Webinaire OPUR

DERU2 apports du programme OPUR et projections

Julien LE ROUX 12/11/2025

Travaux OPUR sur l'élimination des micropolluants

phase 4

Polluants prioritaires (HAPs, PCBs, métaux, benzenes/phénols, pesticides...) et émergents (parabènes, biocides, pharmaceutiques)

phase 5

Polluants émergents (pharmaceutiques, pesticides)

> analyses nonciblées HRMS

> > écotoxicité

Objectifs

- documenter l'occurence des micropolluants dans les filières de traitement
- réduction des concentrations en micropolluants
- compréhension des processus
- compréhension du devenir des micropolluants et des sous-produits formés
- évaluation **écotoxicologique**

Approches et filières

- Analyses ciblées en usine et sur pilotes industriels:
 - filières conventionnelles (file eau et boues)
 - pilote d'adsorption (Carboplus : CAP, μCAG)
- évaluation des **performances de traitement**
- Approches **laboratoire** (isothermes, cinétiques...) et pilotes
- Procédés d'**oxydation** :
 - ozonation, acide performique, oxydation avancée (UV/H₂O₂, couplages avec PFA et ozone)
- Caractérisation fine des **processus** (propriétés physico-chimiques)
- Nouvelles méthodes de caractérisation : HRMS (sous-produits), écotoxicologie

Travaux OPUR sur l'élimination des micropolluants

monitoring/occurence

traitement avancé

phase 4

Polluants prioritaires (HAPs, PCBs, métaux, benzenes/phénols, pesticides...) et émergents (parabènes, biocides, pharmaceutiques)

phase 5

Polluants émergents (pharmaceutiques, pesticides)

> analyses nonciblées HRMS

écotoxicité

thèse R. Mailler (2012-2015)

- biofiltres vs boues activées (Mailler et al., 2013. ESPR, doi:10.1007/s11356-013-2388-0)
- file boues (Mailler et al. 2014. Waste Management 34, doi:10.1016/j.wasman.2014.03.028)

• adsorption sur charbon actif (pilote, PAC, μGAC)
PAC: Mailler et al. 2015. Water Research 72, doi:10.1016/j.watres.2014.10.047 uGAC: Mailler et al. 2016. STOTEN 542. doi:10.1016/j.scitotenv.2015.10.153

caractérisation non-ciblée

Sources et flux de polluants (biocides)

(Paijens et al. 2021, HAZMAT,

doi:10.1016/j.jhazmat.2020.123765)

(Bergé et al. 2018, Chemosphere 213. doi:10.1016/j.chemosphere.2018.09.101)

thèse R. Guillossou (2016-2019)

- **conventionnel vs adsorption sur charbon actif** (STEP + pilote μGAC) (Chemosphere 2019, 218, doi:10.1016/j.chemosphere.2018.11.182)
 - caractérisation de charbons actifs (µGAC)

(Chemosphere 2019, 125306. doi:10.1016/j.chemosphere.2019.125306)

influence MOD sur adsorption

(Water Research 2020, 172. doi:10.1016/j.watres.2020.115487)

ozonation + adsorption

(Chemosphere 2019, 245. doi:10.1016/j.chemosphere.2019.125530)

• Fluo 3D vs abattement par adsorption (Water Research 2020, 190. doi:10.1016/j.watres.2020.116749)

post-doc M. Nihemaiti (2018-2019), thèse C. Nabintu Kajoka (2020-2023)

• **Désinfection acide performique** (échelle indus et lab): Travaux SIAAP (ouvrage IWA 2021) + Nihemaiti et al. 2022. ACS ES&T Water 2, doi:10.1021/acsestwater.2c00075)

Nouvelles méthodes de caractérisation

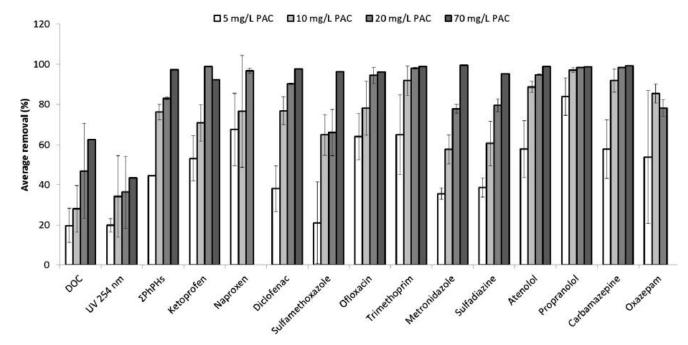
HRMS (Huynh et al. 2021, Molecules, doi: 10.3390/molecules26237064), écotoxicité (Sandré al. 2023, chemosphere, doi:10.1016/j.chemosphere.2023.138212),

- Réactivité acide performique (Nabintu Kajoka et al. 2023. ACS ES&T Water 3, doi:10.1021/acsestwater.3c00279)
 - PFA et oxydation avancée

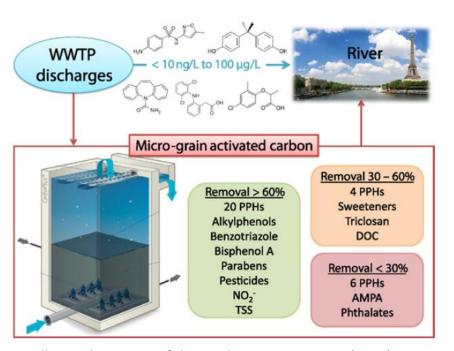
(Nabintu Kajoka et al. 2025. HAZMAT 495, doi:10.1016/j.jhazmat.2025.139016)

Traitement des micropolluants par adsorption (SIAAP – OPUR)

Anticipation de réglementation



Elimination des micropolluants par <u>charbon actif en lit</u> fluidisé, dans les eaux résiduaires parisiennes



Projet CarboPlus: PhD Romain Mailler (2012-2015)
Projet CarboPlus 2: PhD Ronan Guillossou (2016-2019)

Mailler et al., Science of the Total Environment 542 (2016) 983–996

Performances satisfaisantes de manière globale, mais performances limitées pour certains micropolluants spécifiques (e.g. diclofenac, erythromycin, sulfamethoxazole)

Carboplus : thèse R. Mailler (2012-2015)

Filières conventionnelles

Waste Management 34 (2014) 1217-1226

Contents lists available at ScienceDirect

Waste Management

journal homepage: www.elsevier.com/locate/wasman

Priority and emerging pollutants in sewage sludge and fate during sludge treatment

R. Mailler a,*, J. Gasperi d, G. Chebbo d, V. Rocher b

³LEESU, UMR MA 102, Université Paris-Est, Agro Paris Tech, 6-8 avenue Blaise Pascal, Champs-sur-Marne, 77455 Marne-la-Vallée Cedex 2, France ⁵SIAAP, Direction du Développement et de la Prospective. 82 avenue Kléber. 92700 Colombes, France

Occurence et élimination dans la filière boue

Environ Sci Pollut Res (2014) 21:5379–5390 DOI 10.1007/s11356-013-2388-0

CHEMICAL, MICROBIOLOGICAL, SPATIAL CHARACTERISTICS AND IMPACTS OF CONTAMINANTS FROM URBAN CATCHMENTS: CABRRES PROJECT

Biofiltration vs conventional activated sludge plants: what about priority and emerging pollutants removal?

R. Mailler • J. Gasperi • V. Rocher • S. Gilbert-Pawlik • D. Geara-Matta • R. Moilleron • G. Chebbo

• File eau : biofiltration vs boues activées

traitement avancé

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/watres

Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents

R. Mailler ^{a,*}, J. Gasperi ^{a,*}, Y. Coquet ^b, S. Deshayes ^{a,c}, S. Zedek ^a, C. Cren-Olivé ^d, N. Cartiser ^d, V. Eudes ^c, A. Bressy ^a, E. Caupos ^a, R. Moilleron ^a, G. Chebbo ^e, V. Rocher ^f

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale

R. Mailler ^{a,*}, J. Gasperi ^{a,**}, Y. Coquet ^b, A. Buleté ^c, E. Vulliet ^c, S. Deshayes ^{a,d}, S. Zedek ^a, C. Mirande-Bret ^a, V. Eudes ^d, A. Bressy ^c, E. Caupos ^a, R. Moilleron ^a, G. Chebbo ^c, V. Rocher ^f

Contents lists available at ScienceDirect

Journal of Environmental Chemical Engineering

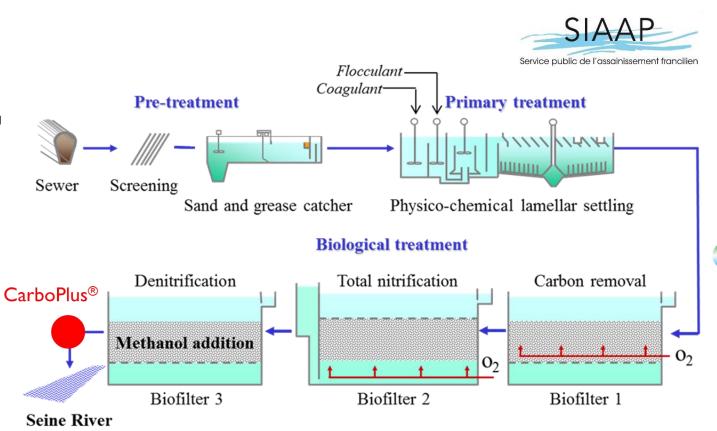
journal homepage: www.elsevier.com/locate/jece

Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in

R. Mailler^{a,*,1}, J. Gasperi^{a,*}, Y. Coquet^b, C. Derome^a, A. Buleté^c, E. Vulliet^c, A. Bressy^d, G. Varrault^a, G. Chebbo^d, V. Rocher^c

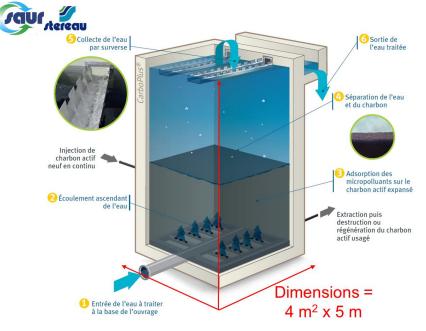
- Elimination > 70 % sur le pilote CarboPlus pour la majorité des micropolluants organiques recherchés (n > 100)
- Résultats satisfaisants et similaires avec du charbon actif en poudre ou en micro-grain
- Influence de la dose de charbon, de la qualité de l'eau (temps sec vs. temps de pluie), de la présence de chlorure ferrique et de méthanol
- Absorbance UV à 254 nm potentiel outil de suivi indirect de l'élimination des micropolluants organiques

Carboplus 2 : thèse R. Guillossou (2016-2019)

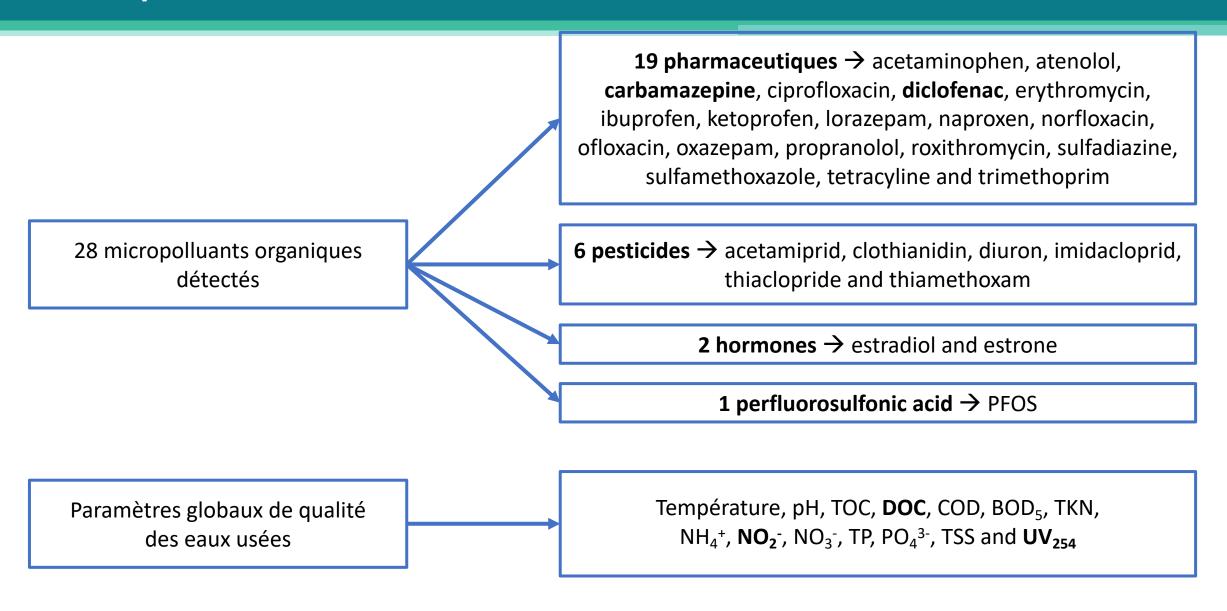

Travaux menés à l'échelle de l'usine, du pilote et du laboratoire Débit = 240 000 m³/jour Débit = 860 m³/jour Débit = 14 m³/jour Devenir des micropo dans les filières convent Traitement avancé sur pilote d'adsorption (Traitement avanc

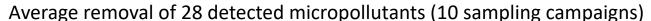
sur **pilote d'ozonation** expériences labo : compréhension des **processus**

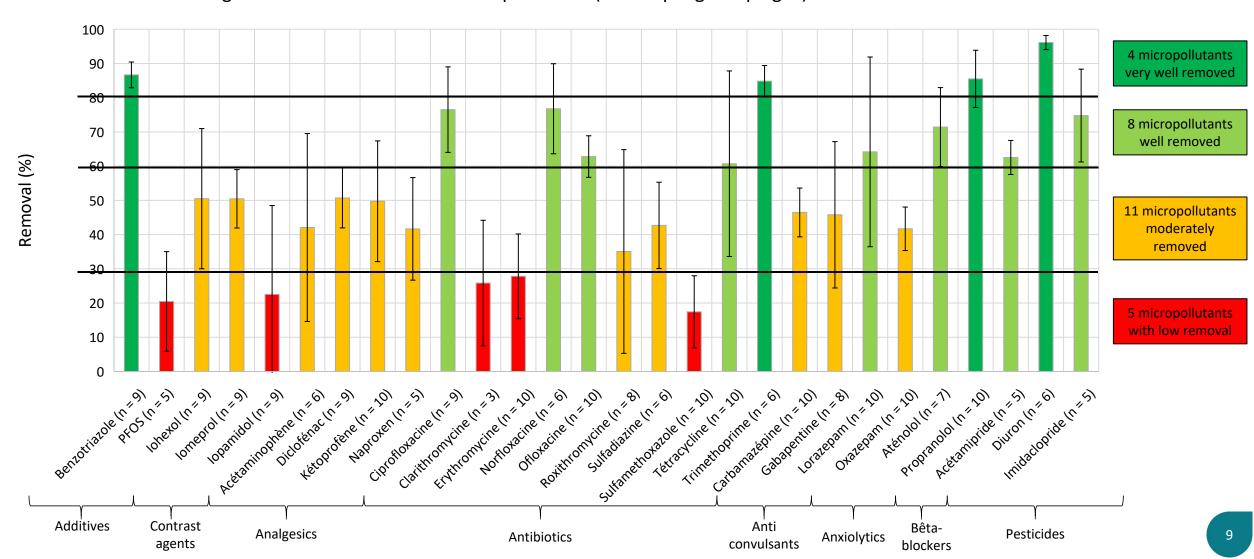
Etude à l'échelle pilote


Ronan Guillossou (PhD 2019)

Seine-Centre WWTP - 240 000 m³/d - 1 million e.h.


- 10 analytical campaigns, 48 organic micropollutants targeted
- Sampling: raw wastewater, settled water, pilot influent and effluent
- 1 ton micro-grain activated carbon (CycleCarb 305®), 10 g/m³, fluidized (15 m/h)




Pilote CarboPlus® (SAUR-STEREAU) 860 m³/d

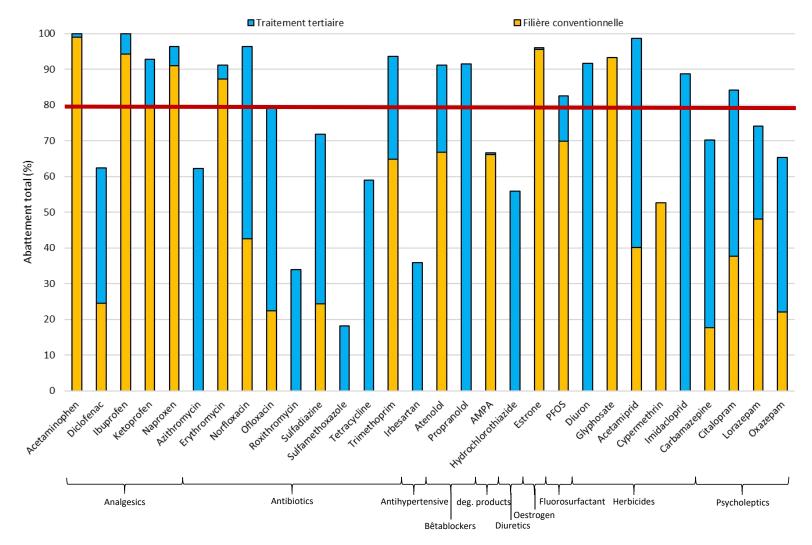
Etude pilote sur site

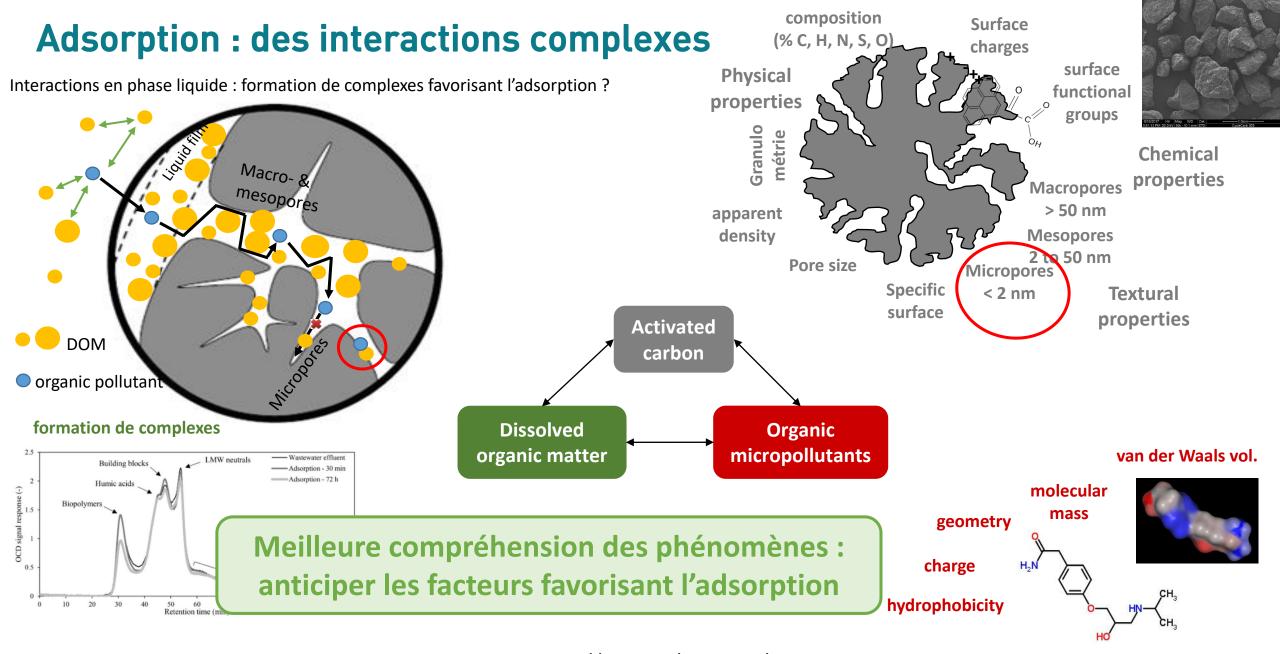
Elimination des micropolluants par adsorption

Elimination des micropolluants par adsorption vs traitement conventionnel

Elimination en STEP (traitement bio + sorption)

Elimination par adsorption sur charbon actif

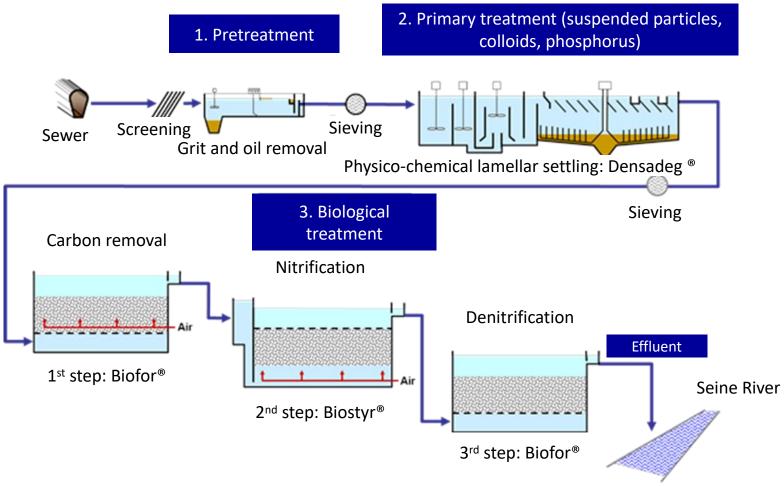

Réglementation suisse (2016-2040)



→ Abattement moyen

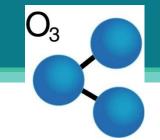
> 80% pour 6 molécules ²

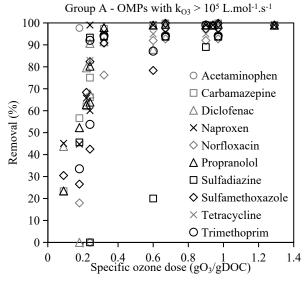
Molecule	Use
Amisulprid	Pharmaceutical
Carbamazepine	Pharmaceutical
Citalopram	Pharmaceutical
Clarithromycin	Pharmaceutical
Diclofenac	Pharmaceutical
Metoprolol	Pharmaceutical
Venlafaxine	Pharmaceutical
Hydrochlorothiazide	Pharmaceutical
Irbésartan	Pharmaceutical
Benzotriazole	Anticorrosive
Candesartan	Pharmaceutical
Mécoprop	Biocide

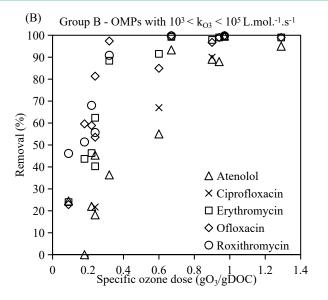


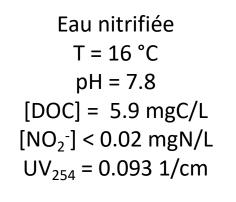
Guillossou et al. 2020. Water Research 172, 115487. https://doi.org/10.1016/j.watres.2020.115487 Guillossou et al. 2020. Chemosphere 243, 125306. https://doi.org/10.1016/j.chemosphere.2019.125306

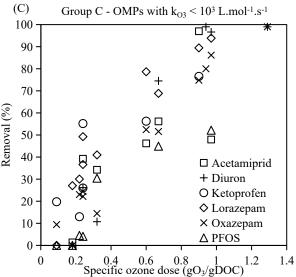
Ozonation à l'échelle pilote (Seine Centre)

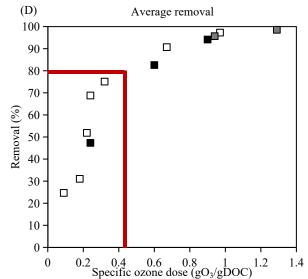




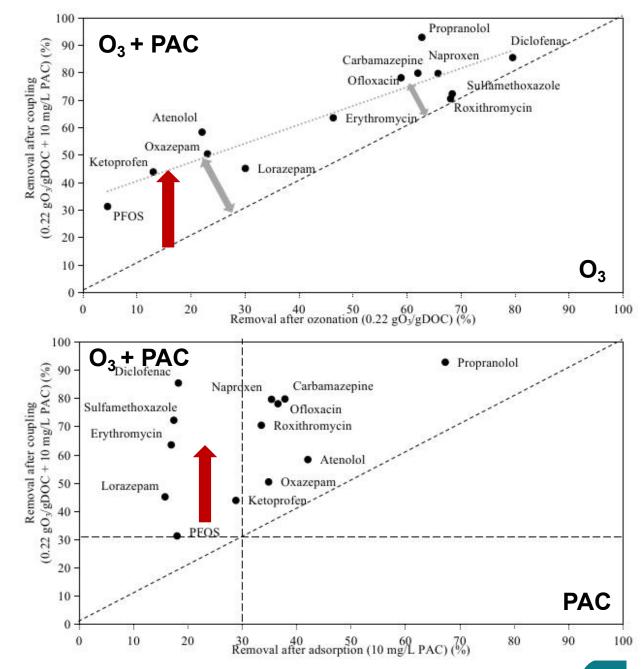

Counter-current flow ozonation pilot Transfer column + contact column (HRT = 5 min) $10 L_{water}/min$, $2NL_{gas}/min$, $[O_3] = 8$ to $45 g/m^3_{air}$ BMT 964 ozone analyser for generated and residual gasses


Seine-Centre WWTP (SIAAP, Paris conurbation)
Treated flow: 240 000 m³/day – 1 million inhabitants
Nitrified water used for ozonation tests

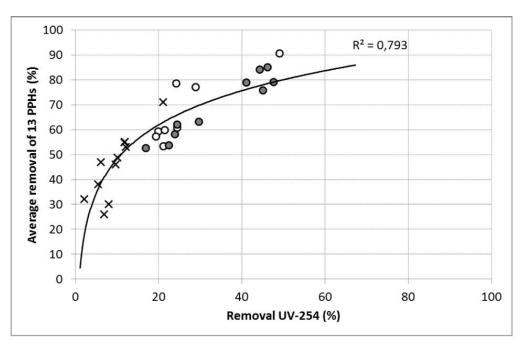

Ozonation : différente réactivités, fonction de la dose spécifique



3 groupes de réactivité, en accord avec k_{O3}


dose spécifique > 0.4 gO3/gDOC nécessaire pour abattement > 80%

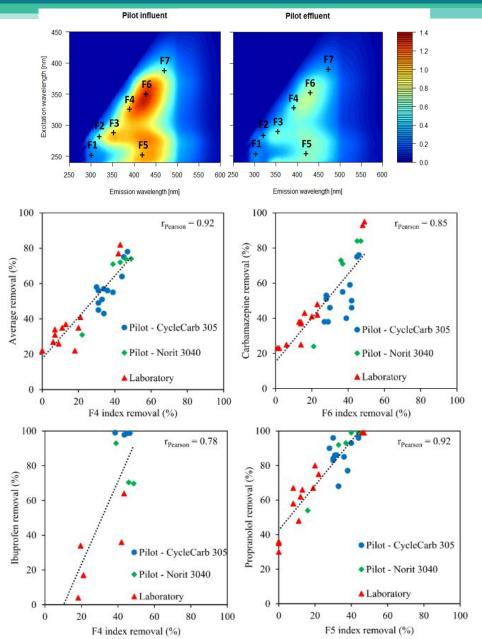
Couplage ozone/adsorption


Rendements d'elimination plus élevés des composés de faible k₀₃ grâce au PAC

Plus forte adsorption après une faible dose d'O₃

O₃ compense l'élimination des composes faiblement adsorbés

Potentiel de la fluo3D pour prédire l'abattement des micropolluants

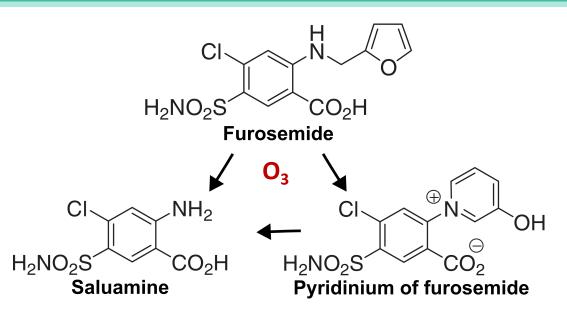


13 PPHs: atenolol, carbamazepine, ciprofloxacin, diclofenac, erythromycin, ketoprofen, lorazepam, norfloxacin, ofloxacin, oxazepam, propranolol, roxithromycin, and sulfamethoxazole.

Mailler et al. 2016 (STOTEN):

Absorbance UV à 254 nm comme potentiel outil de suivi indirect de l'élimination des micropolluants organiques

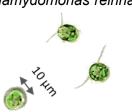
Question : meilleures performances de prédiction avec **spectroscopie de fluorescence** ?

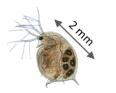

Corrélation abattement moyen et UV_{254} : r = 0.84

avec fluorescence : r = 0.92

+ modèles pour molécules individuelles

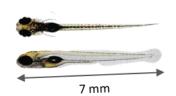
Guillossou et al., 2021, Water Research


Ecotoxicité de produits de dégradation


multi-models approach

Green algae

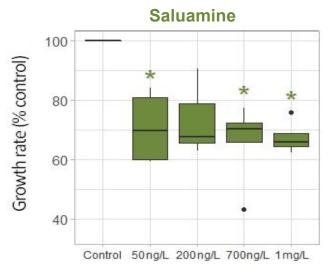
Chlamydomonas reinhardtii



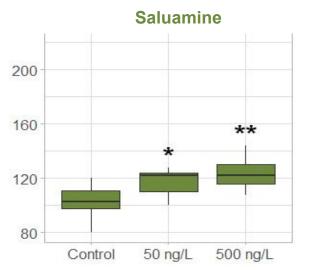
Daphnia
Daphnia magna

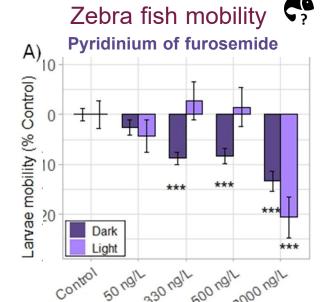
Zebra fish

Danio rerio



Pr. Laure Garrigue-Antar

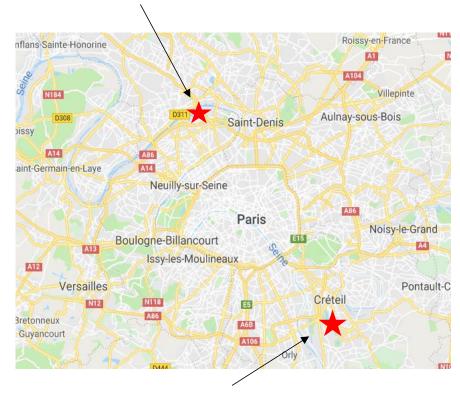



Fidji Sandré (PhD 2020-2023)

Green algae growth

Zebra fish heart beat rate ♥

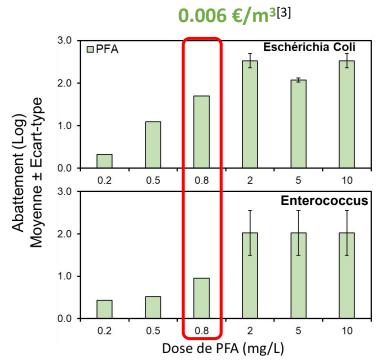
Impacts on survival:
- overconsumption
of energetic ressources
- compromission of
escape from predators,
- impact on mating...


L'acide performique, un oxydant/désinfectant émergent

PARIS 2024

Seine Centre WWTP (Colombes): essais labo

Seine Amont WWTP (Valenton): essais échelle industrielle

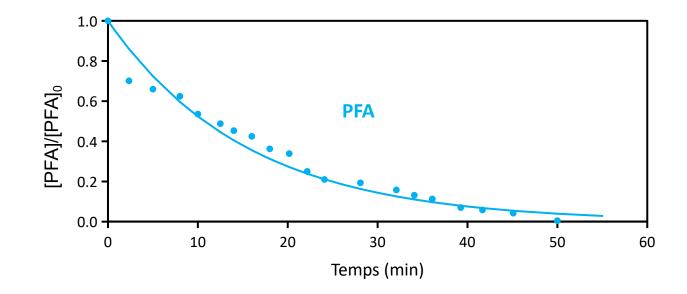

L'acide performique, un oxydant/désinfectant émergent

SIAAP : mise en place d'essais pour caractériser l'efficacité et l'innocuité du PFA (2019-2021)

- Efficace sur une large gamme de microorganismes (bacteries, virus, phages) à 0.6 à 0.8 mg/L^[1-6]
- 0.3 à > 2 log d'abattement d'indicateurs fécaux

Nabintu Kajoka et al., 2024. TSM. https://doi.org/10.36904/tsm/202412195

¹Chhetri et al., 2014, ²Gehr et al., 2009, ³Ragazzo et al., 2020, ⁴Luukkonen et al., 2015, ⁵Dell'Erba et al., 2007; ⁶Rocher & Azimi, 2021


L'acide performique, un oxydant/désinfectant émergent

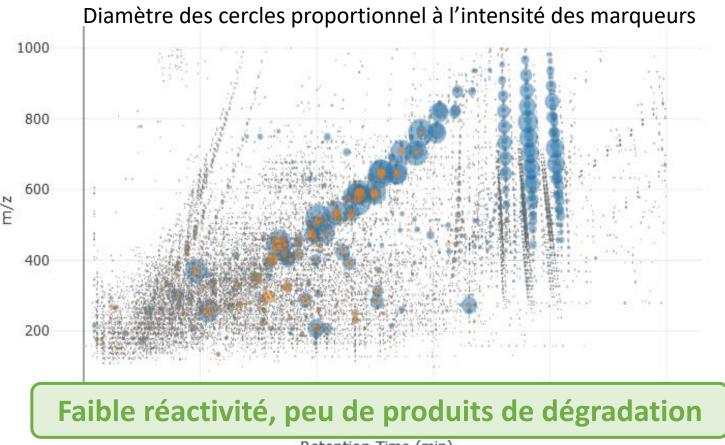
Formic acid
$$H_2O_2 \xrightarrow{H_2SO_4} H_2O_2 \xrightarrow{H_2SO_4} H_2O_2 + H_2O_2 \xrightarrow{H_2SO_4} H_2O_2 + H_2O_2$$

Brevet Kemira (DesinFix®)

 $PFA \rightarrow CO_2 + O_2$

 $[PFA]_0 = 1.8 \text{ mg/L}$ pH = 7.0 & 7.7

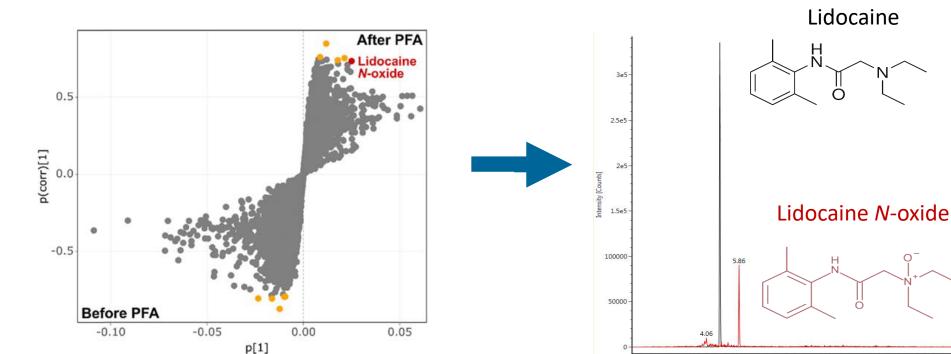
Réactivité du PFA avec les composés organiques?


UPLC-IMS-QTOF (Vion, Waters)

Maolida Nihemaiti (post-doc 2018-2019)

Spectrométrie de masse haute résolution

Bleu: avant désinfection; Orange: après désinfection (2 ppm PFA, 10 min)


+ peu/pas de sous-produits ciblés (THMs, HANs, Nitrosamines)

Retention Time (min)

Rocher, V. and Azimi, S. editors. *Effectiveness of Disinfecting Wastewater Treatment Plant Discharges: Case of Chemical Disinfection Using Performic Acid*. IWA Publishing, 2021, https://doi.org/10.2166/9781789062106.

Réactivité du PFA : formation de N-oxydes

Analyse statistique des marqueurs détectés, contribuant le plus à la variabilité des signaux (OPLS-DA)

Identification et confirmation avec standards analytiques

Lidocaine

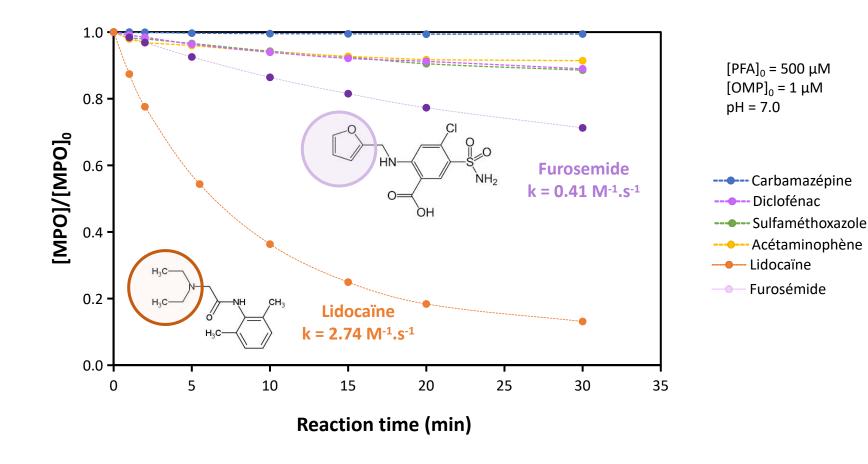
Expected mass: 235.1801

Mass error: 1.9 ppm

Expected mass : 251.1740

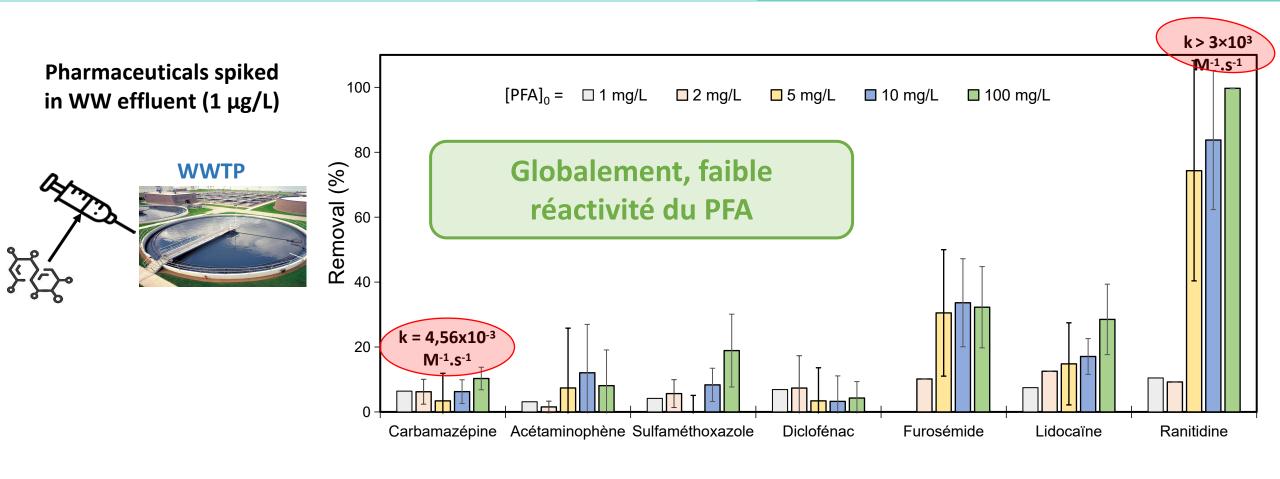
Mass error: 1.9 ppm

Premiers résultats sur la réactivité chimique du PFA et les mécanismes associés


Réactivité du PFA avec les composés organiques

Christelle Nabintu Kajoka (PhD 2023)

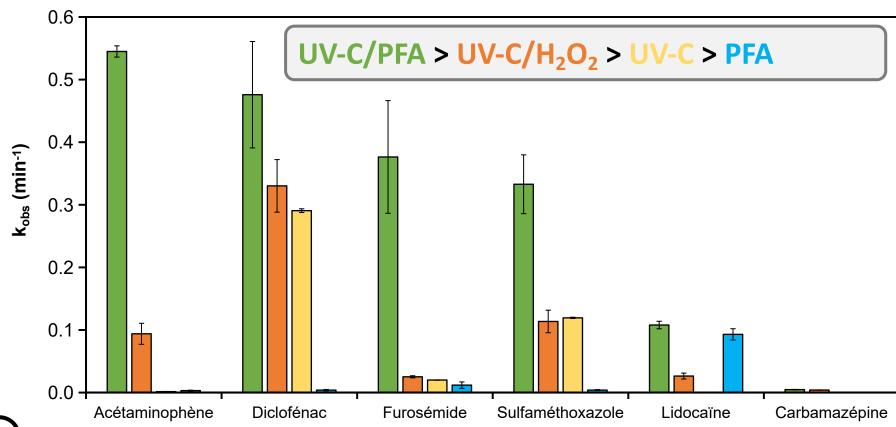
Ranitidine k > 3.0×10³ M⁻¹.s⁻¹


dégradation instantanée

Cinétiques d'oxydation de produits pharmaceutiques (et autres composés modèles)

Forte réactivité des groupements thioether (-S-), réactivité modérée des amines tertiaires & furanes

Réactivité du PFA avec les composés organiques

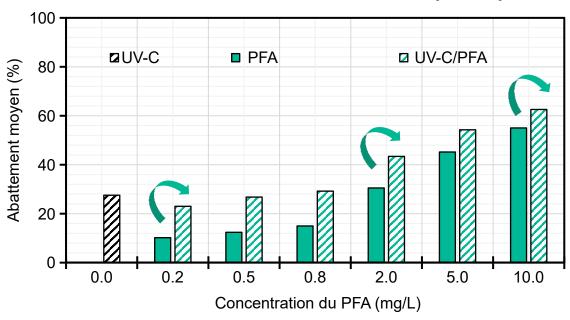


Dégradation plus faibles dans les eaux usées car compétition avec la matrice + decomposition du PFA plus élevée

Le PFA intégré comme procédé d'oxydation avancée ?

PFA couplé avec UV-C

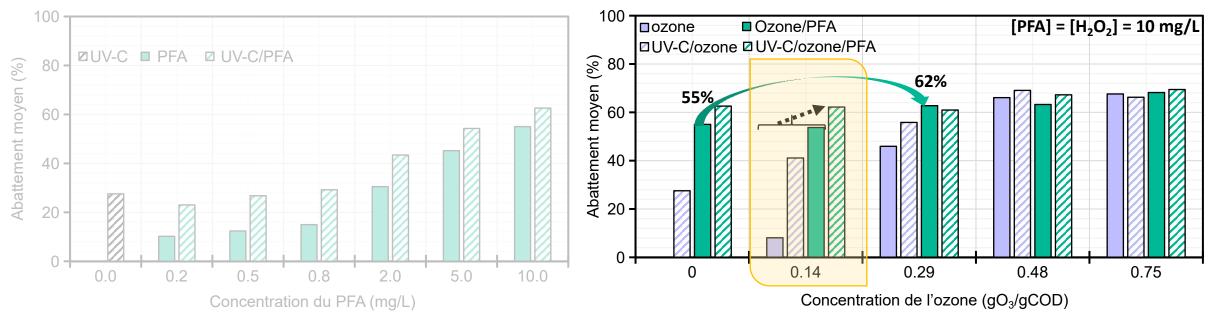
Constantes cinétiques de plusieurs produits pharmaceutiques



[OMP] = 1 μ M in ultrapure water pH = 7.0 [PFA] = 500 μ M UV fluence = 0.5 mW/cm²

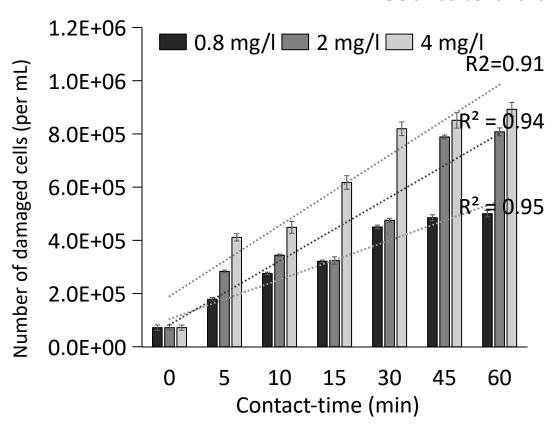
UV-C/PFA : réactivité sélective (mais différente du PFA seul)

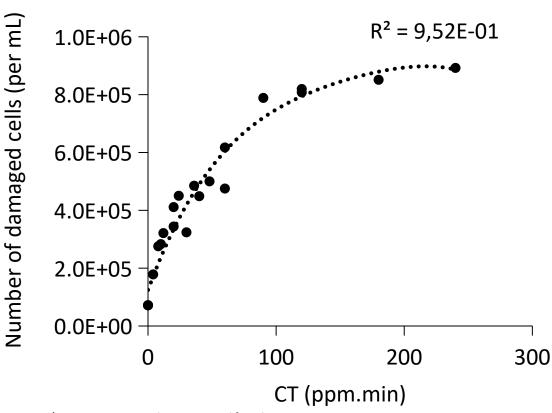
Comparaison de procédés d'oxydation avancée


Élimination de composés pharmaceutiques dans l'ERU (échelle pilote)

- Augmentation de l'abattement moyen avec la concentration du PFA (55% à 10 mg/L)
- UV-C/PFA > PFA aux faibles concentrations
- → Rendements variables : -22 % à 98% selon la molécule
- UV-C seul : aussi efficace que PFA seul à 2 mg/L

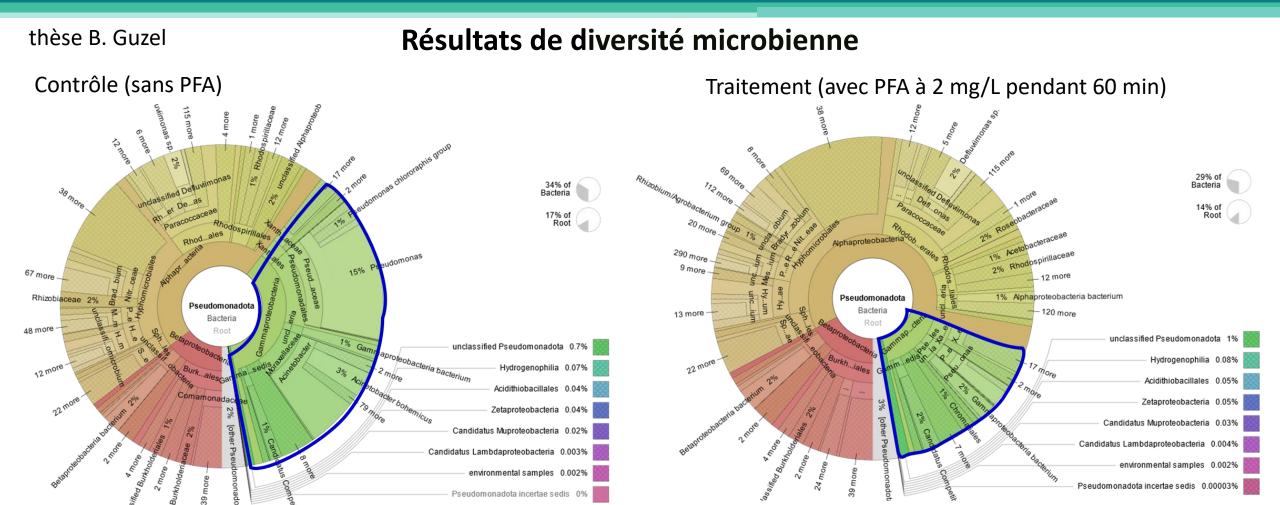
Comparaison de procédés d'oxydation avancée


Élimination de composés pharmaceutiques dans l'ERU (échelle pilote)


- Ozone/PFA : synergie uniquement à 0,29 gO₃/gCOD, à >> 0,29 gO₃/gCOD \rightarrow peu de bénéfice
- UV-C/ozone/PFA : légère amélioration à 0,14 gO₃/gCOD → au-delà pas d'augmentation
- → Générer trop de radicaux OH• n'est pas bénéfique : réaction entre eux ou avec d'autres radicaux sans réagir sur les MPOs

Efficacité du PFA sur les ARGs et effets sur les microorganismes

Résultats d'abondance microbienne



- Augmentation de la PFA concentration et temps de contact
 - → Augmentation de nombre des cellules endommagées

- Action du PFA dès la mise en contact
- ➤ Abattement stable pour un CT dès 60 mg/l.min

Efficacité du PFA sur les ARGs et effets sur les microorganismes

> Réduction de l'abondance relative de la classe des Gamma-Proteobacteria (phylum *Proteobacteria*)

Hypothèses : Les *Proteobacteria* sont des bactéries à Gram-négatif (ayant une fine couche de peptidoglycane)

→ Mise en évidence de l'action du PFA à travers les membranes cellulaires

OPUR6

cibles DERU2

Traitement des micropolluants chimiques et biologiques

- suites thèse C. Nabintu Kajoka:
 évaluation technico-économique des
 procédés d'oxydation
 (post-doc J. Sade R1.3.1)
 compréhension des mécanismes
 d'oxydation (QSAR)
 (post-doc J. Sade R1.3.1)
- désinfection PFA (et autres procédés d'oxydation) : élimination virus et ARGs (thèse B. Guzel - R1.3.2)

Surveillance

- biocides (axe R1.1)
- microplastiques (axe R1.2)
- **PFAS** (axe R1.1 et O1)
- **ARGs** (axe R1.3)
- **impacts** des rejets :
 - estimation **toxicité (HRMS)** (R1.3.1 post-doc J.Sade)
 - effets des procédés d'oxydation (R1.3.2 - toxicité de produits de dégradation - effets sur ARGs thèse L. Grimault)
- surveillance des boues (multiparamètres) (R1.3.3 - thèses R. Belleau, N. Fernandez)

Collecte et pollution des eaux de pluies

Thème R2:
connaissances sur la
gestion décentralisée
des eaux pluviales et
de la contamination de
ces eaux
(micropolluants,
macro/microplastiques)
(et toutes les
connaissances des
phases passées)