faisant des hypothèses sur l'état d'équilibre et en exploitant les graphiques cidessus

2.7.1. Introduction: spéciation & toxicité (rappel)

Culture d'algues avec Cu à différents pH & différents ligands ajoutés

> Nombre quotidien de divisions cellulaires bien corrélé à

 $\mathbf{pCu} = - \lg \left[\mathbf{Cu}^{2+} \right]$ et non à $\lg \left[\mathbf{Cu}_{tot} \right]$

- Hypothèses de départ : sont supposées connues
 - Les concentration totales des métaux et espèces majeures
 - Toutes les **réactions** impliquant les métaux (stoechiométrie et constante d'équilibre)
 - Toutes les grandeurs thermodynamiques permettant de tenir compte de la température et pression
 - Les relations permettant d'estimer les coefficients d'activité (voir Chap. 1)

■ Hypothèses de départ

- ⇒ Colonne d'eau homogène et à l'équilibre
 - OLes échanges eau sédiment ne sont pas considérés
 - OLes réaction redox ne sont pas prises en compte
- ⇒ Pas de particules : réactions de sorption mal caractérisées
- Pas d'organisme vivant (algues, végétaux ou animaux aquatiques) : réactions de bio sorption ou d'absorption/détoxification mal caractérisées

■ Des questions ?

2.7.2. Equations d'équilibre: lois d'action de masse

Espèces A_i avec i = 1 à n

Toutes les espèces chimiques présentes à concentration $C_i = [A_i]$

Constituants indépendants X_j avec j = 1 à p

- Sous-ensemble des espèces chimiques à partir duquel toutes les autres espèces peuvent être produites
- Plusieurs listes de constituants indépendants possibles: préférable de choisir les élément (ex: Me²⁺)
- \Rightarrow On montre que p = n m

2.7.2. Equations d'équilibre: lois d'action de masse

Equation de l'équilibre chimique

 \Rightarrow Pour chaque **réaction j** (j = 1 à m) : $\Sigma_i a_i^j A_i = 0$

$$\Rightarrow K_j = \Pi_i (A_i)^{aij} \text{ avec } \Delta G_j^{\circ} = -RT \ln K_j$$

■ Effet de la température et de la pression

 $\Rightarrow \{ d \ln K_j / dT \}_P = + \Delta H_j^{\circ} / RT^2$ $\Rightarrow \{ d \ln K_j / dP \}_T = - \Delta V_j^{\circ} / RT$

■ Effet de la force ionique I

 $\Rightarrow I = \frac{1}{2} \sum_{i} z_{i}^{2} c_{i}$ pour toutes les espèces ionisées

$$\Rightarrow \lg \gamma_i = - \{ A z_i^2 I^{1/2} / (1 + B a I^{1/2}) \} + b I$$

Les m équations d'équilibre ne suffisent pas à résoudre ce problème à n espèces A_i

$$\Rightarrow K_j = \prod_i (A_i)^{aij} \text{ avec } j = 1 \text{ à m}$$

■ Les valeurs de (A_i) ne peuvent varier indépendamment : le bilan des divers éléments est constant !

$$\Rightarrow \Sigma_i b_i^j [A_i] = TOT_j \text{ avec } j = 1 \text{ à n - m}$$

■ Le bilan des charges doit aussi être pris en compte!

■ Linéarisation pour calcul matriciel

Lois d'action de masse : formation chaque espèce C_i à partir des constituants indépendants X_j

$$\begin{array}{l}
\bigcirc C_i \gamma_i = K_i \prod_j (X_j)^{aij} \prod_j (\gamma_j)^{aij} \text{ avec } i = 1 \text{ à n, devient} \\
\text{si } C_i^* = \lg C_i \& K_i^* = \lg K_i \& X_j^* = \lg X_j \\
\bigcirc C_i^* + \lg \gamma_i = K_i^* + \sum_j a_j^j X_j^* + \sum_j a_j^j \gamma_j^*
\end{array}$$

Lois de bilans : équations linéaires entre les j constituants indépendants

$$O\Sigma_i \ a_i^j C_i - T_i = 0 \text{ avec } j = 1 \text{ à n - m}$$

⇒Lois de Debye-Hückel étendue : estimation de γ_i

Utilisation du calcul matriciel

- \Rightarrow En supposant pour simplifier $\gamma_i = 1$
- \Rightarrow $C_i^* = K_i^* + \Sigma_j \ a_i^j X_j^* \text{ avec } i = 1 \text{ à n, devient}$
- \Rightarrow C* = K* + A X* avec
 - OC* vecteur colonne des log [C_i] des n espèces
 - OK* vecteur colonne des log K_i des n espèces
 - $\bigcirc X^*$ vecteur colonne des $\log [X_j]$ des p constituants indépendants
 - OA matrice des coefficients stoechiométriques

Utilisation du calcul matriciel

$$\Rightarrow \Sigma_i \ a_i^j C_i - T_j = Y_j \text{ avec } j = 1 \text{ à n - m}$$

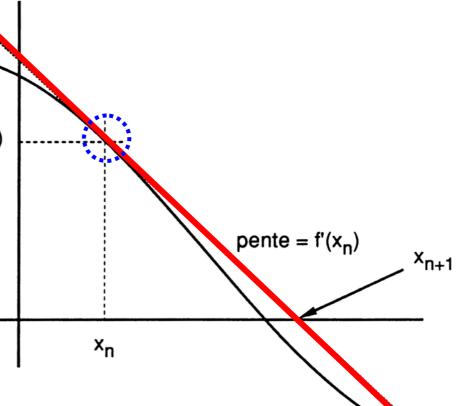
Oavec $Y_j = 0$ si la 'solution' du problème est trouvé, devient

$$\Rightarrow t_A C - T = Y$$

- OC vecteur colonne des [C_i] des n espèces
- T vecteur colonne des T_j des concentrations totales des p constituants indépendants
- OY vecteur colonne des Y_j 'erreurs' des p constituants indépendants
- Ot_A transposée de la matrice des coefficients stoechiométriques

■ Des questions ?

- Plusieurs méthodes possibles pour 'converger' vers 'la solution' du problème
- **■** Méthode de Newton-Raphson
 - ➡ Méthode utilisée par le logiciel public MINEQL
 - ⇒Illustration à une dimension: trouver la valeur de x pour laquelle la fonction f(x) est nulle ?



Méthode de Newton-Raphson

Illustration avec 1 dimension: valeur de x pour f(x) = 0?

- \Rightarrow Calcul de f(x) pour x = x_n

$$f'(x_n) = \{f(x_n) - 0\} / \{x_n - x_{n+1}\} - x_{n+1} = x_n - f(x_n) / f'(x_n)$$

■ Méthode de Newton-Raphson : calcul matriciel

$$\Rightarrow x_{n+1} = x_n - f(x_n) / f'(x_n)$$
 devient

$$\Rightarrow$$
 $X_{\text{nouveau}} = X_{\text{ancien}} - Z^{-1} Y$

Où Z est le Jacobien de Y par rapport à X

Matrice des dérivées partielles

$$\Rightarrow$$
 Soit: $Z \Delta X = Y \text{ avec } \Delta X = X_{\text{nouveau}} - X_{\text{ancien}}$

⇒On montre que Z est une matrice carrée d'élément $z_j^k = \partial Y_j / \partial X_k = \Sigma_i \{ a_i^j a_j^k C_i / X_k \}$

■ Méthode générale

- □ Identification de toutes les espèces
- ⇒ Sélection des constituants indépendants
- ⇒ Sélection des concentrations totales T_i
- Recueil ou utilisation des données thermodynamiques stockées dans le logiciel
 - \circ K_i \rightarrow vecteur colonne K* des logarithmes des K_i
 - O Matrice A des a_i de formation des espèces à partir des constituants indépendants
- ightharpoonupHypothèse de départ du calcul itératif: $X_{i,1}$
- Calcul matriciel jusqu'à convergence (critère choisi)

■ Exemple: équilibre calco carbonique

- Espèces dissoutes: $CaCO_3^0$, $CaOH^+$, $Ca(OH)_2^0$, CO_3^{2-} , HCO_3^- , $H_2CO_3^0$, Ca^{2+} , H^+ , OH^- , H_2O
- Sélection de 4 constituants indépendants: Ca²⁺, CO₃²⁻, H⁺ & OH⁻
- ⇒Construction de la matrice des a_i^j

■ Matrice des a_i^j

Ca ²⁺	1	1	0	0	0	0
CaCO ₃	-1	0	0	0	0	0
CaOH⁺	0	-1	1	0	0	0
Ca(OH) ₂	0	0	-1	0	0	0
CO ₃ ² ·	1	0	0	1	0	0
HCO ₃	0	0	0	-1	1	0
H⁺	0	0	0	1	1	1
OH.	0	1	1	0	0	1
H_2CO_3	0	0	0	0	-1	0
H₂O	0	0	0	0	0	-1

D. Thévenot: SGE-M1-Physico-chimie-2-7.ppt

Equations de bilan matière

$$\Rightarrow$$
 [Ca²⁺] + [CaCO₃⁰] + [CaOH⁺⁰] + [Ca(OH)₂⁰] = Ca_{tot}

$$\Rightarrow$$
 [CO₃²⁻] + [CaCO₃⁰] + [HCO₃⁻] + [H₂CO₃⁰] = CO_{3tot}

$$\Rightarrow$$
 [H⁺] + [HCO₃⁻] + 2 [H₂CO₃⁰] + 2 [H₂O] = H⁺_{tot}

$$\Rightarrow$$
 [OH-] + [CaOH+0] + 2 [Ca(OH)₂0] + [H₂O] = OH-tot

Remarque: comme (H₂O) varie peu cette espèce est parfois supprimée et l'on écrit l'équilibre

H⁺ + OH⁻ ⇔ 0 → les constituants indépendants deviennent: $CaCO_3^0$, $CaOH^{+0}$, $Ca(OH)_2^0$, HCO_3^- , OH^- & $H_2CO_3^0$ le troisième bilan devient:

$$[CaCO_3^0]$$
 - $[CaOH^{+0}]$ - 2 $[Ca(OH)_2^0]$ + $[HCO_3^-]$ - $[OH^-]$ + $[H_2CO_3^0]$ = constante

■ Logiciel d'accès libre (sous DOS: la version 4.x sous Windows est payante) : MINEQL⁺

http://www.minegl.com/

- Autres logiciels développés pour les eaux de rivières, pour les eaux de sols
 - Différents modes de prise ne compte de la matière organique, des sorptions, du redox...
 - Code de calcul développé par J.-M. Mouchel (Cereve)

■ Des questions ?

2.7.5. Intérêt et limites des résolutions d'équilibres

■ Intérêt

☐ Interprétation ou estimation de l'éco toxicité d'échantillons aqueux, de la mesure par DGT (voir § 2.4) sans nécessité de mesures délicates

Limites

- □ Identifier toutes les espèces, y compris organiques
- Connaître les coefficients stoechiométriques et constantes d'équilibre de formation des espèces
- → Prendre en compte le redox, la sorption, les précipitations

2.7.5. Intérêt et limites des résolutions d'équilibres

■ Limites : Milieux aqueux hors d'équilibre

- Hétérogénéité spatiale : stratification
- ⇒ Variabilité temporelle : rejets ponctuels
- Lenteurs des réactions : redox, précipitation ou dissolution
- Présence de systèmes biologiques évolutifs et toujours hors d'équilibre (au mieux : état stationnaire)

2.7.5. Intérêt et limites des résolutions d'équilibres

■ Des questions ?

2.7.6. Equilibres multiples : Conclusion

- Evocation rapide de l'intérêt des limites et des méthodes utilisées
 - Dernet pas d'utiliser les graphiques lg [] vs pH, pL ou pε (E)
 - Enseignement repris et approfondi en spécialité de M2 : SAGE

Objectifs de ce cours

- Rappels de vocabulaire thermodynamique et des définitions des principales grandeurs
- ☐ Illustrations des différents types de réactions sur des exemples importants pour la connaissance ou la gestion de l'environnement
 - ONuages, aérosols, pluie
 - OColonne d'eau: rivières ou lacs
 - OInterface eau sédiment

Objectifs de ce cours

- Examen des principaux types de réactions
 - Acide base
 - O Dissolution des gaz
 - O Dissolution des solides et précipitation
 - O Complexation et chélation des métaux
 - Echanges ioniques et d'adsorption : sorption sur les solides
 - Oxydoréduction

■ Limites de ce cours

- Peu d'applications détaillées en travaux dirigés
- Pas de travaux pratiques ou de terrain: **lg [HCO₃-] vs lg** [Ca²⁺] dans les rivières étudiées en stage de terrain!

Examen final

- Questions sur certaines parties du cours : compréhension des principaux concepts, relations
- Exercices semblables à ceux effectués en séance (plus ou moins préparés par les étudiants)

Evaluation de cette UE

□ Questionnaire distribué lors de la session d'examen pour toutes les UE

■ Merci pour vos questions, votre participation & votre attention

- **■** Des questions ?
- Si elles vous apparaissent en révisant vos cours, vous pouvez me contacter par courriel!

■ Je compte sur votre participation active aux 17èmes Journées Scientifiques de l'Environnement (23 & 24 mai)!