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Abstract
Most of the nutrients in wastewater come from human urine and their recycling for agricultural purposes is very limited. After 
source separation, urine can be treated to produce various urine-based fertilizers. This study aims to characterize the nitro-
gen use efficiency of different urine-based fertilizers. Nine urine-based fertilizers were compared together with ammonium 
nitrate and cattle slurry in a greenhouse pot trial with English rye-grass, (Lolium perenne L.). The detailed physico-chemical 
characteristics of the fertilizers were analyzed. The biomass production and nitrogen uptake of the plants were measured. 
The nitrogen use efficiency and the mineral fertilizer equivalent were determined for each fertilizer. The urine-based ferti-
lizers were classified in four types based on their nitrogen forms (ammonia, nitrate, urea, or organic). The mineral fertilizer 
equivalent of most urine-based fertilizers were above 85% and even higher than 100% for nitrified concentrated and acidified 
stored urine. The lowest mineral fertilizer equivalent were found for fermented fresh urine and the mixture of fresh urine and 
woodchips but remained between 65 and 75%. In all cases, the nitrogen use efficiencies of urine-based fertilizers were higher 
than that of cattle slurry. The differences among the urine-based fertilizers and from the cattle slurry were attributed to the 
mineral nitrogen content which was much higher in urine-based fertilizers. Indeed, they contain mainly mineral nitrogen. 
Their content of trace element contaminants is low. Their efficiency as nitrogen fertilizers is high and close to that of mineral 
fertilizer. However, new valorization pathways from cities to agriculture need to be developed.

Keywords Fertilization · Greenhouse trial · Human urine · Nutrient recycling · Source separation · Urine-based fertilizer

1 Introduction

Wastewater contains large amounts of nutrients whose release 
in the environment can have undesirable environmental 
impacts (Sutton et  al. 2011). The amount of nutrients 

recycled from wastewater is currently low (Esculier et al. 
2018). Conventional agriculture relies on the use of synthetic 
nitrogen (N) fertilizers that require a substantial amount 
of energy for synthesis and contribute to the disruption of 
planetary biogeochemical cycles (Gruber and Galloway 
2008). Most nutrients in wastewater have urine as their 
source (Friedler et al. 2013) and their recovery could offset a 
substantial proportion of the mineral fertilizer in agriculture 
(Trimmer et al. 2019).

Urine can be separated from the other constituents of 
wastewater by source separation (Rossi et al. 2009). Urine 
is a low concentrated solution compared to mineral ferti-
lizers. The concentration of trace elements in urine is low 
(Ronteltap et al. 2007), and while some pathogens can be 
present in urine, proper storage inactivates these pathogens 
to acceptable levels (WHO 2012). In contrast, pharmaceuti-
cal residues are of concern, and the need for specific urine 
treatments to remove them before application is currently a 
topic of debate (Winker 2009; WHO 2012). Collected urines 
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are often treated for (i) N stabilization (e.g., by nitrification), 
to prevent ammonia volatilization and allow volume reduc-
tion; (ii) volume reduction, to reduce transport costs and 
impacts as well as the work required for application; (iii) 
nutrient extraction to obtain concentrated fertilizers; and (iv) 
treatment of contaminants to produce safer fertilizers (e.g., 
urine storage as recommended). All treatments result in dif-
ferent products defined as urine-based fertilizers (UBFs).

The fertilization efficiency of stored urine has been stud-
ied on different crops (Pandorf et al. 2019), but other UBFs 
remain barely studied. As the fertilization efficiency depends 
on the trial conditions, it is difficult to directly compare stud-
ies. This study aimed to characterize the fertilization effi-
ciency of nine UBFs as N fertilizers compared to mineral 
fertilizer and cattle slurry under the same conditions in a 
greenhouse trial.

2  Material and Methods

2.1  Urine‑Based Fertilizers

Nine UBFs were used issued either from source separation 
followed by treatments intended to stabilize N (acidification, 
alkalinization and nitrification), or from a frequent collecting 
practice resulting in a mixture of urine with woodchips. 
Detailed information on the treatments can be found in 
Martin et al. (2020). Some UBFs were specifically produced 
for this study.

The stored urine was collected in a university building 
using a waterless male urinal and stored for 6 months in 
an airtight tank. For the acidified stored urine, 31.3 mL of 
sulfuric acid (96% pure) was added per liter of stored urine 
to decrease the pH to 6.5 to reduce ammonia losses (pKa 
 NH3/NH4

+  = 9.2).
For acidified and alkalinized fresh urine as well as the 

mixture with woodchips, urine was collected from approxi-
mately 20 donors from the university, stored at 4 °C, and 
used within 3 h. The objective of acidifying the fresh urine 
to below pH 4 or alkalinizing the fresh urine to above pH 11 
was to prevent urea hydrolysis and stabilize the N (Hellström 
et al. 1999; Randall et al. 2016). To produce acidified fresh 
urine, we added 60 mmol  H+  L−1 to fresh urine (1.61 mL  L−1 
of 96% pure sulfuric acid, Hellström et al. 1999). To produce 
alkalinized fresh urine, we added 10 g lime [Ca(OH)2] per 
liter of fresh urine (Randall et al. 2016). In dry toilets, urine 
is often mixed with absorbent organic substrates. Thus, a 
mixture of fresh urine and woodchips was produced 1 week 
before the start of the experiment, with 1 kg of woodchips 
(less than 1 cm pieces) mixed with 286 g of fresh urine (the 
maximum amount that the woodchips could absorb).

Fermentation and nitrification decrease the risk of ammo-
nia volatilization and make possible further concentration, 

respectively. The treatment for fermented fresh urine was 
similar to the one of Andreev et al. (2017). It consisted in the 
acidification of fresh urine, followed by a lactic acid fermen-
tation using lactic acid bacteria. This pilot batch was pro-
duced by the TOOPI Organics company (www. toopi- organ 
ics. com). For the nitrified concentrated urine, the biological 
nitrification of half of the ammonia N in the stored urine was 
followed by volume reduction by distillation (Fumasoli et al. 
2016). It was produced by the VUNA company (www. vuna. 
ch). Dehydrated alkalinized urine was provided by the Swed-
ish University of Agricultural Sciences. The urine was alka-
linized using two different alkaline media: lime (20.6 g L 
 urine−1) and lime (5.1 g  urine−1) + biochar (15 g L  urine−1); 
and the mixtures were dehydrated (Simha et al. 2020).

The cattle slurry was collected in a conventional dairy 
farm and used as a reference organic fertilizer. Liquid ammo-
nium nitrate was used as a reference mineral fertilizer.

All fertilizers were analyzed for their contents in water, 
carbon, nutrients, trace elements, and the different forms of 
N (Table 1). Information on the used methods is summarized 
in SI. 1.

2.2  Greenhouse Experiment

The greenhouse experiment was performed with English 
ryegrass (Lolium perenne L.) sown in a soil sampled from 
the surface horizon of a silty luvisol (Fig. 1), sieved at 4 mm, 
and stored at 4 °C before the experiment. The soil was lightly 
carbonated (0.8% CaCO3) and had a pH  (H2O) of 8.0. The 
organic matter content was 13.6 g C kg dry  soil−1, and the 
initial mineral N content was low (11.9 mg N  kg−1 dry soil). 
A detailed soil analysis is provided in SI. 2. The pots were 
filled with 1.30 kg of fresh soil (equivalent to 1.17 kg of 
dry soil).

A control treatment without N addition and 2 ammonium 
nitrate treatments that received 150 and 250 mg N  kg−1 dry 
soil were implemented to calculate the response curve of 
N uptake according to fertilizer input. The target dose for 
cattle slurry and the UBFs was 150 mg N   kg−1 dry soil 
(175.4 mg N  pot−1). Since the nutrient concentrations were 
not available at the start of the experiment, they were esti-
mated; the actual doses are shown in Table 2. In order to 
ensure that only N would be a limiting nutrient, phosphorus 
(P) and potassium (K) were added as  K2HPO4 with 100 mg 
P kg dry  soil−1 and 250 mg K kg dry  soil−1. Magnesium 
(Mg) was added as  MgSO4 with 40 mg Mg kg dry  soil−1 
and iron (Fe) as  FeSO4.7H2O with 1 mg Fe kg dry  soil−1. 
The sulfur (S) input resulting from the Mg and Fe inputs was 
53.9 mg S kg dry  soil−1. All fertilizers were incorporated 
into the entire soil mass. One gram of ryegrass seeds was 
sown in each pot. Three replicates were established for each 
treatment. Water losses were measured by weighing, and 
the soil moisture was readjusted to 90% of the field capacity 

http://www.toopi-organics.com
http://www.toopi-organics.com
http://www.vuna.ch
http://www.vuna.ch
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(22.5% humidity) three times a week using deionized water. 
No leachates out of the pot were observed. The positions 
of the pots in the greenhouse were randomized and moved 
twice a week to avoid the potential effects of heterogeneity 
in solar radiation. The grass biomass was cut 1 cm above the 
soil surface in each pot on days 22, 42, 63, and 75. Then, 
it was dried at 50 °C for 5 days and powdered, after which 
the N concentrations were measured. At the end of the trial, 
the mineral N content in the soils was measured. N uptake 
was calculated using the N concentration in tissues and the 
biomass of each cut. The analytical methods are detailed in 
SI. 1.

2.3  Nitrogen Use Efficiency and Mineral Fertilizer 
Equivalent

The fertilization efficiency was estimated using two calcu-
lations: the nitrogen use efficiency (NUE) and the mineral 
fertilizer equivalent (MFE). The NUE of ammonium nitrate 
corresponded to the slope of the response curve of N uptake 
by plants according to the amount of N added. In the UBF 
treatments, the NUE was directly calculated using the fol-
lowing Eq. (1):

(1)NUE(%) =
Nitrogen uptake by fertilized crop − Nitrogen uptake by unfertilized control crop

Nitrogen added by fertilizer
× 100

The NUE of UBFs can be compared with that of mineral 
fertilizer by calculating the MFE as the ratio of the NUE of the 
UBF and the NUE of ammonium nitrate :

The results are expressed as the mean of the 3 replicates 
with the standard deviation. Significant differences between 
treatments were tested using an ANOVA followed by a Tukey 
HSD post hoc test. Significant differences between UBF and 
ammonium nitrate were tested using Student’s t-test, or a sign 
test if the distribution of the residues was not normal. All tests 
were performed using R, version 3.3.2 (R Core Team 2016).

3  Results and Discussion

3.1  Urine‑Based Fertilizers Characteristics

There was a strong difference in the N concentrations of the 
non-concentrated UBFs (below 7 g N  L−1) and the concen-
trated UBFs (up to 107 g N  L−1, Fig. 2). Most UBFs had N 
forms similar to those in the typical mineral N fertilizer: urea 
and ammonia or nitrate N (Fig. 2). N is excreted in fresh urine 

(2)MFE(%) =
NUE Urine − based fertilizer

NUE Ammonium nitrate
× 100

Fig. 1  Greenhouse trial and biomass in some treatments before the third cut (day 63)
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mainly as urea (Udert et al. 2006); however, in stored urine 
and acidified stored urine, most of the urea is hydrolyzed dur-
ing storage, and ammonia N is the main form of N. Interest-
ingly, the content of organic N was much lower in the acidified 
stored urine than in the stored urine (0.04 and 1.4 g N  kg−1, 
respectively). The organic N may have been mineralized dur-
ing acidification (Antonini et al. 2012). In contrast, in fresh 
urine stabilized by acidification or alkalinization, urea was the 
main form of N. We did not observe mineralization of organic 
N in the acidified fresh urine, but about 20 times less acid 
was added to the acidified fresh urine than was added to the 
acidified stored urine. The N forms in nitrified concentrated 
urine were half nitrate and half ammonia N with a very low 
content of organic N because the organic N had been mineral-
ized during nitrification (Fumasoli et al. 2016). In the mixture 
of woodchips and fresh urine, most of the N was under organic 
form. This may be explained by N immobilization by microor-
ganisms during storage due to the high carbon input from the 
woodchips (Reichel et al. 2018). The concentration of N in the 
woodchips was not determined, but, assuming an N content of 
0.06%, as was measured in sawdust in Reichel et al. (2018), the 
expected concentration of the mixture would be 4.3 g N  kg−1 
instead of the 3.7 g N  kg−1 measured. This suggests that at 
least 15% of the urine N may have been volatilized during 
storage. In the cattle slurry, approximately 60% of the N was 
under organic form, which is typical for cattle slurry (Benoît 
et al. 2014).

In addition to the nutrient concentrations, the contents 
of contaminants (trace elements, pathogens, pharmaceutical 
residues) must also be considered. Trace element concentra-
tions were low in each UBF and in the cattle slurry (Table 1), 

which was also observed for stored urine by Ronteltap et al. 
(2007). The fluxes of trace elements in the amounts of fer-
tilizer required to apply 200 kg N  ha−1 would be below the 
limit of the French standard for the use of sewage sludge 
compost in agriculture (NF U 44–095).

3.2  Biomass Production and Nitrogen Uptake

The N uptake by the above-ground biomass according to 
the N input is presented in Fig. 3. The response curve for 
ammonium nitrate was linear (r2 = 0.99). Fertilizers above 
the response curve had higher NUE than ammonium nitrate 
and those below the response curve had lower NUE than 
ammonium nitrate.

A strong increase in biomass production, biomass N con-
tent, and N uptake were observed in the fertilized treatments 
(Table 2, Fig. 3). The NUE of ammonium nitrate was 83% 
and was similar to those in previous pot trials (Mnkeni et al. 
2008). The soil mineral N content was low at the end of the 
experiment, indicating that most available mineral N was 
taken up by the ryegrass (SI. 3).

3.3  Mineral Fertilizer Equivalent

Only acidified stored urine and nitrified concentrated urine 
presented MFE values higher than 100% (Fig. 4), although 
not significantly different from 100%. The MFE of the 
nitrified concentrated urine was significantly higher than 
that of all other UBFs, and the MFE of acidified stored 
urine was significantly higher than that of stored urine. In 

Fig. 2  Nitrogen concentration (g N kg−1) and nitrogen forms in the 
different UBFs and cattle slurry. Concentrated UBFs are plotted on 
another axis. Colors correspond to the nitrogen form

Fig. 3  Nitrogen uptake by plants according to nitrogen inputs for the 
different fertilizers. The linear regression used to compute the nitro-
gen use efficiency of the reference fertilizer (ammonium nitrate) is 
represented with a black solid line (with the corresponding equation). 
Colors correspond to the nitrogen form
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previous trials, the efficiency of nitrified concentrated urine 
and acidified stored urine was also high (Bonvin et al. 2015, 
Simons 2008). The stored urine, acidified fresh urine, and 
all three alkalinized urine samples had MFEs between 85 
and 95%. Stored urine has been tested on different crops 
and generally showed similar or slightly lower efficiency 
values than mineral fertilizer (e.g. Kirchmann and Pettersson 
1995; Viskari et al. 2018). The other UBFs have been little 
studied. A lower MFE for stored urine (91%) than for 
acidified stored urine (102%) has been previously observed 
on ryegrass (Simons 2008). The fermented fresh urine has 
not been tested previously and showed a lower MFE than the 
other treatments. The mixture of fresh urine and woodchips 
had a significantly lower MFE than most UBFs, as observed 
for compost impregnated with urine (Martin 2018). The 
cattle slurry MFE (51%) was significantly lower than those 
of all UBFs except the mixture with woodchips; this result 
is consistent with that in a previous experiment (Gómez-
Muñoz et al. 2017). The efficiencies observed in this trial are 
similar to those observed by Gutser et al. (2005) for animal 
urine and cattle slurry.

The variation in MFE values could be related to the 
N form. Both acidified stored urine and nitrified concen-
trated  urine presented the highest MFEs; these UBFs 
contained only mineral N and no organic N. For the other 
UBFs (except the mixture with woodchips), the percent-
age of organic N ranged from 4 to 19% of the total N; this 
may explain the MFE values lower than 100%, because 
this organic fraction must be mineralized before becom-
ing available to plants. The lower efficiencies observed for 
the mixture with woodchips and the cattle slurry may be 

explained by the even higher proportion of organic N (more 
than 50% of the total N) in these treatments. To a lesser 
extent, the mineral N forms in fertilizers may impact yield 
and MFE (Watson 1986, 1987). Even though the soil was 
supplemented with a mixture of other nutrients, the MFE 
values higher than 100% may be partly explained by the 
micronutrient inputs from the UBFs; this is particularly true 
for the acidified stored urine, which had much higher sulfate 
content than the other treatments. In parallel with this trial, 
the phosphorus availability of some of the UBFs was charac-
terized by Dox (2020); the phosphorus availability of some 
of these UBFs was not different from that of the mineral fer-
tilizer, which confirmed that the UBFs can supply multiple 
nutrients. The lower MFE of the fermented fresh urine may 
be due to the bacteria in the UBF which may have increased 
N immobilization in the soil. Most UBFs have a fertilizing 
efficiency similar to that of mineral fertilizer; i.e., most of 
their N is immediately available to the crops after applica-
tion, contrary to organic fertilizers. Thus, they could be used 
under similar conditions than mineral fertilizer. However, 
the large differences in N concentration among UBFs raise 
the question of the technical constraints regarding the appli-
cation of UBFs with very different rates of application for 
similar amounts of N (from 1 t  ha−1 for dehydrated alkalin-
ized urine to more than 30 t  ha−1 for fermented fresh urine 
to bring 100 kg N  ha−1).

In the experimental conditions of this study, fertilizers’ 
short-term efficiencies were maximized and ammonia vola-
tilization was greatly limited because the fertilizers were 
incorporated into the whole soil mass. However, under field 
conditions, substantial differences in ammonia volatilization 

Fig. 4  Mineral fertilizer 
equivalent (nitrogen) of the 
different UBFs and cattle 
slurry. Statistically significant 
differences among treatments 
are represented by letters. Treat-
ments not significantly different 
from 100% (mineral fertilizer) 
are marked with *. Colors cor-
respond to the nitrogen form
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can be expected due to the various pH values and N forms 
of the UBFs.

4  Conclusion

The mineral fertilizer equivalents (MFE) of seven out of the 
nine urine-based fertilizers (UBF) were similar and higher 
than 85%. The main factor explaining the differences in 
MFE was the proportion of organic N. Mixing urine with 
organic matter like woodchips strongly reduced the MFE. 
To a lesser extent, fermentation also reduced the MFE. It 
would be necessary to perform further trials under field con-
ditions to confirm the tendencies. Furthermore, the fertiliza-
tion efficiency of UBFs may be balanced by other aspects, 
such as ammonia volatilization that must be studied in real 
conditions of application. However, urine source separa-
tion should be developed in new neighborhoods or exist-
ing buildings and new valorization pathways adapted to the 
geographical context (e.g., urban characteristics, transport 
distance to farm) need to be implemented. The constraints 
associated with field application of large volume of UBFs, 
their insertion in fertilization strategies and the fate of con-
taminants potentially present in the UBFs also call for fur-
ther investigation.
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tary material available at https:// doi. org/ 10. 1007/ s42729- 021- 00571-4.
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