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Introduction génerale
Depuis quelques années, l’attention des municipalités s’oriente vers les fleuves, les ri-

vières, les canaux, les bras morts, et les plans d’eau, avec une volonté de reconquête de la

baignade en ville. En effet, de nombreuses villes d’Europe favorisent l’ouverture de zones de

baignade et organisent des compétitions de natation en eau libre dans leurs rivières (Kistemann

et al., 2016; Mouchel et al., 2020). Dans le monde entier, les épisodes de canicule ont récem-

ment intensifié le développement des activités récréatives aquatiques dans les mégapoles. Cette

situation contribue à augmenter la fréquentation des zones de baignade en milieu urbain (Jang,

2016; Houtman, 2010).

Cette reconquête des espaces bleus s’accompagne d’une amélioration générale de la

qualité des eaux de surface, grâce à des réglementations plus strictes et à des améliorations des

infrastructures (Schreiber et al., 2015). Ainsi, en Ile-de-France (France), malgré l’interdiction

historique de la baignade dans la Seine et la Marne, se développe une forte volonté politique

et sociale de réhabiliter les rivières urbaines pour la baignade, avec également un engagement

renouvelé en faveur de la restauration écologique des cours d’eau (Noury et al., 2018). En

héritage des Jeux Olympiques et Paralympiques (JOP) de Paris en 2024, les municipalités de

la région parisienne se sont fortement engagées à améliorer la qualité de l’eau de la Seine et

de la Marne afin de permettre la baignade d’ici 2025 (Bouleau et al., 2024), avec pour objectif

principal l’amélioration continue de la qualité de l’eau des rivières à des fins récréatives.

Cependant sur les territoires fortement urbanisés, ces différentes activités posent un

risque sanitaire dû à l’exposition à des pollutions incluant les microorganismes pathogènes

d’origine hydrique. Ces contaminations peuvent générer un risque sanitaire pour les nageurs,

d’autant plus qu’il est à prévoir une intensification des usages récréatifs dans les cours d’eau

urbains dans les prochaines années (Schĳven and de Roda Husman, 2005; Islam et al., 2018).

Différentes sources de contamination peuvent apporter un flux de pathogènes au niveau des sites

de baignade (Guérineau et al., 2014). Lorsque le milieu reçoit des rejets d’origine animale ou

humaine, les bactéries présentes peuvent rendre l’eau inappropriée pour différentes activités.

Le groupe des entérocoques intestinaux qui appartient aux streptocoques fécaux, de même que

les coliformes thermotolérants (dits fécaux), en particulier l’espèce Escherichia coli, sont des
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microorganismes appartenant au microbiote du tube digestif des animaux à sang chaud et des

humains (Paruch and Mæhlum, 2012; Boehm and Sassoubre, 2014). Ils sont excrétés dans les

fèces et de ce fait ils servent d’indicateurs de la présence potentielle d’eaux usées (Hébert and

Légaré, 2000). Les deux bactéries indicatrices fécales (BIF), sont relativement bien corrélées

avec le risque de gastroentérite. Elles servent donc de proxy pour évaluer le risque sanitaire et

donc la présence éventuelle de pathogènes (Payment and Locas, 2011). La directive européenne

2006/7/CE, concernant la gestion de la qualité des eaux de baignade et qui vise à améliorer la

qualité de l’environnement et à protéger la santé humaine s’appuie donc sur ces deux BIF pour le

suivi de la qualité microbiologique des eaux de baignade (Wade et al., 2003; Borja et al., 2020).

Ce suivi implique un échantillonnage de terrain et des analyses de laboratoire dont la logistique

peut être lourde et le coût élevé (Manjakkal et al., 2021). De plus, le rendu des résultats se fera

au mieux dans les 24 h suivant le prélèvement.

Pour permettre une gestion quotidienne des ouvertures/fermetures des sites de baignade

suite à des événements polluants temporaires, une surveillance de la qualité microbiologique en

temps réel des eaux de surface est nécessaire. Afin de disposer d’outils de gestion des pollutions

plus rapides et de mettre en place des systèmes d’alerte efficaces, l’Organisation Mondiale pour

la Santé (OMS) préconise la modélisation dans le but de prédire les indicateurs de contamination

dans l’eau (OMS, 2018). Il existe une variété demodèles qui sont proposés pour prédire la qualité

de l’eau (Mälzer et al., 2016; Chen et al., 2020). Toutefois, la performance de ces différents

modèles varie selon le jeu de données et le contexte (Mälzer et al., 2016; Chen et al., 2020).

La grande variabilité spatio-temporelle qui caractérise les concentrations en microor-

ganismes d’origine fécale et la complexité des relations entre les caractéristiques du bassin

versant d’apport et le comportement des différents indicateurs microbiens de contamination

fécale et pathogènes rendent difficile la prédiction précise et fiable des niveaux de contamination

microbiologiques des eaux de surface (Cha et al., 2016). Or la dynamique spatio-temporelle

des pathogènes hydriques lors d’événements pluvieux qui vont dégrader fortement la qualité

microbiologique des eaux de surface reste encore peu connue (Curriero et al., 2001).

Par conséquent, le sujet de thèse a pour but de caractériser la variabilité des niveaux

de contaminations d’origine fécale dans les rejets pluviaux et leur impact sur la qualité micro-

biologique des eaux de surface en milieu urbain. Ceci permettra d’améliorer la compréhension

des sources et flux de contaminations microbiologiques des eaux urbaines en vue de prédire la

qualité microbiologique lors des événements polluants. Ce travail fournira un cadre conceptuel
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et des outils seront proposés pour la surveillance de la qualité de l’eau dans les rivières urbaines

et la gestion quotidienne des sites de baignade. Le manuscrit est divisé en 3 chapitres.

Le premier chapitre est un état de l’art de la connaissance scientifique sur la surveillance

de la qualité des eaux de surface en milieu continental. Le deuxieme chapitre a pour objectif

d’optimiser la prédiction des concentrations en BIF à l’aide de modèles d’apprentissage auto-

matique. Il y a en effet encore peu d’études publiées qui explorent ces modèles pour prédire

la qualité microbiologique dans les rivières urbaines. Le chapitre comprend un guide pour la

sélection d’un modèle d’apprentissage automatique (machine learning, ML) permettant une

estimation précise et immédiate (nowcast) des concentrations d’E. coli à partir de données

historiques. Nous formulons l’hypothèse qu’une sélection des paramètres météorologiques et

physico-chimiques les plus couramment suivis par les collectivités permet une modélisation

fiable des concentrations en BIF dans les eaux de surface. Ainsi, nous avons étudié la capacité

de prédiction des modèles sélectionnés afin d’évaluer leur valeur individuelle en tant qu’outil de

prédiction. Les deux rivières Seine et Marne en région parisienne (France) ont été considérées

comme un cas d’utilisation afin de prédire la concentration en E. coli qui est le critère le plus

déclassant pour la gestion journalière (Mouchel et al., 2020). Afin d’améliorer la performance et

la précision du modèle sélectionné, nous avons ensuite exploré plusieurs pistes pour augmenter

la quantité et la qualité des jeux de données utilisés pour entraîner les modèles ML : i) l’appren-

tissage par transfert, ii) l’optimisation de la collecte des données réglementaires, iii) la mesure

en continu des paramètres physico-chimiques servant de prédicteurs au modèle. L’approche de

l’apprentissage par transfert se base sur l’hypothèse que les données réglementaires issues d’un

autre bassin versant similaire permettent d’augmenter le jeu de données d’entraînement et de le

diversifier. Pour ce faire, nous avons testé si les données de la Seine à Paris et celles de l’aval de

Marne (qui appartiennent au bassin versant de la Seine) pouvaient être utilisées alternativement

pour pré-entraîner les modèles de ces deux rivières et ainsi améliorer leurs performances res-

pectives. Ensuite, nous avons émis l’hypothèse que les modèles ML sélectionnés pour prédire

les concentrations en E. coli peuvent également être utilisés comme outils pour optimiser des

stratégies d’échantillonnage réglementaire, en vue d’obtenir des données en quantité et qualité

suffisante pour l’entraînement des modèles ML. Pour ce faire, nous proposons de mettre en place

un système d’alerte sur les performances du modèle afin d’optimiser la collecte des données

réglementaires en identifiant dans quelles conditions le modèle ne parvient pas à prédire. Enfin,

un contrôle plus efficace de la qualité de l’eau devrait également reposer sur des méthodes ra-
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pides, peu coûteuses, nécessitant un minimum d’échantillonnage et fournissant des résultats en

temps réel en complément du suivi réglementaire. De ce fait, à terme, le système d’alerte devrait

être relié à un réseau de capteurs à faible coût permettant un suivi en continu des différents

paramètres physico-chimiques (Whelan et al., 2020; Yaroshenko et al., 2020). Une stratégie de

surveillance continue en s’appuyant sur quelques paramètres sélectionnés avec des capteurs peu

coûteux pourrait permettre le suivi d’indicateurs de la qualité de l’eau et aider les gestionnaires

à détecter la contamination possible (Farouk et al., 2022; McGrane, 2016; Yaroshenko et al.,

2020). Ainsi, ce chapitre aborde également la stratégie développée afin de vérifier la fiabilité et la

stabilité des capteurs à faible coût et optimiser leur maintenance. Nous avons conçu comme cas

d’usage un prototype à faible coût, en testant 6 sondes physico-chimiques utilisant la plateforme

open-source Arduino, afin de surveiller la qualité des eaux de surface en utilisant la technologie

IdO (internet des objets, Internet of Things ou IoT, en anglais). Ce prototype a été calibré, testé et

une analyse de stabilité à long terme a été réalisée en laboratoire et sur le terrain au Bassin de la

Villette. Afin de fournir une résolution spatiale et temporelle suffisante et de réduire le coût des

surveillances. Combiner les capteurs in situ à l’apprentissage automatique pourrait contribuer

à optimiser l’effort d’échantillonnage et serait ainsi utilisé comme outil de gestion quotidienne,

qui vient en appui à la surveillance réglementaire selon la directive 2006/7/CE (Carvalho et al.,

2019).

En complément, une surveillance optimale de la qualité microbiologique ne peut être

atteinte que si l’incertitude au niveau de la mesure est identifiée et qu’un moyen pour la réduire

est considéré lors de l’échantillonnage et de la mesure. Le troisième chapitre porte donc sur la

définition de l’incertitude associée à la surveillance réglementaire des BIF et à celle des mar-

queurs de contamination fécale humaine et animale. Des approches expérimentales ont permis

demieux quantifier cette incertitude liée à l’échantillonnage et au stockage des échantillons avant

l’analyse. Ceci permettra une amélioration des bases scientifiques des normes et des réglemen-

tations en vigueur, ainsi que des nouveaux outils de suivis des sources de contamination, pour la

mise en œuvre d’un plan de gestion des eaux de surface via un guide d’échantillonnage précis.

De plus, une gestion efficace de la qualité de l’eau exige une connaissance approfondie de la

dynamique et du devenir des bactéries présentes dans les eaux de surface. Ces bactéries peuvent

soit persister dans l’environnement, soit disparaître et leur survie dépendra de leur exposition à

diverses influences environnementales (Devane et al., 2018).

Une gestion efficace de la qualité de l’eau exige une connaissance approfondie de la
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dynamique spatiale et temporelle des BIF dans les habitats aquatiques, ainsi que des facteurs qui

l’influencent. Si les taux de décroissance des BIF après un pic de pollution temporaire montrent

une faible variabilité d’un événement polluant à un autre, cela pourrait permettre d’avoir une

utilisation par les gestionnaires comme paramètre pour prédire le devenir des contaminations

(Dick et al., 2010). Par ailleurs, l’analyse de la dynamique des BIF suite à une pollution de court

terme peut aider à estimer la capacité d’un site de baignade à résister et à récupérer de cette

perturbation. Ces informations sont cruciales pour l’implantation, la gestion et l’amélioration

des futurs sites de baignade. Ce troisième chapitre présente donc une analyse de la dynamique

temporelle d’E. coli lors des événements pluvieux, en exploitant les données d’échantillonnage

réglementaire en Marne et en Seine avec 2 à 3 prélèvements par semaine, ainsi que les données

du système de mesure automatisé ColiMinder en Seine avec une analyse toutes les 2 heures.

Tout d’abord, les taux de mortalité in situ des E. coli dans la Marne ont été déterminés expéri-

mentalement à l’aide de sacs à dialyse remplis d’eau d’un rejet de station d’épuration. Dans un

deuxième temps, les taux de disparition des E. coli ont été estimés sur plusieurs futurs sites de

baignade et des sites des JOP 2024. Les amplitudes des pics de pollution traduisent une partie de

la résistance des sites de baignade et d’activité sportive aux perturbations temporaires générées

par les événements pluvieux, et les taux de disparition témoignent d’un aspect du processus de

récupération après le pic de pollution. Pour estimer les taux de mortalité et les taux de dispa-

rition, il s’agissait de modéliser et de quantifier la diminution des concentrations en E. coli au

cours du temps. À partir des données extraites des deux bases de données, la résistance et la

résilience des sites aux événements polluants (pluie) ont été estimées avec 3 métriques : le temps

de retour, l’amplitude de la pollution et l’amplitude de la récupération du site à des niveaux

en BIF typiques de temps sec. Ces métriques permettront d’aider à la gestion quotidienne et

l’amélioration de la résistance et la résilience des sites des baignades face aux perturbations de

court terme.
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Chapitre 1 : Étude de la qualité microbio-

logique des eaux de surfaces : état de l’art

1. Introduction
Au début du XXIe siècle, tant en Europe qu’en Amérique du Nord, les municipalités

se tournent progressivement vers leurs espaces bleus (rivières et plans d’eau), les considérant

comme des composantes essentielles des projets urbains (Moutiez, 2021). Des efforts importants

ont été consentis pour améliorer la qualité des eaux des rivières à des fins récréatives (Kistemann

et al., 2016). Durant ces dernières décennies, la qualité des eaux de surface s’est généralement

améliorée en Europe, grâce à l’application de la réglementation, à l’amélioration des stations de

traitement des eaux usées (STEU) et des réseaux d’assainissement (Houtman, 2010). L’amélio-

ration de la qualité de l’eau a de plus en plus mis l’accent sur la qualité microbiologique, celle-ci

étant régulée par la directive 2006/7/CE pour les eaux de baignade (Schreiber et al., 2015).

De ce fait, de nombreuses villes comme Paris, Londres, ou Berlin promeuvent l’ouverture

de baignades et l’organisation de compétitions de nage en eau libre dans leurs rivières (Rouillé-

Kielo and Bouleau, 2021; Dominguez). Le développement de ces activités augmente le risque

d’exposition des baigneurs aux agents pathogènes présents dans l’eau, ce qui peut entraîner des

maladies gastro-intestinales, des infections oculaires ou des irritations cutanées (Soller et al.,

2010; Mallin et al., 2000).

La France est le deuxième pays européen avec le plus de zones de baignade en eau douce

contrôlées par l’Agence européenne pour l’environnement comptant 1286 sites en 2023. Selon

l’Agence européenne pour l’environnement (AEE), le classement des eaux de baignade en 2023

en Europe montre que la France est classée en 19e position en prenant en compte la proportion

des eaux classées en qualité excellente (AEE, 2024). Sur les 1286 sites en eau douce suivis en

France en 2023, 86,6% des zones ont été classées en qualité excellente ou bonne et en plus 3,4%

en qualité suffisante, avec une légère dégradation de la qualité sanitaire des eaux depuis 2019

et une amélioration depuis 2023 (Gourmelon, 2023). Parmi ces sites, la région Île-de-France

compte 6 baignades en plan d’eau et 3 baignades sur rivière ou canaux (Guide Îles de loisirs,
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2024). À l’occasion des JOP 2024, un plan "Qualité de l’eau et baignade" a été lancé en 2016 par

le ministère de la transition écologique français, afin de rendre la Seine et la Marne baignables

à l’horizon 2024 (Préfecture de la région Île-de-France). Ce plan devrait se traduire par une

ouverture de baignades à l’été 2025 sur la Seine et la Marne en région Parisienne (Noury et al.,

2018).

2. Historique de la baignade en ville en Ile-de-France
La baignade en Seine et en Marne, aujourd’hui au cœur des débats de santé publique,

a connu une évolution marquée par des réglementations variées. Initialement, les interdictions

se concentraient davantage sur des questions de décence et de préservation du transport fluvial,

comme l’illustre le fascicule de baignade du Piren Seine (Bouleau et al., 2024; Moutiez, 2021).

À partir du XVIIe siècle, l’accès aux rives parisiennes pour la baignade était strictement

limité par des autorités soucieuses de garantir l’ordre public et la sûreté, et les dérogations

n’étaient accordées que dans des établissements spécifiques, souvent situés sur des bateaux

aménagés pour la toilette. Au XVIIe siècle, la baignade dans le fleuve en région parisienne

connaît un tel succès que les premières installations apparaissent afin de protéger les baigneurs

et de garantir leur sécurité (Moutiez, 2021). Au XIXe siècle, le bassin de la Villette est mis

en eau et devient vite un lieu de loisirs aux portes de Paris (Moutiez, 2021). En dehors de la

capitale, avec le développement de la banlieue et la croissance des transports ferroviaires, des

plages et bains fixes s’installent en bord de Seine et deMarne, souvent associés à des guinguettes

et divers services annexes sur la rive (Bouleau et al., 2024).

À partir du milieu du XIXème siècle, de nombreuses piscines municipales ont été instal-

lées le long des berges. Les Parisiens ont commencé à profiter des rives de la Seine et de laMarne

pour se détendre et se baigner (Kistemann et al., 2016; Passerat et al., 2011). L’industrialisation,

l’expansion concomitante de la population vivant dans les villes et l’augmentation de la densité

de population au XIXe siècle ont changé cette situation (Houtman, 2010). La pratique de la

baignade urbaine, autrefois répandue au début du XXe siècle, a graduellement décliné à mesure

que les échanges par voie fluviale se sont accrus et que la qualité de l’eau s’est détériorée. À

partir de l’ordonnance préfectorale du 17 avril 1923, la baignade dans la Seine à Paris a été

interdite, bien que cette pratique ait perduré jusqu’aux années 1960, avant l’aménagement des

voies automobiles le long des berges de la Seine (Guillot-Le Goff et al., 2023).

La baignade a été interdite par la suite en Marne dans le Val-de-Marne en 1970 par un
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arrêté préfectoral (Qin et al., 2011). Cette interdiction, motivée par des niveaux de pollution

alarmants, entraîne des fermetures massives et marque un tournant vers la prise en compte de la

qualité microbiologique de l’eau (Bouleau et al., 2024).

Ces dernières décennies, un regain d’intérêt pour la réintroduction de la baignade urbaine

s’est manifesté, reflétant l’engagement renouvelé de la zone métropolitaine en faveur de la res-

tauration écologique des cours d’eau. L’évolution des concentrations en BIF, particulièrement

visible dans les données de suivi historique à Ivry-sur-Seine, révèle qu’après des pics de pol-

lution dans les années 1980, des efforts en matière d’assainissement ont permis une réduction

significative des contaminants bactériens dans les années 1990 et 2000 (Bouleau et al., 2024).

Le désir politique et sociétal de reconquête des rivières urbaines pour la baignade est de

plus en plus pressant en Ile-de-France, que ce soit pour la Seine ou pour la Marne. En prévision

des Jeux Olympiques et Paralympiques de Paris en 2024, la municipalité s’est fortement engagée

à inclure la Seine dans les épreuves de triathlon et de natation en eau libre (Moutiez, 2021). Cet

engagement a donné un élan décisif à un "Plan d’action pour la qualité de l’eau et la baignade"

lancé en 2016, visant à améliorer la qualité des eaux de la Seine et de la Marne pour permettre

la baignade d’ici 2024, tout en préservant la biodiversité de ces cours d’eau (Guillot-Le Goff

et al., 2023; Moutiez, 2021). En plus des événements sportifs, différentes communes prévoient

l’ouverture de sites de baignade en héritage des Jeux Olympiques. L’objectif est d’améliorer la

qualité de la rivière et d’accompagner les acteurs de bassin versant pour retrouver un jour une

eau de baignade conforme.

Ainsi, le contexte réglementaire s’est transformé, passant d’une interdiction motivée par

des enjeux de pudeur à une véritable politique sanitaire. Ce retour progressif des baignades

surveillées marque une reconquête symbolique et politique de la Seine et de la Marne, nourrie

par des aspirations modernes à restaurer des écosystèmes et des lieux de loisirs naturels. Ainsi

pour l’établissement d’une nouvelle baignade, la réglementation exige la mise en place d’un

profil de baignade qui liste toutes les sources de contamination impactant le futur site en vue

d’en faciliter la gestion (Commission européenne, 2006).

3. Sources de contamination
Cependant, les activités sportives et récréatives dans les eaux de surface d’un territoire

fortement urbanisé posent des risques sanitaires (Davies-Colley et al., 2018). En effet, la qualité

microbiologique des eaux de surface urbaines est fortement dégradée par des rejets d’eaux usées
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insuffisamment traitées, comme cela a été précédemment montré pour la Seine (Moulin et al.,

2010; Passerat et al., 2011; Lucas et al., 2014; Prevost et al., 2015). Différentes sources de

contamination peuvent apporter des flux élevés de pathogènes d’origine fécale au niveau des

sites de baignade (Lucas et al., 2019; Mouchel et al., 2020). Les contaminations fécales peuvent

être d’origine humaine ou animale (animaux sauvages et domestiques) et provenir de sources

ponctuelles telles que les effluents de STEU et de bateaux, les rejets de déversoirs d’orage et

d’ouvrages cadres (Passerat et al., 2011; Guérineau et al., 2014; O’Mullan et al., 2017). À cela

s’ajoutent des sources diffuses liées au ruissellement sur les surfaces urbaines et agricoles, à

la re-suspension des sédiments et aux déjections directes des animaux (Droppo et al., 2011;

Ahmed et al., 2019b).

Une estimation des flux moyens estivaux de bactéries fécales dans le bassin versant de

l’agglomération parisienne, en amont du pont d’Iéna, détaillée dans le fascicule de baignade

du Piren Seine, a révélé les principales sources de contamination bactérienne (Bouleau et al.,

2024). Les STEU constituaient environ 38% des apports, suivies par les déversoirs d’orage

(19%), les bateaux-logements non raccordés aux réseaux d’assainissement (6%), ainsi que les

flux provenant des affluents amont de la Seine-et-Marne (3%), des rivières urbaines en amont

(4%) et enfin le ruissellement urbain qui représente moins de 1%. L’analyse indiquait que

de faibles rejets non traités suffisaient à compromettre localement la qualité de l’eau, rendant

essentielle une vigilance accrue sur ces petites sources de contamination. L’ajout d’installations

de désinfection en sortie des STEU Marne Aval et Seine Amont en 2023 a permis de réduire

les apports bactériens d’environ 25%, aboutissant à une réduction globale proche de 50% des

apports urbains (Bouleau et al., 2024).

Le caractère diffus de nombreuses sources rend difficile la quantification de l’influence

relative de chaque source dans un bassin versant donné (Meays et al., 2004). Les rejets de

temps de pluie sont souvent décrits comme étant à l’origine de fortes dégradations de la qualité

des eaux de surface (Islam et al., 2017). Les événements météorologiques, tels que de fortes

pluies, peuvent influencer les risques de contamination en perturbant le sol et en entraînant

des débordements (Delamare et al., 2024). De plus, les facteurs météorologiques affectent les

concentrations en microorganismes d’origine fécale dans les eaux de surface, notamment la

température de l’eau et les caractéristiques des événements pluvieux (intensité, durée, période

sèche précédant la pluie). De même, la qualité des eaux usées rejetées dans les rivières, peut

varier d’une STEU à l’autre et même au sein d’une STEU en fonction du jour et de la saison
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(Kadoya et al., 2019). De plus, l’accumulation et le lessivage de ces microorganismes dans un

bassin versant sont influencés par l’usage des sols (Cha et al., 2016; Passerat et al., 2011; Dueker

et al., 2017; Droppo et al., 2009; Garcia-Armisen and Servais, 2009).

L’ensemble de ces sources, multiples et variées, rend difficile une estimation précise

des flux de contamination. Ceci pose problème car l’exposition à ces contaminants présente un

risque pour la santé humaine.

4. Risque sanitaire
Une exposition à l’eau contaminée, pouvant contenir divers types de micro-organismes

pathogènes, présente donc un risque accru de contracter des maladies infectieuses (DeNizio and

Hewitt, 2019;Mouchel et al., 2020). Les personnes pratiquant des activités en eau douce peuvent

présenter des niveaux de vulnérabilité différents en fonction de leur âge, de leur état de santé et

de leur connaissance des risques associés à cette activité. Comparés aux individus jeunes et en

bonne santé qui ont un système immunitaire plus performant, les personnes âgées, les enfants,

les personnes immunodéprimées ou celles mal informées des risques encourus peuvent être plus

exposées aux dangers sanitaires (Delamare et al., 2024).

En fonction de divers facteurs tels que la localisation géographique, l’environnement

(type de sol, eaux stagnantes, boue, présence d’animaux sauvages ou de bétail) et les conditions

météorologiques avant et pendant l’exposition (inondations, fortes pluies), les risques pour la

santé liés à l’activité de baignade sont variés. Ils incluent des risques physiques, tels que les

noyades, chutes, déshydratation, coups de soleil, qui sont les plus fréquents et graves, mais

non liés à la qualité de l’eau (Martinez and Hooper, 2014; Pakasi, 2018). De plus, des micro-

organismes tels que les bactéries, les virus et les parasites sont présents dans les milieux

aquatiques (eaux côtières, rivières, lacs...), en quantité et diversité variables. Certains de ces

micro-organismes peuvent être pathogènes pour l’Homme (Gourmelon, 2023). La présence de

germes pathogènes dans l’eau peut entraîner des pathologies affectant, l’appareil digestif, les

yeux, les oreilles ou la peau (OMS, 2018). Les pathogènes détectés dans les eaux des sites de

récréation européens côtiers et continentaux sont principalement les virus entériques (Bouleau

et al., 2024). Aux Pays-Bas, les épidémies associées aux baignades entre 1991 et 2007, étaient à

48% des infections de la peau et à 31% des gastro-entérites (Schets et al., 2011). Selon l’étude

de Craun et al. (2005) portant sur la période 1971-2000, les épidémies associées aux eaux

de récréation aux Etat-Unis étaient le plus souvent causées par les shigelles (21% des cas),
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Naegleria fowleri (17%), Pseudomonas aeruginosa (14%), E. coli O157 (9%), les norovirus

(6%), les leptospires (5%) et lesGiardia (4%). Il faut toutefois noter que les agents éthiologiques

principaux vont varier en fonction du pays, du climat. Par exemple Vibrio cholerae, l’agent du

cholera, est fréquent dans les eaux de surface de pays Européens (Farrell et al., 2021), mais pas

en France. De même, le virus de l’hépatite A et E n’a pas été détecté dans les eaux de la Seine

(Prevost et al., 2015). Les bactéries gastro-intestinales transmises par des matières fécales dans

l’environnement, telles que les genres Campylobacter, Shigella, la souche pathogénique d’E.

coli O157, les salmonelles, sont des sources de gastro-entérite aiguë pouvant être associées aux

activités récréatives dans les eaux de surface (Delamare et al., 2024). D’autres maladies comme

la leptospirose, causée par la bactérie Leptospira, peuvent se transmettre par contact de la peau

abîmée ou coupée, des muqueuses ou la conjonctive via l’exposition à de l’eau contaminée

(via l’urine d’animaux infectés). Les manifestations cliniques sont comparables aux symptômes

pseudo-grippaux, avec une fièvre simple dans la majorité des cas (Delamare et al., 2024). Les

Campylobacter qui sont très présents dans les rejets de temps de pluie peuvent causer jusqu’à 5%

des cas de maladies liée aux activités récréatives en Nouvelle-Zélande (Kistemann et al., 2016).

Par contre, les salmonelles et les leptospires sontmoins souvent rapportées commeprésentes dans

les eaux de récréation (Kistemann et al., 2016). De plus, la présence de cyanobactéries et de leurs

toxines dans les eaux de baignade peut provoquer des éruptions cutanées, des démangeaisons,

des gastro-entérites et atteintes neurologiques, par contact cutané ou ingestion de toxines. Le

développement des cyanobactéries est favorisé par l’eutrophisation des eaux, les températures

élevées et une faible agitation du milieu (Stewart et al., 2006). Comme mentionné dans le guide

de recommandations sanitaires liés aux activités nautiques en eau douce, d’autres infections

bactériennes peuvent survenir à la suite d’une exposition à l’eau douce (Agence Régionale

de Santé Bretagne, 2017). Les personnes exposées à une forte concentration de Pseudomonas

aeruginosa sont susceptibles de développer des infections cutanées, des otites, des conjonctivites

ou des infections urinaires. Par exposition à de l’eau contaminée dans les environnements d’eau

douce, ces infections peuvent entraîner divers problèmes de santé (Agence Régionale de Santé

Bretagne, 2017; Delamare et al., 2024). Des pathogènes opportunistes autochtones du milieu

aquatique comme les légionelles, les mycobactéries, et les Aeromonas peuvent provoquer des

infections respiratoires (de Roda Husman and Schets, 2010).

Des gastro-entérites aïgues liées aux eaux récréatives sont souvent dues à des virus

entériques (Mouchel et al., 2020). Leur transmission se fait par voie oro-fécale, soit par conta-
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mination de contact, soit par la consommation d’eau contaminée, et leurs doses infectieuses

sont très faibles, ce qui génère un risque important de gastro-entérite virale chez les nageurs

(Bouleau et al., 2024). Les adénovirus et les norovirus sont très fréquents dans les eaux de

surface et peuvent atteindre des concentrations relativement élevées même en dehors des pé-

riodes épidémiques (Prevost et al., 2015; Korajkic et al., 2018). Les épidémies de norovirus

peuvent avoir un impact significatif sur le système de santé local et entraîner des épidémies

secondaires avec transmission entre les malades et leurs proches (Delamare et al., 2024). Ces

virus peuvent provoquer divers symptômes tels que des troubles intestinaux et respiratoires, des

hépatites et des conjonctivites (Mouchel et al., 2020). Les norovirus sont la principale cause

d’infection gastro-intestinale non bactérienne dans le monde. Les symptômes apparaissent après

une période d’incubation moyenne de 24 à 48 h et durent généralement entre 12 et 72 h. Ce-

pendant, les formes sévères sont plus rares chez les patients adultes en bonne santé, comparés

aux enfants (Delamare et al., 2024). D’autres virus entériques pouvant être impliqués dans les

gastro-entérites humaines ont été identifiés au niveau de la Seine et de la Marne (aichivirus,

rotavirus, entérovirus) (Prevost et al., 2015). La composition complexe des eaux et la sensi-

bilité différente des espèces de virus rendent difficile la prévision du comportement des virus

entériques (Kadoya et al., 2019). Les virus sont souvent très persistants dans l’environnement

aquatique, et les variations de température, surtout les températures basses, favorisent leur survie

(Ibrahim et al., 2019; Dean and Mitchell, 2022).

Parmi la large gamme de maladies infectieuses, il y a également les infections parasitaires

qui peuvent être contractées dans les eaux de surface. Les contaminations par des parasites d’ori-

gine animale ou humaine (comme Giardia et Cryptosporidium) ou environnementale comme

(Naegleria floweri) sont également les agents de maladies d’origine hydrique (Pakasi, 2018;

Delamare et al., 2024). Les infections par les cryptosporidies sont toutefois intermittentes, es-

sentiellement en lien avec un bassin versant agricole (Kistemann et al., 2016). L’amibeNaegleria

floweri prolifère plutôt dans les eaux chaudes, et aucun cas n’a été rapporté en France dans les

eaux de surface non polluées thermiquement (De Jonckheere, 2011).

5. Notion d’indicateur de contamination fécale
Pour s’assurer que le risque lié aux eaux récréatives est réduit au minimum pour le

public, de nombreux gouvernements et autorités ont mis en place des mesures de qualité de

l’eau (Avila et al., 2018; Visser et al., 2022). Il est difficilement faisable de mesurer l’ensemble
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des pathogènes en routine, surtout qu’ils sont souvent en concentration faible dans les eaux de

surface et que leur quantification demande des techniques de biologie moléculaire. La stratégie

adoptée est de mesurer des microorganismes non-pathogènes, autochtones du tube digestif, qui

sont soit présents en plus grand nombre que les pathogènes, soit présents en même temps que les

pathogènes, et dont la mesure est peu coûteuse et facile à mettre en oeuvre. Ainsi, les paramètres

recommandés par la directive 2006/7/EC pour évaluer la qualité de l’eau de baignade sont les

BIF (E. coli et les entérocoques intestinaux). La qualité microbiologique des eaux récréatives est

généralement évaluée par la présence de bactéries indicatrices de contamination fécale (Avila

et al., 2018).E. coli et les entérocoques intestinaux sont des éléments dumicrobiote intestinal des

mammifères et des oiseaux, de certains reptiles et des humains (Gordon, 2013; Byappanahalli

et al., 2012; Staley et al., 2014; Silva et al., 2012). Escherichia coli est un bacille à Gram-négatif,

appartenant au groupe des coliformes fécaux, classés dans le phylum des gamma-Protéobactéries

et la famille des Enterobacteriaceae. Son habitat primaire est le bas intestin des animaux à sang

chaud, incluant les humains (Ishii and Sadowsky, 2008). En général, on dénombre plus de 1

million de d’E. coli par g sec de fèces humaines (Ishii and Sadowsky, 2008). Les Enterococcus

sont des coques Gram-positives, catalase-négatives, non sporulantes et anaérobies facultatives

(Fisher and Phillips, 2009). Elles habitent généralement le tractus intestinal des humains, mais

peuvent aussi être isolées de diverses sources environnementales et animales. Capables de

résister à des conditions extrêmes, elles survivent à des températures allant de 5 à 65°C, à

des pH entre 4,5 et 10,0, ainsi qu’à des concentrations élevées de NaCl, ce qui leur permet de

coloniser divers milieux (Fisher and Phillips, 2009). Typiquement, elles représentent moins de

0,1% de la flore intestinale humaine (Schloissnig et al., 2013). Parmi les plus de 50 espèces du

genre Enterococcus identifiées, E. faecium et E. faecalis sont les plus fréquentes dans le tractus

gastro-intestinal humain et animal, avec des concentrations de l’ordre de 10000 à 1 million de

cellules par g de fèces humaines (Boehm and Sassoubre, 2014).

Les niveaux de ces deux BIF sont indicatifs de la pollution fécale (Commission euro-

péenne, 2006). En effet, des études épidémiologiques ont montré la capacité des concentrations

en BIF à prédire les risques de gastroentérites dans les eaux de surface et ont ainsi permis d’éta-

blir des seuils réglementaires (Prüss, 1998; Pond, 2005; Shuval, 2003). Prüss (1998) a passé en

revue 37 études épidémiologiques sur les effets sur la santé de l’exposition aux eaux récréatives

et a constaté pour la majorité des études une association positive, statistiquement significative,

entre le nombre de BIF présentes et le risque de contracter une gastroentérite pour les nageurs.
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Une méta-analyse réalisée par Wade et al. (2003) de plus de 900 études a révélé qu’au niveau des

eaux douces E. coli était un prédicteur de maladie gastro-intestinale plus cohérent que les entéro-

coques et d’autres indicateurs bactériens. Ils ont constaté qu’une augmentation du nombre d’E.

coli était associée à une augmentation non significative moyenne du risque relatif. Ces valeurs

sont à mettre en regard des risques calculés par les études rétrospectives qui ont servi à fixer les

seuils de qualité des eaux de baignade dans les réglementations de tous les pays. En Europe, les

taux d’incidence de gastro-entérites considérés acceptables sont fixés à 3% (eau continentale de

qualité "excellente") et 5% (eau continentale de qualité "bonne") pour le classement des sites

de baignade dans la directive européenne 2006/7/EC (Fleisher et al., 1996). L’étude relative à

la prévention des maladies gastro-intestinales par les agences de protection de l’environnement

dans les eaux récréatives recommande que des études futures se concentrent sur la capacité de

nouvelles méthodes microbiennes, plus rapides et plus spécifiques, à prédire les effets sur la

santé et à estimer les risques d’exposition aux eaux chez les personnes sensibles (Wade et al.,

2003).

6. Evaluation de la qualité microbiologique de l’eau de bai-

gnade
Actuellement, la qualité de l’eau de surface est principalement évaluée à l’aide d’échan-

tillons d’eau collectés pour une analyse microbiologique et chimique en laboratoire et/ou à l’aide

de capteurs spécifiques à haute précision placés à des endroits fixes. La surveillance réglemen-

taire des eaux de baignade en Europe est basée sur la culture des E. coli et des entérocoques

intestinaux (EI) (Commission européenne, 2006). L’abondance de ces bactéries indique le niveau

de contamination fécale et donc la présence éventuelle de pathogènes pouvant être à l’origine

de maladies gastro-intestinales (Commission européenne, 2006; OMS, 2018). Selon la directive

2006/7/CE, une eau de baignade continentale est jugée comme étant de qualité suffisante si la

valeur du percentile 90 sur 16 mesures pendant 4 années est en dessous de 900 NPP/100 mL

pour E. coli, et en dessous de 330 NPP/100 mL pour les EI (Tableau 1.1). En France, ces seuils

spécifiques aux eaux continentales permettent aux Agences Régionales de la Santé (ARS) de

classer chaque année les sites de baignade d’eau douce.

En cours de saison de baignade, la qualité microbiologique est évaluée en fonction

des seuils définis pour les BIF, comme indiqué dans le tableau 1.2 et selon l’instruction n°
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Table 1.1 – Seuils de qualité microbiologique pour le classement des sites de baignade selon la directive 2006/7/EC.
Basé sur l’évaluation du percentile 95 (*) et 90 (**).

Paramètre Excellente Bonne Suffisante
Escherichia coli (NPP/100 mL) 500 (*) 1 000 (*) 900 (**)
Entérocoques intestinaux (NPP/100 mL) 200 (*) 400 (*) 330 (**)

DGS/EA4/2022/168 du 17 juin 2022 relative aux modalités de recensement, gestion et classe-

ment des eaux de baignade. Les prélèvements dont les résultats sont classés comme "bon" ou

"moyen" sont considérés conformes, tandis que les résultats qualifiés de "mauvais" sont jugés

non conformes. Ces seuils ont été établis en lien avec les risques sanitaires observés, notamment

un risque accru de gastro-entérite pour les concentrations comprises entre 900 et 1800 NPP/100

mL, avec un risque supérieur à 5% (Duboudin et al., 2007). Ces seuils servent pour la gestion

active des baignades classées : prélèvements supplémentaires, ouverture et fermeture des zones

de baignade (Bouleau et al., 2024).

Table 1.2 – Valeurs limites de qualité microbiologique des eaux intérieures d’un site de baignade classé, pour la
gestion active en cours de saison, proposées par l’Agence française de sécurité sanitaire de l’environnement et du
travail (Duboudin et al., 2007).

Paramètre Bonne Moyenne Mauvaise
Escherichia coli (NPP/100 mL) < 100 < 1 800 ≥ 1 800
Entérocoques intestinaux (NPP/100 mL) < 100 < 660 ≥ 660

La gestion quotidienne des sites de baignade implique un suivi précis de la qualité

microbiologique impactée par les pollutions de courte durée. Une pollution à court terme,

définie à l’article D.1332-15 du code de la santé publique comme étant une contamination

microbiologique affectant la qualité de l’eau de la baignade pendant moins de 72 h et dont les

causes sont aisément identifiables, peut être déterminée par un dépassement de l’une des valeurs

seuils proposées par l’agence française de sécurité sanitaire de l’environnement et du travail

(AFSSET) pour les BIF (Duboudin et al., 2007). En cas de pollution de court terme, souvent

provoquée par des précipitations importantes difficiles à prévoir, qui génèrent des rejets urbains,

du ruissellement sur des surfaces contaminées et des rejets accidentels non maîtrisés, devrait

donc entraîner des fermetures préventives (Penna et al., 2021; Bouleau et al., 2024).

Une gestion effective des fermetures doit à la fois permettre de préserver la santé publique

et aussi l’économie locale liée aux activités de baignade (Penna et al., 2021). Depuis l’adoption

de la directive sur les eaux de baignade en 2006, la proportion de sites classés comme "excellent"

a augmenté, puis s’est stabilisée ces dernières années. En 2023, cette proportion représentait
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85% de l’ensemble des eaux de baignade dans l’UE (22000 sites côtiers et continentaux) mais

ce taux était seulement de 79% pour les sites continentaux (European Commission, 2023). Cela

souligne la nécessité de mettre en place des systèmes d’alerte précoce fiables pour les eaux de

baignade. L’OMS préconise d’utiliser la modélisation en complément du suivi réglementaire

pour estimer ou prédire les contaminations et ainsi aider à la gestion quotidienne des sites de

baignade (OMS, 2018). La modélisation pourrait être utilisée comme système d’alerte précoce

en cas de pollution à court terme, en offrant une aide précieuse dans la gestion des fermetures

temporaires des sites de baignade (OMS, 2018). Bien que l’ouverture reste soumise à une

confirmation par une mesure réglementaire, la modélisation permettrait d’optimiser les efforts

d’échantillonnage et de suivi (Seis et al., 2018). Cette approche contribuirait non seulement à

raccourcir les périodes de fermeture mais aussi à anticiper les risques de contamination fécale

et ainsi améliorer la gestion de la qualité des eaux de surface (Bouleau et al., 2024).

7. Variabilité spatiale et temporelle de la qualité microbiolo-

gique
Concernant le suivi de la qualité microbiologique, des questions subsistent quant à la

stratégie d’échantillonnage nécessaire pour obtenir des mesures représentatives (Harmel et al.,

2016; McCarthy et al., 2008). Il est essentiel de prendre en compte l’hétérogénéité spatiale et

temporelle des sources de contamination, qui peut affecter significativement la précision des

évaluations de la qualité de l’eau (Harmel et al., 2016). La variabilité spatiale des concentrations

en BIF dans les milieux aquatiques peut s’observer à différentes échelles : d’une petite distance

au sein d’un même site d’échantillonnage, à une grande distance le long d’un bassin versant

ou à l’échelle de la région (Murphy et al., 2023). Cependant, les sites de baignade d’eau douce

sont encore peu étudiés de ce point de vue comparés aux plages côtières. Cela est en particulier

vrai pour les baignades en rivières. Plusieurs études (Quilliam et al., 2011; Weller et al., 2020)

ont montré que le niveau en FIB variait significativement au sein d’un même site, par exemple

d’une berge à l’autre pour une rivière (Quilliam et al., 2011). La distribution horizontale des

BIF en rivière est influencée par les conditions d’écoulement du cours d’eau, qui modifient le

degré de mélange et, par conséquent, la cohérence des concentrations bactériennes. Les débits

plus faibles en bordure, par exemple, favorisent un dépôt bactérien plus élevé (Harmel et al.,

2016; Salam et al., 2021). De plus, une incertitude spatiale peut être observée verticalement, en
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raison de la remise en suspension des sédiments et de l’influence des UV qui pénètrent dans la

colonne d’eau (McCarthy et al., 2008; Quilliam et al., 2011; Harmel et al., 2016). Ainsi, il a été

montré sur une plage côtière que les concentrations en EI étaient 10 fois plus élevées dans les

échantillons collectés à hauteur des genoux comparés à ceux prélevés à hauteur de la taille (Enns

et al., 2012). À une échelle plus large, les sites échantillonnés au sein d’un même étang cessent

de montrer une autocorrélation dans les mesures de BIF s’ils sont espacés de plus de 100 m. De

ce fait, un seul échantillon par étang ou lac ne peut pas refléter toute la variabilité spatiale qui y

est présente (Murphy et al., 2023).

A cette variabilité spatiale se superpose une incertitude temporelle des indicateurs fécaux

à différentes échelles de temps : entre les heures du jour, entre les jours, entre les saisons, inter-

annuelle. Ainsi, il a été montré que sur les plages de Chicago (USA), la profondeur de l’eau et

l’heure du jour influençaient significativement la variation des concentrations en BIF, expliquant

respectivement 7 et 13% de la variabilité (Whitman and Nevers, 2008). Une variation au cours

d’une journée de baignade, avec des fluctuations de concentration peut être observée sur des

intervalles de quelques minutes à quelques heures seulement (Wyer et al., 2018; Wymer et al.,

2007; Boehm et al., 2002). Des études montrent ainsi des variations journalières significatives,

avec des écarts pouvant atteindre 1 à 2 log10 dans une seule journée d’échantillonnage, et ce,

même en l’absence de conditions météorologiques défavorables (Wyer et al., 2018). En effet,

les prélèvements effectués le matin sont généralement plus représentatifs, car la qualité de l’eau

tend à être meilleure l’après-midi, probablement en raison des rejets d’eaux usées du matin et

des habitudes de vie (Jozić et al., 2024; Jovanovic et al., 2019). Toutefois, il est montré que

le jour de l’échantillonnage a plus d’importance dans l’explication de la variation des concen-

trations en BIF des plages lacustres que l’heure du jour (Whitman and Nevers, 2008). A plus

large échelle temporelle (inter-annuelle), l’analyse des variations des concentrations en BIF peut

permettre de mieux comprendre les facteurs et les mesures de gestion qui influencent la qualité

microbiologique de l’eau des plages d’eau douce (Weiskerger and Whitman, 2018). De ce fait,

les variations de facteurs physiques, chimiques, biologiques de la rivière et le climat local et

régional influencent directement les stratégies de surveillance (fréquence et positionnement des

échantillonnages), l’interprétation des résultats de qualité de l’eau et leur modélisation (Quilliam

et al., 2011). Différents paramètres tels que les sources de contamination proches, les événe-

ments en amont comme les rejets et les conditions météorologiques, ajoutent une couche de

complexité temporelle et spatiale (Devane et al., 2020). Les facteurs environnementaux tels que
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la température, les rayons UV, la sédimentation et le niveau d’étiage influencent la concentration

et la dispersion des BIF en modifiant leur persistance et leur répartition dans l’eau (Ishii and

Sadowsky, 2008). La remise en suspension des sédiments, qui peuvent représenter un réservoir

important de BIF, ajoute une source importante de contamination, complexifiant ainsi les pré-

visions de qualité de l’eau (Piorkowski et al., 2014). Cependant, malgré la variabilité spatiale et

temporelle intra-journalière et inter-saisonnière, les stratégies d’échantillonnage actuelles per-

sistent à considérer qu’un seul prélèvement par semaine à un point situé à 2 m de la berge est

représentatif de la qualité de l’eau pour l’ensemble du site et pour toute la journée de baignade

(Wyer et al., 2018; Boehm, 2007). Or, cette approche ne reflète pas les fluctuations réelles de la

journée, ni la variabilité spatiale du site de baignade, ni le délai de 24 h pour obtenir les résultats

en réduit l’utilité opérationnelle, la qualité de l’eau pouvant changer considérablement entre le

prélèvement et la disponibilité des données. Cette complexité a des implications cruciales pour

les stratégies de suivi, car elle exige une prise en compte des dynamiques locales et globales

pour une évaluation fiable de la qualité des eaux de baignade. La fréquence d’échantillonnage

et la taille de l’échantillon déterminent la représentativité de la variabilité de la qualité de l’eau

et peuvent ainsi avoir un effet crucial sur le calcul des percentiles 90 et 95, influençant ainsi la

classification des sites de baignade (López et al., 2012). Ce point est particulièrement critique

pour les sites dont la qualité est proche du niveau "suffisant". Ces connaissances sont essen-

tielles pour adapter les modèles de prévision, qui peuvent servir de complément aux méthodes

de surveillance directe, en particulier dans les collectivités de taille modeste où les ressources

sont limitées.

8. Décroissance des indicateurs de contamination fécale
Le tube digestif des humains et animaux homéothermes offre aux BIF et aux pathogènes

entériques des conditions favorables à leur croissance. Les proportions de BIF par gramme de

fèces varient en fonction des espèces hôtes (Dean and Mitchell, 2022). Après le rejet d’eaux

usées dans le milieu, la concentration des BIF et des agents pathogènes peut être modifiée par

la dilution, le débit de l’eau et la capacité de persister de chaque espèce microbienne dans

l’environnement (Devane et al., 2020). La proximité du site de baignade avec une source de

pollution augmente la densité des BIF, qui diminue avec l’éloignement en raison de la dilution

et de la dispersion des contaminants dans la masse d’eau (Jozić et al., 2024; Carneiro et al.,

2018). Une fois excrétées et déversées dans l’environnement, les bactéries du tube digestif sont
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exposées à divers facteurs, tels que la disponibilité en nutriments et en sources de carbone

organique, les fluctuations de température, la salinité et la prédation, dont l’influence dépend

des caractéristiques physiques et chimiques propres à chaque milieu (Sampson et al., 2006;

Schloissnig et al., 2013; Solo-Gabriele et al., 2000; Nakhle et al., 2021). Dans cet habitat

secondaire plus ou moins hostile, en théorie, les BIF vont soit mourir, soit entrer en dormance

dans un état viable non cultivable. Cependant, il a été montré que dans certains compartiments

du milieu aquatique tels que les sédiments, les litières ou les biofilms, des souches de ces

BIF peuvent survivre, voire s’acclimater et croître (Korajkic et al., 2019). Par exemple, des

températures élevées et la présence de matière organique peuvent favoriser la survie d’E. coli

hors de son hôte, tandis que l’exposition à la lumière et la prédation contribuent à réduire

leur présence. Étant donné la complexité des systèmes aquatiques, il est difficile de prédire

l’influence de chaque facteur sur la survie et la croissance des bactéries dans des contextes

variés (Solo-Gabriele et al., 2000; Sampson et al., 2006). La prédation a notamment démontré

un rôle important dans la survie d’E. coli au sein des systèmes naturels (Solo-Gabriele et al.,

2000).

Une gestion efficace de la qualité de l’eau exige une connaissance approfondie de la

dynamique de décroissance des BIF dans les habitats aquatiques, ainsi que des facteurs qui

l’influencent. Si la décroissance d’E. coli est relativement constante d’un événement polluant à

un autre au sein d’un même site ou bien d’un site à un autre, cela pourrait permettre d’avoir une

future utilisation de ce paramètre par les gestionnaires pour prédire le devenir des contaminations

(Dick et al., 2010).

La plupart des études sur la décroissance des bactéries ont été menées dans des condi-

tions contrôlées en laboratoire ou in situ pour déterminer le taux de mortalité (Dick et al.,

2010; Korajkic et al., 2014; Tĳdens et al., 2008). La majorité de ces études in situ utilise des

microcosmes fermés (bouteilles) ou semi-ouverts composés de sacs à dialyse immergés dans

l’eau de surface. Ces systèmes permettent de simuler la décroissance bactérienne suite à un rejet

accidentel d’eaux usées tout en manipulant des facteurs tels que les UV ou la prédation. Par

contre, ces expériences en laboratoire ou sur le terrain ne permettent pas de prendre en compte

la dynamique liée aux flux d’apports amont, à la dilution et à la dispersion, ni à l’effet de la

sédimentation et de la resuspension des sédiments (Maraccini et al., 2016; Ahmed et al., 2015;

Korajkic et al., 2014; Nakhle et al., 2021).

L’étude de Jin et al. (2004) illustre la dynamique de décroissance après un événement
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Table 1.3 – Valeurs du taux de décroissance dans différents types d’eau, le terme utilisé dans la littérature et les
facteurs pris en compte pour la mesure du taux. a : sans remise en suspension, b : avec remise en suspension, c :
(Noble et al., 2004), d : (Servais et al., 2007a), e : (Chigbu et al., 2005), f : (Jozić et al., 2014), g : (Nakhle et al.,
2021), h : (Dick et al., 2010), i : (Blaustein et al., 2013).

Milieux Terme
utilisé

Taux (Jr−1) Facteurs pris en compte

Mésocosme (Ri-
vière)

Inactivation 3.12 et 1.12 (E. coli)c Forte et faible irradiation
solaire

Mésocosme (Ri-
vière)

Inactivation 6.48 et 5.76 (EI) c Forte et faible irradiation
solaire

Laboratoire (Seine) Mortalité 0.72 (E. coli) d Prédation et stress physio-
logique

Laboratoire (Seine) Mortalité 1.08 (Coliformes fé-
caux) d

Mortalité et perte de cultu-
rabilité (lumiére)

Rivière Disparition de 0.21 à 0.74 (Coli-
formes fécaux) e

Prédation, nutriment, sé-
dimentation et lumière

Laboratoire Inactivation de 0.01 à 7.91 (E. coli) f Irradiation solaire et obs-
curité

Mésocosme (Bassin
versant) a

Décroissance
apparente

1.43 ± 0.15 (E. coli) g Sédimentation et lumière

Mésocosme (Bassin
versant) b

Décroissance
apparente

0.50 ± 0.15 (E. coli) g Sédimentation et lumière

Laboratoire (Rivière
et eau usée)

Décroissance 0.28 h Réduction de la prédation

Laboratoire (rivière) Inactivation 0.72 ± 0.07 (E. coli) i Obscurité et température
20°C

Laboratoire (Eau
usée)

Inactivation 0.67 ± 0.11 (E. coli) i Obscurité et température
20°C

pluvieux et montre une diminution relativement rapide de ces indicateurs en deux à trois jours

(Tableau 1.3). Cette décroissance rapide est attribuée à plusieurs facteurs, dont l’effet de dilu-

tion, la mortalité des microorganismes due à des conditions environnementales telles que les

toxines algales, le pH, la prédation, la température, la salinité et la lumière solaire, ainsi qu’à la

sédimentation des particules auxquelles les microorganismes peuvent être associés (Pendergrass

et al., 2015; Gronewold et al., 2011). De plus, ce taux peut varier en fonction des saisons. Ainsi,

des taux plus élevés étaient observés au centre-nord du golfe du Mexique en hiver avec des

taux estimés en novembre/décembre de 0,64 ± 0,06 jr−1, en janvier de 0,45 ± 0,03 jr−1 et en

février/mars de 0,35 ± 0,03 jr−1, probablement en raison des faibles températures de l’eau et de

la baisse d’intensité du rayonnement solaire (Chigbu et al., 2005).

De même, la concentration initiale en BIF peut avoir un impact sur le taux d’inactivation

(Gronewold et al., 2011). L’étude de Nakhle et al. (2021) a identifié un taux de décroissance plus
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élevé avec une remise en suspension des sédiments. La sédimentation expliquait en moyenne

92% de la réduction de la concentration d’E. coli, tandis que le rayonnement solaire représentait

environ 2% (Tableau 1.3).

9. Incertitudes sur la mesure des indicateurs bactériens
La variabilité spatiale et temporelle ajoute une part d’incertitude sur l’échantillonnage

et donc sur les concentrations en BIF rapportées. Celle-ci est dépendante de l’effort d’échan-

tillonnage (fréquence des dates d’échantillonnage et choix des points d’échantillonnage). À cela

s’ajoute une part d’incertitude qui est liée à la méthodologie et aux équipements employés pour

effectuer l’échantillonnage et l’analyse des échantillons, ainsi qu’une part d’incertitude liée à

l’expertise des personnels du laboratoire. L’incertitude caractérise la dispersion des valeurs qui

pourraient être raisonnablement attribuées à un ensemble de facteurs. L’incertitude associée

à une mesure est un paramètre important à prendre en compte car elle nous renseigne sur la

fiabilité des résultats et donc ensuite sur la confiance dans la prise de décision (Cazals et al.,

2020).

9.1. Sources d’incertitudes

Les stratégies afin de diminuer l’incertitude sur lamesure et l’échantillonnage comportent

la formation et la certification des personnels, l’accréditation du laboratoire, l’utilisation de pro-

tocoles normés, l’utilisation de standards et de contrôles, l’inter-comparaison entre laboratoires.

Notons que les méthodes et normes de prélèvements et d’analyses peuvent différer d’un pays

à l’autre (Europe, Asie, Pacifique) (Cazals et al., 2020). En Europe et plus particulièrement

en France, les normes de prélèvements et de mesures sont celles figurant dans la figure 1.1.

Cependant, ces normes laissent une marge d’interprétation qui peut être source d’incertitude.
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Figure 1.1 – Normes, directives et guide pour le prélèvement d’eau de baignade.

Globalement les différentes incertitudes vont se cumuler. La variabilité spatiale et tempo-

relle constitue une première sourcemajeure d’incertitude qui influence les ensembles de données.

S’ajoute à cela une incertitude liée au processus de la collecte d’échantillons à l’analyse en la-

boratoire (Harmel et al., 2016). Une incertitude globale de ±33% (15-67%) a été calculée lors

des prélèvements de temps de pluie à l’aide de préleveurs automatiques, en prenant en compte

l’échantillonnage, le stockage et l’analyse (McCarthy et al., 2008). Cependant, en raison des

variations d’incertitude selon la méthode, des recherches supplémentaires sont nécessaires pour

chaque nouveau système de surveillance (McCarthy et al., 2008).

9.2. Incertitude liée à la variabilité spatio-temporelle

Lors du prélèvement d’un échantillon à un instant précis, de l’incertitude est introduite

par le moment et le lieu de la collecte (Harmel et al., 2016). Une différence significative

dans les concentrations en E. coli prélevées à des intervalles de deux heures dans un bassin

hydrographique urbain de Houston (Texas) a été constatée (Desai and Rifai, 2013). En revanche,

aucune corrélation significative entre les concentrations d’E. coli et l’heure de l’échantillonnage

n’a été constatée dans des rivières échantillonnées par Pendergrass et al. (2015) et Sejkora et al.

(2011). Une incertitude de ±(23 ± 16%) a été identifiée avec un échantillonnage répété espacé

d’une minute (Pendergrass et al., 2015). À cela s’ajoute une incertitude spatiale verticale : les

échantillons prélevés dans le haut et le bas de la colonne d’eau d’un rejet pluvial présentaient

une incertitude moyenne de 1 ± 27% (McCarthy et al., 2008). Cette incertitude spatiale peut

également être horizontale, des différences significatives dans les concentrations d’E. coli ayant

été observées au sein du transect d’un système fluvial britannique, avec une incertitude moyenne

de 62 ± 30% (Quilliam et al., 2011).
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Cependant, l’impact des sources diffuses de pollution liées au ruissellement par temps

de pluie ou à la défécation directe des animaux dans les rivières ou encore la variabilité des

rejets ponctuels liée au caractère aléatoire des orages d’été vont impacter la variabilité spatiale et

temporelle des concentrations en BIF dans les eaux de surface. Ainsi, les variations saisonnières

de la distribution et l’activité des animaux sauvages ou les changements de pâturage pour le bétail

peuvent constituer une source importante d’incertitude (Guérineau et al., 2014). Ces facteurs, qui

varient considérablement dans le temps et l’espace, peuvent générer des niveaux d’incertitude

élevés, comme le souligne Pendergrass et al. (2015), notamment en ce qui concerne l’impact

potentiel des colonies d’oiseaux pouvant entraîner une incertitude dépassant 1000%.

9.3. Incertitude liée à la méthodologie de prélèvement

Lors du prélèvement, quelle que soit laméthode, l’incertitude est introduite par lemoment

et le lieu de la collecte de l’échantillon (incertitude temporelle et spatiale) mais également par

le volume prélevé et l’équipement utilisé qui peut potentiellement générer des contaminations

croisées entre les sites (Harmel et al., 2016; Hathaway et al., 2014). Les trois sources principales

d’incertitude sur la concentration en E. coli dans l’échantillon sont l’échantillonnage, le stockage

et l’analyse (McCarthy et al., 2008). Nous devons garder à l’esprit que la première incertitude

dans les résultats peut être liée au prélèvement dans le cours d’eau. Plusieurs méthodes de pré-

lèvements peuvent être appliquées sur le terrain (prélèvement automatique, prélèvement manuel

avec une perche équipée d’un flacon ou une pompe) à une profondeur d’eau et à une distance

de la berge qui peuvent dépendre des caractéristiques du site mais aussi de l’équipement (lon-

gueur de la perche, puissance de la pompe et longueur du tuyau par exemple). Les prélèvements

bactériologiques y sont sensibles à ces caractéristiques et les normes NF EN ISO 19458 et FD

T90-523-1, ainsi que la directive 2006/7/EC spécifient des profondeurs et distances minimales

requises tout en laissant une marge de manœuvre.

Selon la norme FD T90-523-1 sur la qualité de l’eau dans l’environnement, plusieurs

équipements peuvent être employés pour le prélèvement ponctuel : bécher associé à une perche

télescopique, pompe dont le tuyau est associé à une perche télescopique, seau. Il existe aussi

des bouteilles de prélèvements adaptées pour échantillonner à une profondeur donnée (exemple

la bouteille de Niskin). Des mesures sont nécessaires pour limiter l’incertitude et les risques

de contamination lors des prélèvements d’eau. Selon les normes NF EN ISO 19458 et FD T
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90-52, l’utilisation de flacons stériles et de lingettes désinfectantes pour les béchers permet

de minimiser les contaminations externes, mais les prélèvements effectués à l’aide de pompes

et de tuyaux sont plus complexes à nettoyer et désinfecter que ce soit pour les prélèvements

ponctuels ou intégrés (pompe associée à une perche ou préleveur automatique). En effet, ces

dispositifs ont souvent un volumemort et de ce fait peuvent héberger une contamination résiduelle

ou favoriser la formation de biofilms à l’intérieur des tuyaux, ce qui augmente le risque de

contamination croisée entre échantillons (Solo-Gabriele et al., 2000). La norme FD T90-523-

1 prévoit effectivement un rinçage du système avec de l’eau de rivière avant de réaliser un

prélèvement, afin de minimiser les risques de contamination. Cependant, ce rinçage peut ne

pas être suffisant pour garantir des résultats représentatifs dans certaines conditions. En effet,

plusieurs facteurs peuvent influencer l’efficacité du rinçage, tels que la longueur du tuyau, son

inclinaison et l’exposition au rayonnement solaire (Hathaway et al., 2014).

Ainsi, l’étude de Hathaway et al. (2014) a révélé une contamination <1% dans la tubulure

d’un préleveur automatique après 7 jours à sec. Cependant, l’étude de Galfi et al. (2014) montre

une influence de la longueur du tube ainsi qu’un potentiel de contamination croisée avec des

échantillons successifs de concentrations variables. De plus, Hathaway et al. (2014) a montré

un impact de l’inclinaison du tuyau sur la stagnation du volume mort d’échantillon prélevé. En

inclinant le tuyau de prélèvement pour permettre son drainage complet entre les échantillons,

l’incertitude diminue de 5.5 ± 0.05% à 1.7 ± 0.02%. En raison de la contamination potentielle,

un lavage et un rinçage avec de l’eau déionisée et autoclavée les tuyaux d’échantillonnage entre

les prélèvements est recommandé (Hathaway et al., 2010). Cette contamination résiduelle étant

généralement négligeable pour les eaux de surface, un rinçage est parfois suffisant (Hathaway

et al., 2014).

Une fois l’échantillon collecté, le délai entre la collecte et l’analyse d’un échantillon doit

être aussi court que possible afin de limiter les changements dans les populations microbiennes

(Salam et al., 2021). La température de stockage entre le prélèvement et l’analyse au laboratoire

joue aussi un rôle important. D’une part, dans le cas des échantillonnages par préleveur auto-

matique, le temps entre le premier prélèvement et le dernier peut représenter jusqu’à 24 h or

il n’est pas toujours possible d’avoir une embase réfrigérée pour des raisons d’alimentation en

électricité ou de place. D’autre part, quelque soit le type de prélèvement (manuel ou automa-

tique) le temps de transit des échantillons entre le lieu de prélèvement et le laboratoire peut être

long et dans des conditions de température pas toujours contrôlables. À température ambiante,
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Salam et al. (2021) ont constaté dans 80% des cas étudiés, aucune différence significative entre

les concentrations en E. coli des échantillons traités dans les 8 h et dans les 24 h, avec une

incertitude moyenne de ±12% et une tendance à décroître au cours de la période de stockage.

En effet, McCarthy et al. (2008) ont constaté que lors d’un stockage non réfrigéré dans un

préleveur automatique, une augmentation des concentrations d’E. coli est observée entre 4 et 8

h, puis une diminution à 24 h à une température entre 10 et 15°C. Ainsi, après 24 h, l’incertitude

moyenne due au stockage était de ±25% (McCarthy et al., 2008). Selon la température ambiante,

les résultats peuvent fluctuer, et la saison du prélèvement est donc à prendre en compte, ainsi

que la latitude du site de prélèvement. Ainsi, pour une durée de stockage de 6 h, l’incertitude

moyenne est légèrement plus élevée lorsque les échantillons étaient conservés à 25°C (+8%) par

rapport à 15°C (+6%) (Harmel et al., 2016). La réfrigération à des températures inférieures à

6°C permet une meilleure stabilité des échantillons. En effet, une étude de la Texas Commission

on Environmental Quality n’a fait état que d’une faible incertitude de -4% des concentrations

d’E. coli après 24 h par rapport à une durée de stockage de 8 h à une température inférieure à 4°C

(Millican and Hauck, 2008). Un changement a été rapporté dans les échantillons d’eau stockés à

une température inférieure à 10°C, avec une incertitude moyenne allant de 1% après 6 h à 20%

après 24 h (Agency, 2006). Ainsi la norme FD T90-523-1 préconise un stockage maximal de 24

h à 5 ± 3 °C.

9.4. Incertitude liée à l’analyse

Il existe une incertitude pour la mesure de la concentration en bactéries liée à l’analyse

en laboratoire de l’échantillon prélevé (Harmel et al., 2016). En comparaison avec l’incertitude

d’échantillonnage qui est peu décrite et sous-estimée, l’incertitude analytique est quant à elle

contrôlée et bien rapportée dans la littérature (Guigues et al., 2020). L’incertitude caractérise

la dispersion des valeurs qui pourraient être raisonnablement attribuées à la méthode, à l’effet

d’homogénéisation, de dilution choisie et aux facteurs humains (Harmel et al., 2016).

Il peut ainsi y avoir également une source d’incertitude supplémentaire liée à la distri-

bution non homogène des micro-organismes dans l’échantillon. Il faut noter que les bactéries

peuvent être associées à des particules, qui créent des amas de bactéries et sédimentent dans

les flacons d’échantillonnage (Fries et al., 2006). Certaines espèces ont également tendance à

s’adsorber sur les parois en raison de la nature de leur paroi cellulaire. Une moyenne de 38 ± 4%
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de BIF est associée aux particules dans l’estuaire de la rivière Neuse (Fries et al., 2006). Ainsi,

lors de la dilution en série des échantillons, l’incertitude augmente (Dufour, 2021). De même,

si la concentration est faible, l’incertitude peut augmenter. En effet, les fluctuations aléatoires

dans l’échantillon peuvent être plus prononcées, rendant les estimations moins précises (Harmel

et al., 2016). Tout cela fait qu’à chaque étape, il y a une accumulation de l’incertitude. Ces

données collectées présentent donc une incertitude de départ, difficilement quantifiable, mais

qui ajoute une variabilité dans la mesure de la concentration en indicateurs bactériens qu’il faut

avoir en tête, ce qui peut affecter la répétabilité ou la précision des mesures (Harmel et al., 2016).

En ce qui concerne la méthode d’analyse, Hamilton et al. (2005) a identifié une améliora-

tion des mesures de concentration d’E. coli observée avec les milieux de culture spécifiques aux

enzymes (quantitray Colilert ou en microplaque MUG/EC), en comparaison avec l’utilisation

des milieux de culture conventionnels. L’incertitude associée aux estimations NPP découle du

fait que cette méthode repose sur des estimations statistiques plutôt que sur une mesure di-

recte, ce qui introduit une variabilité dans les résultats (McBride et al., 2003). Les normes sont

conçues pour réduire l’incertitude dans les méthodes d’analyse microbiologique, en assurant

des procédures uniformes et fiables. Pour la détection d’E. coli et des entérocoques intestinaux

dans les eaux de surface, les normes ISO 9308-3, ISO 9308-2 et ISO 7899-1 visent à garantir

des résultats précis et reproductibles. Par ailleurs, pour les méthodes de quantification par PCR

(polymerase chain reaction), le guide MIQE (Minimum Information for Publication of Quan-

titative Real-Time PCR Experiments) offre des recommandations sur les bonnes pratiques en

PCR quantitative, afin d’assurer la rigueur et la reproductibilité des résultats obtenus par cette

méthode (Dooms et al., 2014).

9.5. Estimation de l’incertitude pour les mesures ponctuelles

L’incertitude représente la dispersion des données quantitatives qui peut être estimée

par différents paramètres statistiques. Elle représente un doute sur les résultats de la mesure

(Harmel et al., 2016). Afin d’estimer le pourcentage d’incertitude au niveau de la mesure de la

concentration en BIF, une mesure du pourcentage d’erreur relative d’échantillonnage est réalisée

(Esbensen and Wagner, 2014; Harmel et al., 2016).

Pour comprendre la part relative des sources de variabilité, il a été suggéré de calculer

l’incertitude totale en cumulant l’incertitude liée à chaque source (McCarthy et al., 2008;
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Topping, 2012). La méthode de calcul de l’incertitude globale consiste à cumuler l’ensemble

des incertitudes. L’incertitude de la concentration en E. coli dans l’échantillon (xi/xi), peut être

exprimée comme suit (McCarthy et al., 2008) :

(
∆xi
xi

)2

total

=
(

∆xi
xi

)2

échantillonnage

+
(

∆xi
xi

)2

stockage

+
(

∆xi
xi

)2

analyse

(1.1)

Pour calculer l’incertitude à chaque étape et en fonction du type de données disponibles,

les formules présentées dans le tableau 1.4 peuvent être utilisées.

Table 1.4 – Méthodes utilisées pour l’estimation de l’incertitude à partir des données disponibles (Harmel et al.,
2016).

La mesure des indicateurs de contamination pose également des problèmes pour la

gestion, car un seul échantillon ne peut capturer la dynamique spatiale et temporelle des concen-

trations bactériennes sur tout le site. De plus, le moment de l’échantillonnage peut à lui seul

influencer l’incertitude dans l’estimation des concentrations bactériennes, rendant ainsi les don-

nées peu fiables pour une gestion en temps réel et pour la modélisation en vue de prédire les

concentrations en BIF (Wyer et al., 2018).

10. Prédiction de la qualité microbiologique
La concentration en bactéries fécales dépend beaucoup des conditions météorologiques,

car en cas de fortes pluies, l’eau de surface est polluée par un apport de contaminant provenant

des ruissellements, générant ainsi une grande variabilité dans les données. L’échantillonnage

ponctuel réglementaire ne permet pas un suivi fin des variations de concentrations en BIF, car

les méthodes sont coûteuses, chronophages et laborieuses (Chen et al., 2020). Toutefois, il est
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important de surveiller et de prévoir la qualité d’eau de manière précise au moment opportun,

pour gérer les baignades au quotidien et en temps réel. L’OMS recommande l’utilisation de la

modélisation pour aider à la gestion des baignades (OMS, 2018).

Disposer de données fiables même en l’absence de mesures directes par la modélisation

est particulièrement pertinent pour des alternatives aux plans d’échantillonnage intensifs, qui

peuvent être coûteux pour les petites collectivités. En parallèle, ces connaissances peuvent servir

à informer le public en temps réel et soutenir la mise en place de systèmes d’alerte sanitaire,

comme requis par la directive européenne sur la qualité des eaux de baignade (van der Meulen

et al., 2024). Les gestionnaires utilisent le nowcasting pour décider des avis de qualité de l’eau

et des options de traitement. Le nowcasting est une technique de prévision à très court terme

(quelques heures). L’objectif est de fournir des estimations des conditions actuelles ou proches

en temps réel, à l’inverse des prévisions météorologiques classiques, le forecasting porte sur des

conditions futures à l’échelle de quelques jours. Appliqué aux domaines environnementaux, le

nowcasting utilise des modèles ou des techniques mathématiques pour évaluer rapidement les

menaces sur la qualité de l’eau, par exemple en détectant des concentrations de contaminants ou

de BIF comme E. coli dans un délai quasi-instantané (Francy et al., 2020).

A cet effet, plusieurs méthodes de modélisation ont été créées et mises en œuvre pour

surveiller et prédire la qualité de l’eau (Chen et al., 2020). Sur la base des données collectées

sur la qualité de l’eau, un modèle de prévision peut établir une relation de correspondance entre

les données de surveillance multiples et les changements des paramètres de qualité de l’eau

(Liu et al., 2019). Ces dernières années, l’établissement de modèles fiables de prévision de la

qualité de l’eau est devenu l’un des points chauds de la recherche dans le domaine de la science

environnementale de l’eau (Liu et al., 2019).

Dans la littérature scientifique, il existe une variété de modèles (statistique, déterministe,

apprentissage automatique) qui sont proposés pour prédire la qualité de l’eau (Mälzer et al.,

2016; Visser et al., 2022; Chen et al., 2020). Pour trouver l’outil de modélisation idéal, il faut

examiner différents modèles prédictifs. Les modèles statistiques et l’apprentissage automatique

sont deux approches utilisées pour analyser et interpréter des données dans le but de faire

des prédictions. Les modèles statistiques sont souvent plus faciles à interpréter car ils sont

basés sur des principes statistiques classiques et ont généralement des paramètres explicites

avec des interprétations directes. Par contre, les modèles d’apprentissage automatique, peuvent

être plus difficiles à interpréter en raison de leur nature non linéaire et de la présence de
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nombreux paramètres qui font d’eux des "boites noires" (Mälzer et al., 2016). Visser et al.

(2022) ont classé onze modèles en fonction de leurs performances prédictives et de leur niveau

de transparence. L’étude a montré qu’il existe un compromis entre les performances prédictives

et les niveaux de transparence des modèles. Les modèles d’apprentissage automatique ont les

meilleures performances en matière de prédiction mais présentent des structures de modèle

non transparentes comme les approches Random Forest et Boosting. Des régressions linéaires

simples et multiples, un modèle hydrodynamique et un modèle de réseau de neurones ont été

utilisés pour prédire la concentration en E. coli afin d’identifier les pollutions de courte durée

dans la rivière Ruhr en Allemagne (Mälzer et al., 2016). Toutefois, la performance de ces

différents modèles variait selon le jeu de données et le contexte (Mälzer et al., 2016; Chen et al.,

2020). Ainsi, le long de la rivière Ruhr (Allemagne), la performance des différents modèles

variait d’un site à l’autre (Mälzer et al., 2016). En comparaison à des modèles statistiques et

déterministes, les performances des modèles de machine learning ont démontré leur capacité à

prédire de manière fiable la concentration en E. coli (Mälzer et al., 2016). Parmi les différents

outils de modélisation, les outils d’apprentissage automatique se sont avérés capables de prédire

la qualité des eaux de surface des rivières avec une grande précision dans différentes situations

(Ghahramani, 2015; Mälzer et al., 2016; Qiu et al., 2017).

10.1. Modèles statistiques

Les modèles statistiques, notamment les régressions linéaires simples et multiples, sont

couramment utilisés pour prédire la qualité des eaux de baignade en se basant sur des corréla-

tions avec des paramètres physico-chimiques et météorologiques tels que le pH, la turbidité, la

conductivité, l’oxygène dissous et les nutriments (ammonium, nitrate et nitrite) (Mälzer et al.,

2016). Ces approches sont souvent employées pour leur transparence et leur facilité d’interpré-

tation, même si, dans certains cas, les régressions multiples peuvent présenter une précision de

prédiction limitée, car elles ne peuvent pas prendre en compte des interactions complexes entre

plusieurs facteurs et tendent à se limiter aux relations linéaires ou linéarisables (Nevers and

Whitman, 2005).

Différents modèles statistiques ont été appliqués en corrélant les concentrations bacté-

riennes avec divers paramètres de qualité de l’eau afin de prévoir les niveaux de contamination

dans les zones de baignade à la suite du calcul de corrélations linéaires entre les bactéries et
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plusieurs paramètres physico-chimiques (Nevers and Whitman, 2005; Mälzer et al., 2016). Ces

modèles sont souvent utilisés par les collectivités pour développer des systèmes d’alerte précoce

utilisant les paramètres physico-chimique et hydrométéorologiques les plus étroitement liés aux

occurrences bactériennes (Mälzer et al., 2016; Seis et al., 2018).

10.2. Modèles déterministes

Les modèles hydrodynamiques sont essentiels pour simuler les processus dynamiques de

l’eau, en intégrant divers paramètres comme le débit et les interactions biologiques et chimiques.

Ils reposent sur la résolution numérique des équations de conservation de lamasse et de la quantité

demouvement, notamment les équations deNavier-Stokesmoyennées deReynolds, qui décrivent

le mouvement des fluides (Liu, 2018). En fonction du besoin, la modélisation peut être réalisée

en 1D, 2D ou 3D. Lemodèle 1D convient aux cours d’eau linéaires, le 2D est adapté aux estuaires

ou rivières larges, et le 3D est utilisé pour des environnements complexes où les effets verticaux

sont critiques. Ces modèles permettent aussi de simuler le transport des BIF, considérées comme

traceurs passifs ou en intégrant des paramètres de mortalité, sédimentation et prédation (Liu,

2018). En région parisienne (France), plusieurs outils de modélisation déterministes sont en

cours de développement ou validés sur la Seine et la Marne. Ainsi, le modèle PROSE, appliqué

à la Seine en 2D, inclut des modules hydrauliques, de transport et biogéochimiques pour suivre la

dynamique des BIF, tout en tenant compte des paramètres de dégradation pour mieux représenter

leur comportement dans les écosystèmes fluviaux (Hasanyar, 2023). Unmodèle hydrodynamique

Telemac 3D pour la prédiction à court terme a été développé au bassin de La Villette à Paris,

s’appuyant sur la mesure des BIF en amont du site de baignade et la simulation de leur transport.

Le modèle permet l’estimation du temps de transfert des bactéries ainsi que de leur distribution

spatiale (Guillot-Le Goff et al., 2023). Un modèle Telemac 2D a été développé dans le cadre de

la démarche d’ouverture de sites de baignade dans la partie aval de la Marne et pour la Seine,

afin de procurer un outil de gestion pour les collectivités (Van et al., 2022)

10.3. Modèles basés sur l’apprentissage

10.3.1. Apprentissage automatique

De nos jours, l’apprentissage automatique, aussi appelé machine learning (ML), est de

plus en plus utilisé, dans une grande diversité d’applications. C’est une discipline donnant aux
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algorithmes la capacité d’apprendre sans qu’ils ne soient explicitement programmés (Géron,

2019). Un système d’apprentissage automatique peut s’adapter à de nouvelles données et, bien

sûr, à de gros volumes de données. Le machine learning est la science moderne qui va permettre

de découvrir des patterns (motifs et structures) dans des données historiques et d’effectuer des

prédictions en se basant sur des statistiques, des reconnaissances de pattern ou sur les analyses

prédictives (Zhu et al., 2022).

Les outils de modélisation prédictive issus de l’apprentissage automatique, ont gagné

en popularité dans de nombreux domaines de recherche, y compris celui de la modélisation

hydrologique. Cette popularité peut s’expliquer par leurs qualités de prédiction relativement

performantes (Visser et al., 2022). Des modèles prédictifs sont recommandés pour parvenir

à une gestion active du site de baignade (OMS, 2018; Wuĳts et al., 2022a). Plusieurs études

antérieures ont utilisé des modèles d’apprentissage automatique pour prédire la qualité des

eaux de surface à l’aide des paramètres physico-chimiques et hydrométéorologiques comme

variables prédictives (Di et al., 2019; Avila et al., 2018; Mälzer et al., 2016; Cyterski et al.,

2022). La modélisation prédictive des concentrations en BIF, comme E. coli, peut constituer un

complément à la surveillance réglementaire de la qualité microbiologique des eaux de surface

(Nevers and Whitman, 2005).

Les principales approches d’apprentissage sont l’apprentissage non supervisé et l’ap-

prentissage supervisé. Quand il s’agit d’algorithmes non supervisés, nous parlons souvent d’al-

gorithmes de regroupement, car les données à disposition ne seront pas étiquetées ou labellisées

(un label étant une catégorie ou classe d’appartenance), les catégories (cluster ou classes) ne sont

donc pas connues. Dans ce cas, l’algorithme va déterminer par lui-même des points similaires

entre les caractéristiques pour pouvoir créer des groupes homogènes (Raul, 2017). Cela pourrait

être par exemple un regroupement en trois catégories "bonne", "suffisante" ou "mauvaise" afin

de caractériser la qualité de l’eau. Ces modèles comprennent l’analyse en composante principale

(ACP), l’algorithme des k-moyennes (classification k-means), la classification hiérarchique et la

classification probabiliste. Les algorithmes supervisés, quant à eux, utilisent des données label-

lisées car la catégorie (cluster ou classe) est déjà connue. De ce fait, cela permet de travailler

alors avec des classes données et des exemples connus pour comprendre les patterns cachés.

Les algorithmes apprendront soit de la classification soit de la régression en tant qu’algorithmes

supervisés (Raul, 2017). Les modèles supervisés comprennent le modèle linéaire, les arbres de

décision ou DT, les supports de vecteurs (machines à vecteur de support ou SVM), les réseaux
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de neurones et les méthodes ensemblistes.

Par exemple, les arbres de régression ont été utilisés pour prédire en temps réel la

concentration en E. coli et donc la qualité microbiologique des sites de baignade dans le Sud

de la Nouvelle-Zélande (Avila et al., 2018). Cette prédiction est basée sur les valeurs passées

de précipitation, le débit et la concentration en E. coli (Avila et al., 2018). D’autres modèles

classiques d’apprentissage automatique, tels que la méthode des k-voisins les plus proches, les

réseaux de neurones ou la machine à vecteur de support, ont également été utilisés pour la

gestion et la prédiction de la qualité de l’eau (Chen et al., 2020; Qiu et al., 2017).

Il existe également l’apprentissage semi-supervisé qui combine ces deux approches, des

algorithmes d’apprentissage non supervisé sont alors utilisés pour générer automatiquement des

étiquettes, qui peuvent être introduites dans les algorithmes d’apprentissage supervisé. Enfin,

l’apprentissage par renforcement permet un apprentissage d’une succession de tâches, combiné

avec un feedback continu sous forme de récompense pour affiner la stratégie employée et ainsi

améliorer la performance du modèle. Ces deux dernières approches sont encore peu utilisées

pour la prédiction de la qualité de l’eau.

Avant d’appliquer l’apprentissage automatique, il est essentiel de procéder à l’acquisition

et au nettoyage des données et éventuellement leur labellisation (Zhu et al., 2022). La première

étape clé dans les applications d’apprentissage automatique est donc d’assurer un nettoyage de

qualité des données. Dans un premier temps, il est important d’explorer la qualité des données

en vérifiant leur exactitude, leur complétude, leur conformité, leur cohérence, leur fiabilité et

leur pertinence. Ensuite, les données sont nettoyées. Il existe deux approches : soit en retirant

les observations avec des valeurs manquantes, soit en remplaçant ces données manquantes

par des moyennes, des médianes ou en utilisant des approches probabilistes. Le nettoyage

inclut également la suppression des valeurs extrêmes (outliers), qui peuvent résulter d’erreurs

ou d’événements exceptionnels (Gong et al., 2023). Enfin, les données sont prétraitées en les

formatant, en réduisant leur taille par agrégation, en les normalisant ou en créant de nouvelles

variables dérivées des données brutes (discrétisation, indices, rapports) (Zhu et al., 2022; Gong

et al., 2023).

Une fois les données préparées, le jeu de données est divisé en deux parties : une pour

l’entraînement du modèle (apprentissage) et l’autre pour le test et la validation. Les hyperpara-

mètres du modèle sont ajustés et affinés pendant la phase d’entraînement et la performance du

modèle est ensuite évaluée à l’aide de paramètres statistiques, afin de mesurer son efficacité et

32



Chapitre 1

sa capacité à généraliser sur de nouvelles données (Jovanovic et al., 2019). Pour les applications

d’apprentissage automatique, la précision de la prédiction est généralement liée à deux aspects,

à savoir la qualité de l’ensemble de données d’apprentissage et la sélection du modèle. Parmi

ces processus, le choix de l’algorithme est crucial (Zhu et al., 2022). Après entraînement et

validation du modèle, il faut sélectionner l’algorithme approprié (Zhu et al., 2022).

Une classe de modèles d’apprentissage automatique, les méthodes ensemblistes, amé-

liore la stabilité et la précision des algorithmes d’apprentissage et représente donc un intérêt

certain pour la gestion des eaux de baignade. Ainsi, les forêts d’arbres de décision (Random

Forest ou RF) et le bootstrap aggregating (aussi appelé bagging) ont été utilisés pour le suivi de

la qualité de l’eau de la rivière Talar au nord de l’Iran (Bui et al., 2020). Ce méta-algorithme

de boosting utilise de manière répétée des sous-modèles développés séquentiellement sur un

échantillon d’entraînement, les poids de chaque observation étant ajustés au fur et à mesure de

leur développement. Ainsi, les régresseurs suivants se concentrent davantage sur les observa-

tions mal ajustées ou mal prédites (Hastie, 2009). Les modèles ensemblistes ont souvent des

performances supérieures aux autres algorithmes pour prédire les concentrations en BIF dans

les rivières (Weller et al., 2020). Ainsi, les modèles RF sont capables de mieux refléter la com-

plexité et l’hétérogénéité des systèmes d’eau douce, car ils peuvent mieux prendre en charge

les paramètres colinéaires, les données manquantes et les interactions entre paramètres (Weller

et al., 2020).

La précision de prédiction des modèles d’apprentissage automatique dépend également

des paramètres utilisés pour construire les modèles (Zhu et al., 2022). De nombreuses variables

peuvent être utilisées pour prédire les concentrations d’indicateurs fécaux bactériens (Cyterski

et al., 2022). Les variables redondantes réduiront la précision du modèle tout en augmentant sa

complexité (Zhu et al., 2022). Cyterski et al. (2022) et Nevers and Whitman (2005) ont identifié

que la pluviométrie était le paramètre explicatif le plus influent pour prédire les concentrations

en indicateurs fécaux bactériens. En effet, les analyses indiquaient la présence d’eaux usées dans

la rivière après de fortes pluies. L’oxygène dissous reflète l’état de l’écosystème aquatique et sa

capacité à soutenir les organismes aquatiques (Zhu et al., 2022). Cyterski et al. (2022) ont aussi

identifié la turbidité commeun paramètre important ayant une influence sur lesmodèles prédictifs

des indicateurs microbiens, car sa fluctuation peut être un témoin d’apport de rejets urbains, de

ruissellement et de remise en suspension des sédiments qui mobilisent des réservoirs et sources

de BIF. D’autres paramètres de qualité de l’eau, comme la température, le pH ou la concentration
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en nutriments (phosphore et azote) peuvent être utilisés comme prédicteurs dans les modèles

de la prédiction de la qualité de l’eau de surface, car ils sont présents également dans les rejets

d’eaux usées et les rejets de temps de pluie (Zhu et al., 2022). Cependant, en fonction des données

à disposition, certains paramètres vont exercer une plus grande influence que d’autres sur les

modèles prédictifs (Cyterski et al., 2022). Une amélioration de la performance des modèles avec

plus de paramètres lors de l’entraînement a également été constatée (Chen et al., 2020). Toutefois,

la sélection préalable de paramètres pertinents constitue également une stratégie d’amélioration

de la performance des modèles. En effet, les modèles peuvent avoir une faible performance

lorsque les données d’entrainement sont en quantité insuffisante ou de mauvaise qualité. Une

des stratégies pour y pallier est de réduire le besoin en données du modèle en sélectionnant

les prédicteurs les plus pertinents (Nafsin and Li, 2023; Wu et al., 2024). Une autre stratégie

est d’augmenter la quantité et la diversité des données par une approche d’apprentissage par

transfert à partir de bases de données provenant d’autres rivières de caractéristiques similaires

(Wu et al., 2024).

10.3.2. Apprentissage par transfert

La plupart des données environnementales proviennent d’une minorité de sites bien

surveillés (Willard et al., 2021). Dans des systèmes complexes et dynamiques comme une

rivière, un corpus de données encore relativement modeste ne permet pas de rendre compte

de toute la variabilité possible des paramètres mesurés. Les modèles de machine learning ne

parviennent donc pas toujours à effectuer des prédictions fiables dans toutes les situations

(Pachepsky et al., 2018; Chen et al., 2020). Il existe des solutions pour contourner ce problème

à l’aide d’outils d’apprentissage automatique comme l’apprentissage par transfert. Le transfert

des connaissances des sites surveillés vers les sites non surveillés constitue un défi, et les

méthodes avancées d’apprentissage par transfert sont encore peu utilisées pour prédire la qualité

microbiologique de l’eau (Willard et al., 2021; Wu et al., 2024).

L’apprentissage par transfert (Transfer Learning, TL) est un sous-ensemble de l’appren-

tissage automatique. Comme son nom l’indique, il regroupe l’ensemble desméthodes permettant

de transférer des connaissances acquises à partir de la résolution d’un problème, pour en traiter

un autre. Il est basé sur la création de modèles d’apprentissage sur des données et ces modèles

peuvent être réutilisés sur des jeux de données plus petits (Willard et al., 2021).
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Figure 1.2 – Le processus de fonctionnement de l’apprentissage par transfert pour un modèle donné (Peng et al.,
2022).

Le modèle proposé par Peng et al. (2022) est composé de deux parties principales (Figure

1.2) :

- Uneméthode de prédiction est réalisée à partir d’un jeu de données composé de plusieurs

stations de mesures afin d’obtenir le modèle source (noté transformer).

- Un transfert des connaissances (modèle de prédiction) est réalisé vers le nouveau jeu

de données cible.

De plus, l’apprentissage par transfert est avantageux dans le sens où la création d’un

modèle utilise beaucoup de ressources (Uddin et al., 2019; Shahid Iqbal et al., 2018). En

utilisant des modèles pré-entraînés selon le contexte, nous pouvons pallier cemanque de données

et réduire les ressources utilisées (Dipanjan, 2018). Les informations obtenues sur la dynamique

d’un lac pourraient par exemple être transférées à d’autres lacs similaires (Willard et al., 2021).

Dans le cas des écosystèmes ayant des caractéristiques physiques et une dynamique de la qualité

de l’eau similaires ou même très proches, cela pourrait permettre le transfert stratégique de

modèles spécifiques à un site bien surveillé afin de faire des prédictions dans des systèmes

moins surveillés (Willard et al., 2021; Naloufi et al., 2021).

Des modèles de prédiction de la qualité de la rivière Haihe (Chine) ont été testés (Peng

et al., 2022). L’étude a permis d’identifier de meilleurs résultats en utilisant l’approche d’ap-

prentissage par transfert à partir des données de 10 stations sur la rivière Huaihe (Chine) pour

le pH et l’oxygène dissous. Par contre, pour l’azote ammoniacal, les modèles pré-entrainés par
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apprentissage par transfert étaient moins performants que ceux entrainés sans apprentissage par

transfert. Ce phénomène s’appelle l’apprentissage négatif. La perte de connaissance suite à un

apprentissage par transfert peut être due à une similarité limitée entre les sites des deux bases

de données utilisées. Le transfert négatif est encore peu considéré et de ce fait la connaissance

sur ce type de résultat est encore manquante (Wu et al., 2024).

10.3.3. Apprentissage fédéré

L’apprentissage fédéré (Federate Learning, FL) est une autre application, analogue à

l’apprentissage par transfert. Il s’agit d’entraîner plusieurs modèles de différentes entités loca-

lement et de créer un modèle global basé sur les mises à jour des modèles locaux (Lo et al.,

2021). L’apprentissage fédéré permet à plusieurs appareils de former en collaboration un modèle

partagé tout en conservant les données locales à chaque appareil (Vellingiri et al., 2023). Ainsi,

l’apprentissage fédéré va utiliser les paramètres des différents modèles locaux pour créer un

modèle centralisé qu’il distribuera à chacune des entités, sans diffuser les données sources (Lo

et al., 2021). Avec cette approche, une précision de prédiction de 87% pour l’évaluation de

la qualité d’une rivière au sud de l’Inde a été obtenue (Vellingiri et al., 2023). Dahane et al.

(2024) ont également utilisé l’apprentissage fédéré pour rendre les données plus privées dans le

contexte de l’analyse de la qualité de l’eau pour la baignade en rivière.

L’approche d’apprentissage fédéré peut également être utilisée dans d’autres systèmes

innovants de gestion de la qualité de l’eau. Park et al. (2021) présentent un réseau sophistiqué

d’apprentissage fédéré intégrant des capteurs. Ce réseau exploite des données de qualité de l’eau

en temps réel, géographiquement distribuées, afin d’améliorer la précision des prédictions et de

proposer une approche proactive.

10.3.4. Réseau de neurones

La dynamique des BIF dans les habitats aquatiques est causée par un certain nombre

de facteurs environnementaux qui peuvent avoir une influence sur la distribution et le devenir

des microorganismes (Devane et al., 2018). De ce fait, il serait intéressant de disposer d’un

modèle prenant en compte les conditions des jours précédents. Nous pourrions ainsi utiliser

des réseaux de neurones qui prennent en compte les séries temporelles (Liu et al., 2019). Les

réseaux de neurones utilisent une cascade de couches multiples d’unités de traitement non

linéaires pour l’extraction et la transformation des caractéristiques, ce qui fait qu’ils sont adaptés
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à l’analyse et à l’extraction de connaissances utiles à partir de grandes quantités de données et de

données collectées à partir de différentes sources (Shinde and Shah, 2018). Parmi les modèles de

réseaux de neurones, il y a les Long Short Term Memory (LSTM) présentés par Hochreiter and

Schmidhuber (1997). Ce sont des modèles dits récurrents qui utilisent des données qui doivent

être sous la forme de séries temporelles. Les LSTM ont la capacité d’apprendre les dépendances

à long terme. Avec cette approche, l’évolution de la pollution pourrait être prise en compte lors

de la modélisation (Shinde and Shah, 2018). Les chercheurs ont vérifié que les LSTM peuvent

traiter des séries temporelles de données sur la qualité de l’eau qui sont fluctuantes et non

saisonnières (Zhu et al., 2022).

Les résultats de l’étude de Liu et al. (2019) révèlent le potentiel de l’application des

LSTM et de l’apprentissage profond pour prédire la qualité de l’eau. Les valeurs prédites par

leur modèle et les valeurs réelles étaient en accord et révélaient avec précision la tendance

future de la qualité de l’eau (Liu et al., 2019). Les modèles de réseau de neurones vont se

baser sur les données pour créer les modèles avec une extraction des caractéristiques de ces

données et apprendre à partir de ces données (Shinde and Shah, 2018). Par exemple, la précision

d’un modèle LSTM pour la prédiction des concentrations en oxygène dissous mesurées par une

station de surveillance automatique était meilleure que celle du SVR (support vector regression)

qui, à long terme, devenait inexact avec un ensemble de données d’apprentissage relativement

petit (Liu et al., 2019). Au niveau de l’étude de Mälzer et al. (2016), les réseaux de neurones

ont donné de bons résultats pour prédire les concentrations en E. coli pour la plupart des sites

le long de la rivière Ruhr (Allemagne) à l’exception d’une station où la régression linéaire et

la régression multiple donnaient de meilleurs résultats. Ce résultat montre que les réseaux de

neurones sont suffisamment versatiles pour s’adapter à des sites aux caractéristiques variées.

11. Optimisation de la collecte de données
Cependant, en raison de la petite taille de la plupart des jeux de données disponibles pour

le suivi de la qualité des eaux de surface, la performance des modèles peut être faible (Chen

et al., 2020; Ghahramani, 2015). En effet, l’entraînement et le test des modèles prédictifs des

concentrations en indicateurs de contamination fécale nécessitent des données de haute précision

qui sont difficiles et coûteuses à collecter (Jovanovic et al., 2019). Les données physico-chimiques

et hydrométéorologiques sont souvent utilisées comme données d’entrée dans les modèles de

prédiction de la concentration des BIF, car la mesure en temps réel de ces paramètres fournit
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des données de haute qualité à faible coût (Nnane et al., 2011; Bui et al., 2020; Banda and

Kumarasamy, 2020). Toutefois, il reste nécessaire d’entraîner et de valider le modèle avec des

données de concentrations en BIF, données qui sont acquises au mieux une fois par jour et plus

généralement une fois par semaine. La détermination de la taille d’échantillonnage minimale et

de la stratégie d’échantillonnage appropriée requises pour la construction, l’entraînement et le

test des modèles est donc cruciale (OMS, 2018).

Plusieurs stratégies visant à améliorer l’ensemble des données d’entrée des modèles

d’apprentissage automatique existent, cependant leur utilité pour optimiser l’acquisition de

données pour la prédiction de la qualité de l’eau doit encore être évaluée. Premièrement, les

observations les plus pertinentes pendant le processus d’apprentissage des modèles pourraient

être identifiées afin de maximiser le gain d’information ou bien par l’augmentation des données

(Qian et al., 2020). Ce processus peut être effectué de différentes manières, notamment pour les

mesures avec des donnéesmanquantes, en utilisant desmoyennes ou desmédianes, ou en utilisant

une combinaison de méthodes d’apprentissage automatique et de complétion matricielle pour

compléter les donnéesmanquantes (Zhu et al., 2022). Deuxièmement, en comblant les lacunes du

jeu d’entraînement avec des données supplémentaires via des méthodes comme l’apprentissage

actif (Bouneffouf, 2016) ou l’apprentissage par transfert (Wu et al., 2024). Troisièmement, en

déployant un réseau de capteurs à faible coût sur le site de baignade, cela permettrait de fournir

suffisamment de données d’entrée pour alimenter les modèles d’apprentissage automatique

(KnowFLow, 2021).

Afin de fournir une résolution spatiale et temporelle suffisante et de réduire le coût

du suivi, une surveillance avec des capteurs in situ combinés à l’apprentissage automatique

pourrait aider à optimiser l’effort d’échantillonnage (Carvalho et al., 2019; Whelan et al., 2020).

Par exemple, dans le cas de la surveillance d’un site de baignade, la mise en place d’un réseau de

capteurs et d’appareils de mesure enzymatique en temps quasi réel fournirait suffisamment de

données à la fois pour les BIF (mesure enzymatique) et pour les prédicteurs (capteurs physico-

chimiques) pour modéliser la qualité microbiologique de l’eau et améliorerait également la

quantité et la qualité des données (Pule et al., 2017).
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11.1. Apprentissage actif

La collecte de données sur la qualité de l’eau peut être coûteuse en termes de temps,

d’argent et de ressources. En effet, le coût important en main-d’œuvre humaine et en matériel

pour collecter les données représente un frein (Jia et al., 2021). La faiblesse dans le jeu d’entraî-

nement pourrait être déterminée afin d’identifier les classes de données minoritaires dans le jeu

de données pour chaque prédicteur. À partir de cette information, trois stratégies sont possibles

pour réduire le déséquilibre dans le jeu de données : i) soit d’utiliser un algorithme qui génère

des données synthétiques pour les classes minoritaires, ii) soit d’utiliser un transfert à partir d’un

jeu de données d’un site similaire pour amender les classes minoritaires, iii) soit d’optimiser

l’échantillonnage sur le terrain pour renforcer ces classes minoritaires (Krishnan et al., 2024;Wu

et al., 2024). Ainsi, les données supplémentaires nécessaires pour améliorer les performances

du modèle pourraient être ciblées précisément (Bouneffouf, 2016). L’apprentissage actif est une

méthode qui offre une certaine flexibilité pour identifier les instances qui doivent être ajoutées

au jeu d’entraînement. L’objectif est d’améliorer l’efficacité de l’apprentissage en utilisant de

manière sélective les données les plus informatives pour l’entraînement du modèle (Cacciarelli

et al., 2022).

Figure 1.3 – Processus d’apprentissage actif (Russo et al., 2020).

Le but est de sélectionner activement les données de manière à apprendre une bonne

hypothèse avec moins d’entraînement. La stratégie populaire consiste à utiliser l’échantillonnage

d’incertitude pour identifier le point où la prédiction est incertaine dans le modèle (Bouneffouf,
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2016). En effet, les efforts d’échantillonnage peuvent être considérablement réduits en utilisant

l’approche d’échantillonnage d’incertitude (Russo et al., 2020). Une fois les données ajoutées,

le jeu de données est actualisé et utilisé pour réentraîner le modèle (Figure 1.3). Cette opération

peut être répétée, en fonction des propriétés des données, jusqu’à ce que le modèle atteigne des

performances satisfaisantes (Russo et al., 2020).

En optimisant les ressources de collecte de données grâce à l’identification des informa-

tions les plus pertinentes, il serait possible d’améliorer la précision du modèle. Cela permettrait

de réduire la quantité de données à collecter tout en augmentant la fiabilité des prédictions (Cac-

ciarelli et al., 2022). Dans le domaine de la surveillance environnementale, les applications de

détection d’anomalies permettront de développer les outils de gestion de la qualité (Russo et al.,

2020). Chen et al. (2020) ont montré que de meilleures performances pour la prédiction de la

qualité de l’eau pouvaient être obtenues après avoir augmenté le nombre de paramètres d’entrée

pour la modélisation et les données d’entraînement pour un ensemble de modèles d’apprentis-

sage automatique testés. Avec une augmentation des données d’entraînement de 1% à 10%, une

amélioration des performances de prédiction des modèles a été constatée jusqu’à 22,76%. Ce-

pendant, cette amélioration était limitée lorsqu’une augmentation aléatoire des données jusqu’à

100% était utilisée (Chen et al., 2020). Cela illustre bien l’importance d’augmenter les données

de manière efficace en sélectionnant les données à ajouter. Identifier la faiblesse de performance

du modèle pourrait de ce fait être envisagé pour mettre en place un système d’alerte qui pointe

sur les paramètres et sur les données nécessaires pour renforcer la prédiction du modèle (Qian

et al., 2020; Jiang et al., 2020).

11.2. Collecte automatisée de données

Du contexte d’apprentissage actif résulte le problème de la collecte des données car les

décisions d’échantillonnage doivent être prises immédiatement après l’observation du déséqui-

libre dans le jeu de données qui génère une performance médiocre du modèle. Une méthode de

suivi de la qualité de l’eau consisterait à déployer des systèmes de mesures à haut débit de la

concentration en E. coli. Les systèmes automatisés ou semi-automatisés permettant l’estimation

des BIF en temps quasi réel sont relativement chers. Ils sont basés sur de la mesure enzymatique

(systèmes automatisés ColiMinder (ViennaWater Monitoring, VWM) et BACTcontrol (Bionef)

par exemple (Cazals et al., 2020)), sur de la culture bactérienne avec une détection entre 2 et 12 h
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(par exemple le système ALERT (Fluidion) (Angelescu et al., 2019)) ou la mesure de la matière

organique urbaine par spectre d’émission-excitation (sondes Proteus-Instruments, Fluocopee

(SIAAP) ou BacTrack (NKE) (Bouleau et al., 2024)) qui peuvent être utilisées pour la gestion

quotidienne de la qualité de l’eau en rivière. De plus, pour l’acquisition des données des pré-

dicteurs physico-chimiques, des capteurs à haute résolution peuvent être utilisés et positionnés

à des emplacements stratégiques en amont et au niveau du site de baignade. Cependant, un de

ces dispositifs peut coûter plusieurs dizaines de milliers d’euros, ce qui rend leur acquisition

difficile pour les petites administrations (Tatari et al., 2016). En outre, même des villes plus

riches comme Paris limitent la quantité d’équipements à utiliser et leur couverture géographique

en raison des coûts élevés de maintenance de ces dispositifs et des analyses de laboratoire asso-

ciées. Ces problèmes peuvent réduire considérablement le nombre de données disponibles pour

la modélisation. En raison des changements dynamiques complexes des systèmes fluviaux au fil

du temps, le moyen le plus efficace de gérer les rivières est de surveiller la qualité de l’eau en

temps réel ou de faire des prédictions basées sur ces données en temps réel (Zhu et al., 2022; Jia

et al., 2021).

Une façon d’améliorer la quantité de données pour l’entraînement consiste à déployer

sur le site de baignade et en amont, un grand nombre de capteurs à faible coût qui viennent

compléter les capteurs physico-chimiques à haute résolution en offrant une couverture et un

maillage spatial accrus. La faiblesse de la qualité de la donnée acquise par ces capteurs bas-coût

peut être corrigée par la haute résolution spatiale et temporelle en tirant parti d’un déploiement

d’un réseau dense de capteurs (Wang et al., 2019a). Chaque capteur individuel peut présenter

une marge d’erreur légèrement supérieure à celle des équipements coûteux de haute précision,

mais la multitude de capteurs permet de construire un réseau dense qui, en moyenne, est

capable de fournir suffisamment d’informations pour les modèles d’apprentissage automatique

(KnowFLow, 2021). Cette réduction de la qualité peut également être atténuée par l’association

avec des dispositifs de haute précision, qui aideront à la calibration des capteurs à bas coût, afin de

fournir des résultats précis (Abegaz et al., 2018). Différentes sondes pour différents paramètres

peuvent être associées et utilisées pour former des systèmes de capteurs multiparamétriques

(KnowFLow, 2021; Wang et al., 2019a). De nombreuses initiatives ont vu le jour pour mettre en

place un réseau de capteurs à faible coût (Hong et al., 2021; Trevathan et al., 2021; Wong et al.,

2021; de Camargo et al., 2023). Cheniti et al. (2023) ont testé leur système de surveillance de la

qualité de l’eau basé sur des capteurs Arduino à court terme pendant 24 h dans l’eau du robinet.
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D’autres études Gowri et al. (2023); Sekhar et al. (2023); Bogdan et al. (2023), ont également

développé des systèmes de surveillance de la qualité de l’eau pour la baignade, avec une mesure

des paramètres physico-chimiques.

Pour l’ensemble des capteurs se pose ensuite le problème de leur étalonnage, leur entretien

et de la stratégie de déploiement. Il n’existe pas de lignes directrices sur les meilleures pratiques

pour l’étalonnage et la validation des réseaux de capteurs à faible coût. De nombreuses initiatives

ont vu le jour pour mettre en place un réseau de capteurs en temps réel à faible coût, mais peu

d’entre elles se concentrent sur la fiabilité et la viabilité d’une utilisation à long terme (Hong

et al., 2021). Cemanque de validation rend les résultats obtenus moins fiables (de Camargo et al.,

2023). Un prototype de surveillance de la qualité de l’eau basé sur la technologie Arduino a été

développé par Hong et al. (2021) composé de 4 sondes (pH, température, turbidité et solides

dissous totaux (TDS)) dans un petit ruisseau artificiel de l’Université Brunei Darussalam pendant

une courte durée de 20 jours. Il a été constaté que le système fonctionnait de manière fiable,

mais il était dépendant de l’intervention humaine. Wong et al. (2021) ont développé un système

de surveillance de la qualité de l’eau qui mesure la turbidité et les niveaux d’eau. Cependant,

des erreurs causées par le dépôt de débris et l’encrassement biologique sur les capteurs ont été

identifiées. Trevathan et al. (2021) ont souligné également la nécessité d’un entretien régulier et

d’unmécanisme de nettoyage des capteurs. Comme lemontrent ces études, pour mettre en œuvre

les systèmes de surveillance de la qualité de l’eau, des tests sont nécessaires avant installation

pour déterminer la validité des données afin de permettre un bon suivi de la qualité.

Enfin, un tel système pourrait bénéficier d’une observation en temps réel pour faciliter

l’utilisation par le grand public et les administrations. Cela pose le défi de déterminer quand et où

nous devrions déployer des instruments de mesure (par exemple, des capteurs in situ) pour col-

lecter des données de manière efficace (Jia et al., 2021). Pour améliorer la collecte de données, il

ne suffit pas d’avoir plus de capteurs mais une étude doit être menée concernant leur déploiement

pour la construction d’un réseau adapté (Senouci and Mellouk, 2016). Actuellement, certains

travaux, comme Ciaponi et al. (2018); Ramesh et al. (2017), ont abordé cette question dans le

contexte de la surveillance de la qualité de l’eau et ont proposé différentes méthodologies pour

le placement des capteurs. La décision de placement dépendra de la technologie de transmission

et de la durée de vie de la batterie des appareils. Il est donc conseillé d’utiliser des réseaux

étendus de faible puissance (LPWAN). Les technologies de communication comme LoRaWAN

ou Sigfox, couramment utilisées dans le contexte de l’IdO, sont capables de diffuser les données
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en temps réel avec une transmission à faible coût énergétique et une longue portée (Jiang et al.,

2020). La perte de données due à la distance de communication limitée entre le capteur et la pas-

serelle est également un problème crucial (Huan et al., 2020). En outre, les réseaux de capteurs

à faible coût publiés sont généralement testés sur un type limité de qualité de l’eau, ce qui fait

que la gamme de performances et les limites de détection des capteurs sont rarement vérifiées.

Dans une étude récente, de Camargo et al. (2023) ont souligné que des tests supplémentaires

sont nécessaires pour déterminer la validité des données et l’opérabilité des systèmes recom-

mandés afin de mettre en œuvre sur le terrain une surveillance continue et fiable de la qualité

de l’eau. Occasionnellement, l’utilisation de la technologie 5G peut également être intéressante

si la quantité de données est importante (Rahimi et al., 2018). Bien que les passerelles LoRa

soient économes en énergie pour des transmissions limitées, leur capacité de transmission des

données est restreinte. À l’inverse, la 5G permet des échanges de données plus importants, mais

elle consomme davantage d’énergie.

Figure 1.4 – Cadre basé sur l’IdO pour la surveillance de la qualité de l’eau (Rahu et al., 2024).

Les technologies d’IdO peuvent répondre aux besoins de surveillance de la qualité de

l’eau en temps réel et à grande échelle (Figure 1.4). Les méthodes de mesure en temps réel

utilisent les informations contextuelles spatiales et temporelles pour identifier des échantillons

représentatifs dans un cadre de renforcement de la base de données (Jia et al., 2021). Du fait

d’une détection en temps réel, ces outils peuvent également être utilisés pour suivre spatio-

temporellement la migration des contaminants qui sont difficiles à détecter à l’aide de méthodes

conventionnelles avec des mesures ponctuelles, en fonction de leurs limites de détection (Zhu

et al., 2022). Un système de surveillance de la qualité de l’eau basé sur la technologie IdO

mesurant la turbidité a été réalisé par Huan et al. (2020). Cependant, à mesure que la distance
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de communication entre le capteur et la passerelle augmentait, le système subissait des pertes

de paquets de données.

Couplés avec les modèles d’apprentissage automatique ces systèmes de mesure permet-

traient de construire un dispositif de suivi en temps réel de la qualité de l’eau et ainsi minimiser

les risques sanitaires (Salam, 2020). En complément, utiliser ces données pour faire la prédiction

en temps réel serait un atout considérable pour une gestion continue de la qualité de l’eau (Zhu

et al., 2022). La mise en place de réseaux de capteurs pour suivre la qualité des eaux de baignade

urbaines peut également aider à répondre à d’autres besoins en matière de qualité de l’eau, tels

que les ressources en eau potable, la connaissance de l’état écologique, permettant une gestion

intégrée des masses d’eau et de leurs usages multiples (Wuĳts et al., 2022b). Les paramètres

utilisés pour le suivi de la qualité microbiologique de l’eau, tels que la concentration en BIF ou

en pathogènes, ne peuvent pas être mesurés directement par des capteurs in situ, car ces derniers

ne sont pas optiquement actifs ou ne disposent pas de données hyperspectrales à haute résolution

spatiale. Cependant, ces paramètres peuvent être estimés indirectement à l’aide d’autres données

plus facilement mesurables (comme leur enzymes, la fluorescence des substances protéiniques,

la température de l’eau, les nutriments, la turbidité, la conductivité, l’intensité des événements

pluvieux et d’autres paramétres physico-chimiques) (Zhu et al., 2022; Cha et al., 2016; Passerat

et al., 2011; Dueker et al., 2017; Bouleau et al., 2024). L’apprentissage automatique basé sur

l’expérience permettait une optimisation sophistiquée des prédictions (Zhu et al., 2022). Le

système d’alerte sur la donnée pourrait être alimenté par un réseau de capteurs permettant un

suivi en temps réel des différents paramètres de l’eau (Luccio et al., 2020). Cela permettrait de

fournir des recommandations au gestionnaire en indiquant de manière efficace quand l’échan-

tillonnage manuel est nécessaire. En combinant la modélisation avec une collecte de données

via des capteurs de surveillance en temps réel, cela offre une possibilité prometteuse d’une

utilisation opérationnelle de capteurs pour la surveillance de la qualité de l’eau et la prise de

décision (Sagan et al., 2020).
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Chapitre 2 : Optimisation de la collecte de

données pour la modélisation de la qualité

microbiologique des eaux de surface

1. Introduction
Les épisodes de canicule et l’essor des activités récréatives aquatiques dans les grandes

villes ont renforcé l’intérêt pour l’ouverture ou la réouverture de zones de baignade dans des

rivières urbaines dans les mégapoles (e.g. Paris, Berlin, Londres...). Cependant, cette tendance

expose les baigneurs à des risques sanitaires liés aux pathogènes présents dans les eaux de

surface, notamment en raison des rejets d’eaux usées, du ruissellement pluvial et des excréments

d’animaux (Soller et al., 2010; Passerat et al., 2011; Ahmed et al., 2019b). Afin de minimiser

ces risques, il est essentiel de surveiller la qualité microbiologique de l’eau, principalement à

travers la mesure d’indicateurs fécaux tels que E. coli et les entérocoques intestinaux (OMS,

2018; Commission européenne, 2006). En Europe, cette surveillance repose sur des analyses en

laboratoire, mais leur fréquence et leur coût limitent l’efficacité de la gestion en temps réel des

sites de baignade (Mälzer et al., 2016; Jovanovic et al., 2019).

Dans ce contexte, les techniques de modélisation, et en particulier les outils d’apprentis-

sage automatique, apparaissent comme une solution prometteuse pour prédire la qualité de l’eau

et anticiper les épisodes de pollution de courte durée (Ghahramani, 2015; Avila et al., 2018;

Chen et al., 2020). Ces modèles permettent d’analyser de grandes quantités de données issues

de paramètres physico-chimiques, météorologiques et microbiologiques. Toutefois, leur perfor-

mance est fortement influencée par la taille et la précision des bases de données disponibles. Les

jeux de données limités, souvent dus à des échantillonnages peu fréquents et/ou à des données

coûteuses à acquérir, réduisent la capacité des modèles à fournir des prédictions fiables (Banda

and Kumarasamy, 2020; Ghahramani, 2015). Dans ce chapitre, le premier et le deuxième article

explorent les approches d’apprentissage automatique pour prédire la qualité microbiologique

des eaux de surface en Seine et en Marne, en optimisant l’effort d’échantillonnage. Ces études
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mettent en lumière différentes méthodes de machine learning, afin d’identifier celles qui offrent

les meilleures performances dans la prédiction des contaminations microbiennes des eaux de

surface, en mettant l’accent sur l’optimisation de l’effort d’échantillonnage et la précision des

prévisions. Ce type d’approche est de plus en plus pertinent face à la complexité croissante des

sources de pollution, tant naturelles qu’anthropiques. L’apprentissage actif permet d’identifier

les données les plus informatives à ajouter au jeu d’entraînement, en se concentrant sur les

zones d’incertitude du modèle (Bouneffouf, 2016). Cette approche permet d’apprendre plus

efficacement avecmoins de données, enmaximisant la pertinence de chaque échantillon collecté.

Pour optimiser la collecte de données et améliorer les performances des modèles, plu-

sieurs stratégies peuvent être mises en place. En parallèle de apprentissage actif, le déploiement

de réseaux de capteurs à faible coût peut également renforcer la densité des données disponibles,

même si chaque capteur présente une marge d’erreur plus élevée que les équipements de labo-

ratoire (KnowFLow, 2021; Wang et al., 2019a). Le troisième article de ce chapitre explore la

stabilité à long terme des systèmes basés sur l’IdO pour la surveillance continue des paramètres

physico-chimiques de l’eau. Il met en avant les avantages d’un réseau de capteurs à faible coût

pour assurer une couverture spatiale et temporelle accrue. Toutefois, il souligne également les

défis liés à la fiabilité des données, notamment en raison de la dérive des capteurs et des besoins

de maintenance régulière.

L’intégration de l’apprentissage actif et de réseaux de capteurs dans un cadre de modé-

lisation permettra non seulement d’optimiser la collecte de données, mais aussi d’améliorer la

précision des modèles de prédiction microbiologique. Ces outils constituent un atout précieux

pour les gestionnaires des sites de baignade urbains, en leur offrant des moyens plus efficaces

de surveiller et d’anticiper la qualité de l’eau, notamment dans des rivières comme la Seine et

la Marne, où des projets ambitieux de réouverture de zones de baignade sont en cours (Noury

et al., 2018).

En combinant ces différentes perspectives, ce chapitre vise à illustrer les avancées tech-

nologiques récentes dans la surveillance de la qualité de l’eau. Cela offre une vision globale des

solutions pratiques et accessibles pour surmonter les défis complexes de la gestion des ressources

hydriques dans les environnements urbains.

46



Chapitre 2
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Abstract : Exposure to contaminated water during aquatic recreational activities can lead

to gastrointestinal diseases. In order to decrease the exposure risk, the fecal indicator bacteria

Escherichia coli is routinely monitored, which is time-consuming, labor-intensive and costly. To

assist the stakeholders in the daily management of bathing sites, models have been developed to

predict the microbiological quality. However model performances are highly dependant on the

quality of the input data which are usually scarce. In our study, we proposed a conceptual frame-

work for optimizing the selection of the most adapted model, and to enrich the training dataset.
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This frameword was successfully applied to the prediction of Escherichia coli concentrations in

the Marne River (Paris Area, France). We compared the performance of six machine-learning

(ML) based models : K-nearest neighbors, Decision Tree, Support Vector Machines, Bagging,

Random Forest and Adaptive boosting. Based on several statistical metrics, the Random Forest

model presented the best accuracy compared to the other models. However, 53.2±3.5% of the

predicted E. coli densities were inaccurately estimated according to the mean absolute percen-

tage error (MAPE). Four parameters (temperature, conductivity, 24 h cumulative rainfall of the

previous day the sampling and the river flow) were identified as key variables to be monitored

for optimization of the ML model. The set of values to be optimized will feed an alert system

for monitoring the microbiological quality of the water through combined strategy of in situ

manual sampling and the deployment of a network of sensors. Based on these results we propose

a guideline for ML model selection and sampling optimization.

Keywords : Water quality prediction ; Machine learning ; Escherichia coli concentration ;

Optimized sampling ; River monitoring

2.1. Introduction

Worldwide the heat wave episodes have recently intensified the development of aquatic

recreational activities in megapoles, increasing the interactions between citizens and freshwater

in urban context (Jang, 2016). Indeed, many cities such as Paris, London or Berlin promote

the opening of bathing areas and organize open water swimming competitions in their rivers.

However, the development of these activities increases the risk of exposure of bathers to water-

borne pathogens, which could result in gastrointestinal diseases, eye infections or skin irritations

(Davies-Colley et al., 2018; Soller et al., 2010; Mallin et al., 2000).

In highly urbanized areas, the microbiological quality of surface waters is strongly

degraded by different diffuse and point sources of contamination that may bring high pathogen

flow into the rivers (Passerat et al., 2011;Dueker et al., 2017;Droppo et al., 2009;Garcia-Armisen

and Servais, 2009). Fecal contaminations due to sewer discharges, animal feces and rain runoff

are among the main factors impacting the quality of surface waters (Ahmed et al., 2019b). As the

climate change is expected to modify precipitation patterns, with higher frequency of extreme

events, these new conditions should negatively impact the water quality (Whitehead et al., 2009).

Currently, the water quality is mainly assessed using a collection of water samples for biological
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and chemical analysis in the laboratory and/or highly accurate sensors at fixed position. The

regulatory monitoring of the bathing waters is based on the enumeration of culturable fecal

indicator bacteria, Escherichia coli and intestinal enterococci (e.g. European Bathing directive

2006/7/EC). Such surveys are costly, time-consuming and labor-intensive, as a consequence

weekly or montly sampling strategies are routinely implemented with additional event-based

sampling (WHO, 2018; Weiskerger and Phanikumar, 2020).

For the daily management of urban bathing sites, models could also be used instead of

collecting additional samples to check the microbial quality of the water after each short-term

pollution event (WHO, 2018). However building, training and validation of predictive models

require high accuracy data that are difficult and expensive to collect (Jovanovic et al., 2019).

Environmental stressors such as physico-chemical, hydrological and meteorological variables

are often used as input data in models to predict the concentration of fecal indicator bacteria

since real-time measurement of these parameters provides cost effective and high quality data

(Nnane et al., 2011; Bui et al., 2020; Banda and Kumarasamy, 2020). Among the different

predictive models, machine-learning tools have been proved to predict surface water quality in

rivers with high accuracy in different situations, including traditional machine-learning models

or ensemblist methods (Ghahramani, 2015; Mälzer et al., 2016; Qiu et al., 2017). However due

to the small size of most stakeholder datasets, the performance of the model can be low (Chen

et al., 2020; Ghahramani, 2015). The determination of the minimum sampling size and the

appropriate sampling strategy required for building, training and validation of models is thus

crucial (WHO, 2018).

Several strategies to improve the input dataset of machine learning models exist, however

their usefulness for rationalizing the data acquisition for water quality prediction still needs to

be evaluated. First, the most relevant observations during the learning process of the models

could be identified in order to maximize the information gain (Qian et al., 2020). Second, the

weakness in the training dataset could be determined in order to identify which and how much

additional data are needed to improve the model performance. For instance, active learning

is a method that gives flexibility to identify which instances need to be added to the training

set (Zhu et al., 2017). Another popular strategy is to use uncertainty sampling, to identify the

point where the prediction is uncertain in the model (Bouneffouf, 2016). Third, another way to

enhance the amount of training data is to deploy on site a large number of low cost sensors.

Each individual sensor may present a slightly greater error margin than the costly high precision

49



Chapitre 2

equipment, however the multitude of sensors allows to build a dense network which in average is

capable of providing enough information for the machine learning models (KnowFLow, 2021).

However, enrichment of training datasets with high quality data of extreme events is particularly

important in the context of climate change with the expected rise of temperature and increase

in the frequency and intensity of storm events (Weiskerger and Phanikumar, 2020). Therefore,

the objective of this study is to explore these three strategies to improve the input datasets

for training and testing machine learning models, particularly study the relevance of the active

learning strategy. The ultimate goal is to provide a conceptual framework and an operating mode

to assist the stakeholders in the daily management of the bathing sites. The framework thus

includes i) a guideline for selecting from a toolbox of six machine-learning models, the one

most adapted to their bathing site context and ii) a strategy to improve the training and testing of

their model via the sub-optimization of the sampling strategies. The Marne River (Paris Area,

France) was considered as a use case. Indeed, several municipalities wish to open bathing sites

on the border of the Marne river by 2022. Environmental stressor dataset used to predict E. coli

concentrations were acquired from the Syndicat Marne Vive.

Using this database, we tested the following strategy :

- 1) We propose to compare the performance of six machine-learning models, including

three traditional models and three ensemblist models, to predict the concentrations of the fecal

indicator bacteria Escherichia coli. To train and test the models, meteorological data and river

flow data should be aggregated with physico-chemical data.

-2) For the chosen model, we propose to set up an alert system on the performance of

the model in order to optimize the data collection. This alert should consist in identifying under

which conditions the model fails to make the prediction and thus alerting the managers to carry

out on site analysis in order to enrich the database.

- 3) The usefulness of a network of low cost sensors for sampling optimization as a

complementary strategy to improve the dataset is discussed.
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2.2. Materials and methods

2.2.1. Study site and water quality data collection

Figure 2.1 – Marne River water quality monitoring stations. The light grey stars indicate the SMV sampling
stations and the dark grey stars indicate the location of the rain gauges used.

Frommid-June to mid-September for 5 years (2015, 2017-2020), samplings were carried

out weekly or bi-weekly by the Syndicat Marne Vive (SMV) on 18 stations (SMV0 to SMV17)

in the lower Marne River (France) (Figure 2.1). For each sampling site the following parameters

were measured : E. coli concentrations (Most Probable Number or MPN/100 mL), temperature

(°C), turbidity (FTU), conductivity (µS/cm), Total Suspended Solids or TSS (mg/L), NH+
4 (mg

of N/L), Total Kjeldahl Nitrogen or TKN (mg of N/L), number of dry days after the last rainfall,

24 h cumulative rainfall of the day (mm), 24 h cumulative rainfall of the previous day (mm)

and the river flow (m3/s) measured at Gournay-sur-Marne (Paris area, France). The sampling

protocole for surface water was carried out according to the French standard FD T 90-523-1

(2008) for physicochemical parameters and according to the 2006/7/EC directive for E. coli

concentrations. Microbiological and physico-chemical measurements were respectively carried

out by Aquamesures and Eurofins (2015) and the Val de Marne Departmental Environmental

Health Laboratory (2017-2020) following the French standard methods NF EN ISO 9308-3, NF

EN ISO 7027-1, NF EN 27888, NF EN 872, NF T 90-015-2, NF EN 25663.

Rainfall data were obtained from the network of rain gauges of the Departmental Councils

of Val-de-Marne (station CHAM23, MAIS32), Seine-Saint-Denis (station NE-17) and the City
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of Paris (station PL14). For each sampling point, themeteorological data of the nearestmeasuring

station were used. For the year 2020, rainfall data of the stations SMV5 to SMV13 were not yet

available. Flow data measured at the Gournay-sur-Marne station were retrieved from the Banque

Hydro (http://www.hydro.eaufrance.fr/).

2.2.2. Data preparation

A total of 1696 measures were obtained after data cleaning which consisted of removing

the entries with missing and aberrant values. The ID of the station (ordered from upstream

to downstream) and the ten measured physico-chemical and hydro-meteorological parameters

were used as inputs for our modeling. The output of the models was the concentration of E. coli.

Then, the dataset was divided randomly in two parts, the training set (90%, 1526 observations)

and the test set (10%, 170 observations).

In order to keep all the input parameters with the same degree of influence on the final

outcomes, we performed a Z-score standardization for each feature of the datasets (inputs and

output) (Chen et al., 2020). The training dataset was used for the standardization in order to

block access to the values of the test set during the training of the models.

2.2.3. Machine-learning models

In order to evaluate the performance of the estimation of E. coli concentration by the

machine-learning models, three traditional machine-learning models ( KNN (K-nearest neigh-

bors (Cover and Hart, 1967)), DT (Decision tree (Swain and Hauska, 1977)) and SVM (Support

vector machines, (Vapnik, 1995 - 1995)) and three ensemblist learning models (bagging (Brei-

man, 1996), RF (Random forest (Breiman, 2001)) and AdaBoost (adaptive boosting (Freund and

Schapire, 1996)), that combines several base models, were selected and used in this study. All

the models were carried out in python 3.7.10 with the Scikit-learn packages (Pedregosa et al.,

2011). The GridSearchCV technique was applied to select the hyperparameter that gives the

most optimal model by 5-fold cross-validation, over a parameter grid. A 10-fold cross-validation

was used to train and to estimate the performance of each model, by randomly generating 10

different sub-sets of the training and test datasets.

2.2.3.1. KNN

The k nearest neighbor method consists in considering the k nearest samples in the

training dataset as an input to predict each new observation (Hastie, 2009). For each test datum
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the closeness to all the training data is calculated with an Euclidean distance. This allows finding

the k observations closest in input space to assign the test datum to a class label, and the output

value of each class label is used to estimate the value to predict. The value of k thus varied from

1 to 30 with a step of 2, depending on the dataset.

2.2.3.2. SVM

The support-vectormachine goal is to find the optimal hyper-plan fromwhich the distance

to all the data point is minimum, it can be applied to classification and regression problems.

It consists in transforming the training data representation space into a higher dimensional

space, infinite in some cases, and in constructing a hyperplane or set of hyperplanes in a high

dimensional space (Hastie, 2009). The idea is to find a solution to flatten the projections of the

training points in space without moving too far away from the training points.

2.2.3.3. DT

Tree-based models are used to estimate a quantitative variable or classify observations

by reapeatedly separating data into mutually exclusive groupes. The tree-based method slices

the variable space and recursively partitions each variable into subsets based on the values of

the input variable and then fits a model in each of them (Hastie, 2009).

2.2.3.4. Bagging

Bagging, also known as bootstrap aggregation, uses portions of the data and combines

them by generating random subsets of the data through sampling, with repositioning (Barboza

et al., 2017). The prediction is obtained by averaging the outcomes of all models. The goal is to

reduce the overfitting of predictions in the model.

2.2.3.5. RF

Random forests combine multiple DT at training time. Each tree uses a sample obtained

by bootstrap. Given a training set with N measures, the bootstrap aggregation randomly selects

N samples with replacement of the training set (Chen et al., 2020). Then a subset of features is

randomly selected, in order to construct a collection of decision trees with controlled variance,

and fits trees to these samples. The results of the predictions from each tree are averaged (Hastie,

2009).

2.2.3.6. Adaboost

Adaboost repeatedly uses a regression tree developed sequentially on a training sample

with weights for each observation adjusted as they are developed (Shrestha and Solomatine,

2006). It starts with fitting a regression to the original dataset and then adjusts the weights of
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the variables based on the error of the prediction. Thus, subsequent regressors focus more on

poorly fitted or poorly predicted observations (Hastie, 2009). Finally, the results from each weak

machine-learning model are combined using the weighted median.

2.2.4. Models evaluation

In order to select the model that performs the best in predicting E. coli concentration, the

testing phase was carried out with 10 random trials for each model with the 10 test datasets. The

prediction performances of each model was evaluated by four statistical metrics. They included

Root-mean-square error (RMSE) (Qiu et al., 2017), mean absolute error (MAE) (Bui et al.,

2020), the ratio of performance to deviation (RPD) (Wang et al., 2017), and Mean absolute

percentage error (MAPE) (Lewis, 1982; Yan et al., 2020). These metrics are calculated as

follows :

RMSE =

√√√√ 1
N

N∑
i=1

(yi − y′i)2(1)

MAE = 1
N

N∑
i=1
|yi − y′i|(2)

RPD = SD

RMSE
(3)

SD =
√∑N

i=1(yi − ȳ)2

N
(4)

In these formulas, (yi) is the measured value, (y′i) is the predicted value, (N) is the total

number of samples, and (SD) is the standard deviation of the tested dataset (ȳ is the mean of

the measured values). The smaller the RMSE or the MAE, the more stable is the predictive

capacity of the model. RPD values < 1.4 indicate that the model is not reliable. For RPD values

between 1.4 and 2, the model is moderately accurate and when the value is higher than 2 the

model presents a high level of predictive ability (Wang et al., 2017). Mean absolute percentage

error (MAPE), which measures the goodness of fit, was also applied.

MAPE = |yi − y′i|
yi

∗ 100(5)
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The lower theMAPE value, themore accurate is the prediction (Lu andMa, 2020). Values

< 50% can be evaluated as “reasonable” even good if < 20%. MAPE values greater than 50%,

are indicative of an “inaccurate” prediction. A MAPE value of 50% indicates an overestimation

or an underestimation of 50% with regard to the measured value.

2.2.5. Identification of the weakness parts of the dataset

The MAPE values calculated during the 10 trials were used to separate the predicted

values in two datasets : the reasonable (MAPE < 50%) and inaccurate estimations of the E. coli

densities (MAPE ≤ 50%), generated by the best model on the Marne River dataset. In order to

determine the physico-chemical and hydro-meteorological parameters that potentially influenced

the predictive capacity of the bestmodel, a spearman-correlation analysiswas performed between

the physico-chemical or hydro-meteorological parameters and the predicted values of E. coli

(V3.5.1, (R-Core-Team, 2018)). All Spearman coefficients (rs) were tested for their significance

based on 5% error. Then the correlation coefficients obtained with the reasonably and inacurately

predicted concentrations were compared using a t-test in order to identify the set of hydro-

meteorological and physico-chemical parameters that are influent in the model (significant rs)

and that need improvement (t-test, p-value<0.01), or parameters that are less influent (non

significant rs) but could be worth checking after improvement (t-test p-value <0.01). Next,

we identified for each parameter that could be improved (t-test p-value <0.01), which data were

weakly represented in the dataset. For each parameter, the 10 test sets have been merged together.

The set of values contributing to the reasonable dataset were identified and the set of values that

gave at least one inaccurate prediction were removed and inspected to identify which additional

data are needed to improve the model. This allowed us to identify the set of values that give at

least a reasonable or good prediction for our dataset. The guideline for selecting the best model

for E. coli concentration prediction among the six machine-learning models, and the strategy

to identify a set of parameters and values range needed to optimize the sampling strategies are

displayed in the Figure 2.2. The python and R script of the framework are avaible on GitHub

(https://github.com/naloufi-manel/ML-performance-microbial-quality.git).
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Figure 2.2 – Guideline to provide and select an adapted model for water quality prediction and for the identification
of a set of data to optimize the sampling strategies.

2.3. Results and discussion

2.3.1. The dataset used in this study

The Marne River dataset was characterized by a high heterogeneity concerning the

number of observations per station (13 to 47 entries). The summary sample statistics of the dataset

are reported in Table S1. The temperature and the conductivity displayed a fair representativeness

(Figure 2.3). However, most parameters presented a skewed distribution and the presence of

upper and lower outliers (Figure 2.3). Indeed, for each parameter (except the temperature and

the conductivity) a range of values were rarely measured and therefore not well represented in

the dataset. This indicates that our dataset is not yet representative of all possible measurements.
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Figure 2.3 – Distribution of the data for each variable. The median is indicated as a solid black line inside each
boxplot, outliers are indicated as black dots. On the ordinates are the values taken by each variable with the units
specified in parenthesis.

The concentration of E. coli (4337.61 ± 25983.50 MPN/100 mL) measured during the

5 summers in the Marne river ranged from 19 to 820670 MPN/100 mL. Three pollution events

producing very high concentrations of E. coli could be identified. For instance, the maximum

E. coli value (820670 MPN/100 mL), corresponds to high values of turbidity, TSS and TKN

levels (respectively 28 FTU, 33 mg/L and 2.6 mg of N/L) compared to the majority of the

measurements. Extreme pollution events are often under-represented in the datasets due to

their low frequency. For instance rainfalls >10 mm which lead to peaks of pollution occur less

than 20 days per years in Quebec region (Sylvestre et al., 2020). However, removing extreme

values from the dataset can lead to a decrease in the predictive capacity of the model during

events with high pollution. Chen et al. (2020) have shown that a better performance could be

achieved after increasing the training data for each of the learning models. Considering the

biased distribution of most parameters in the Marne River dataset, it may be necessary to add

additional measurements to increase the size of the database and improve the training of the

ML models. This would provide a better representation of the set of possible values. However,

the high cost of field sampling and laboratory analyses for monitoring microbiological quality

(about 100 € according to the Syndicat Marne Vive) requires an optimisation of the collection

in order to identify the necessary measures to efficiently complete the datasets.
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2.3.2. ML-based E. coli prediction comparison

Various machine-learning models have been used previously to predict water quality

and their predictive performance was compared to other models by assessing their ability for

prediction (e.g. Mälzer et al. (2016); Avila et al. (2018); Bui et al. (2020)). In this study, we

compared the performance of sixmachine-learning based algorithms (KNN,DT, SVM,Bagging,

RF and AdaBoost) to predict E. coli concentration in an urban river, to identify the best suited

model. We performed a trial-and-error procedure, using the RMSE, MAE and RPD metrics

to evaluate the performance of each model. Average values of these statistics metrics for each

random trial are available in Table S2. The RF model exhibited the highest prediction power

among all the models with the weakest error (average value 0.37 ± 0.20 for RMSE and 0.09 ±

0.02 for MAE) followed by KNN and Bagging (respectively 0.41±0.28 and 0.38±0.19 for RMSE

and 0.09±0.03 and 0.14±0.06 for MAE) (Figure 2.4).

Figure 2.4 – Evaluation of the prediction performances of the 6 machine-learning models during the 10 trials.
On the abscissa the model is indicated and on the ordinate the value of the statistical metrics are displayed
(dimensionless) : (A) RMSE; (B) MAE; (C) RPD.

An analysis of the accuracy and reliability of the model was also performed using the

RPDmetrics (Figure 2.4C). Threemodels (KNN, Bagging andRF)were estimated asmoderately
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accurate and presented acceptable results. The 3 other models were not reliable, with an RPD

< 1.4 (Figure 2.4). For the RF model, the RDP value was close to 2 (1.91 ± 1.65), indicating

that the model had a high predictive capacity. In conclusion, the RF model gave better E. coli

concentration estimation compared to othermachine-learningmodels. This result is in agreement

with Bui et al. (2020) but disagree with the results of Chen et al. (2020). Both studies compared

the performances of DT models with RF models in their ability to predict water quality. We

also checked if the performance of the models will increase by compacting the sampling sites

together, however without the station ID the performance of all models slightly decreased (data

not shown).

Our results confirm that Ensemblist learning models have a better performance compared

to traditional models (e.g. KNN and SVM). This conclusion is in agreement with some previous

studies (e.g. Ahmed et al. (2019a); Bui et al. (2020)). However we must bear in mind that the

performance of a model depends on external uncertainty conditions (Chen et al., 2020). Thus,

for each specific dataset, several algorithms should be tested in order to find the models with the

best fitting to E. coli concentrations. Indeed Mälzer et al. (2016) found that the performance of

models could differ from one site to another along the Ruhr River in Germany. For this reason

we proposed this set of six machine-learning models as a basic toolbox to be used.

2.3.3. Limits of ML-based E. coli estimation

Identifying observations with uncertain predictions is an approach to determine the set

of data requiring optimization and thus find a way to optimize the collection and to efficiently

complete our training set, allowing for a better prediction in the future by re-running the model

with the newly collected measurements. Indeed, recent studies have shown that increasing the

quality and quantity of the dataset by adding complementary measures allows to effectivly

increase the training set and to improve prediction accuracy (Pachepsky et al., 2018; Chen et al.,

2020).

To further analyze the performance, the MAPE indice, which measures the goodness

of fit and examines the performance of models based on their tendency to estimate the E. coli

concentration, was calculated for all testing trials. For 46.7 ± 3.5% of the predicted values

generated by the RF model, the percentage of the absolute error was less than 50%, which

indicates that the estimates were reasonable or even good. The remaining 53.2 ± 3.5% of the

predicted values were associated with MAPE values equal or exceeding 50%, corresponding to
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inaccurate estimates. These results indicate that the RF-based model did not properly predict E.

coli values in all contexts and that our dataset is not sufficient to efficiently train the RF-based

model. Figure 2.5 indicates uncertainty in the prediction for some of the E. coli measurements.

Figure 2.5 – Relationship between the E. coli concentration predicted by the RF-based model and the measured
concentration. The white circles indicate the values. The red line indicates theoretical values corresponding to an
accurate prediction of the model compared to the measured values for the ten testing trials. Blue lines indicate the
50% confidence interval.

2.3.4. Identification of the weaknesses in the dataset

Different methods can be used to improve the input datasets. Some studies focuses on

finding the best combination of input variables to improve the algorithm’s predictions (e.g. Bui

et al. (2020); Hameed et al. (2017)). However, weak features also represent a powerful source of

information, that can be used in combination with the features that are adequate for learning the

target concept (Muslea et al., 2006). Thus, in our study, we propose to use the second strategy. For

this purpose, the prediction limits and biases of the RF-based model were further examined in

order to identify among the physicochemical and hydro-meterological variables the weaknesses

in the training and testing datasets.

We hypothetized that the variability induced by the low representativeness of some

parameters can affect the predictive capacity of the model. In order to identify the key parameters

allowing a reasonable estimation of E. coli concentrations and those leading to an inaccurate

estimation, the predicted values were separated in two datasets (inaccurate and reasonable
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Table 2.1 – Correlation coefficients (average rs ± SD) for the relationship between the values of E. coli predicted
by the RF model (reasonable and inaccurate) and the environmental variables. Significant coefficients are indicated
with a * (coefficient significance test p <0.05). Significant differences between the correlation coefficients of the
two datasets are indicated as t-test p-values < 0.01. MAPE values were used to identify reasonable (less than 50%)
and inaccurate (over 50%) estimations of E. coli concentrations obtained with the RF model during the ten testing
trials.

Parameter Reasonable predictions (rs) Inaccurate predictions (rs) p-value
Water temperature −0.17± 0.05 −0.28∗ ± 0.07 0.001
Conductivity −0.05± 0.11 −0.18± 0.09 0.009
Turbidity 0.42∗ ± 0.07 0.39∗ ± 0.08 0.43
TSS 0.43∗ ± 0.09 0.40∗ ± 0.04 0.42
NH4

+ 0.54∗ ± 0.06 0.48∗ ± 0.07 0.05
TKN −0.03± 0.08 0.001± 0.06 0.26
Number of dry days −0.10± 0.09 −0.01± 0.09 0.02
24 h cumulative rain-
fall (day)

0.09± 0.10 −0.02± 0.11 0.02

24 h cumulative rain-
fall (previous day)

0.17± 0.08 0.03± 0.10 0.002

River flow 0.54∗ ± 0.09 0.39∗ ± 0.09 0.001

estimations) based on the MAPE indice 50% threshold. Then an analysis of the relationship

between the differents physico-chemical and hydro-meteorological variables and the predicted

values was carried out on the inaccurate and reasonable datasets. We assumed that a significant

difference in the coefficient correlation between the two datasets would point out the variables

that had an impact on the outcome of the model but needed optimization. To compare the

correlation coefficients obtained with the reasonable and inacurrate datasets, a t-test was used

(n = 10). The p-values obtained are displayed in (Table 2.1).

Turbidity, TSS, NH+
4 , were important predictors (significant rs above 0.40), and no

significant differences in the two datasets arised (t-test, p≥ 0.05, Table 2.1). We classified these

parameters has having an impact of the RF-model output, with no urgent need for additional

data. The river flow also contributed to the model output (significant rs > 0.40), but there

was a significant difference between the two datasets (t-test, p < 0.01, Table 2.1). It was thus

considered as an important parameter that needs additional data. Finally the water temperature,

the conductivity, the 24 h cumulative rainfall of the previous day (Table 2.1, t-test, p < 0.01),

as well as for the number of dry days after the last rain and 24 h cumulative rainfall of the

day (Table 2.1, t-test, p < 0.05) showed weak correlations with E. coli values, but a difference

between the two datasets. Since it is not certain if these weak correlations are an artifact due

to the skewed distribution of these parameters or if these parameters are just bad predictors, we
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decided to further explore the parameters with a highly significant difference in the correlation

obtained with the reasonable and inaccurate estimates. Thus for the river flow, temperature,

the conductivity and the 24 h cumulative rainfall of the previous day (t-test, p < 0.01), it was

considered that additional data were needed to provide the dataset with enough information to

reduce the uncertainty in the model’s estimates. The reasons for this uncertainty may be that the

measurements have not yet been tested and it is not yet known whether the model will be able

to reasonably estimate the E. coli concentration, or that the distribution of the data is skewed

and the correlation of some environmental variables with the E. coli concentration is not yet

obvious.

Figure 2.6 – Vizualisation of the values that need enrichment in the dataset for the temperature, conductivity, 24 h
cumulative rainfall of the previous day and the river flow. The abscissa displays the value range of each parameter.
Predicted values giving a reasonable estimation are visualized with solid black bars, white spaces represent the
values that need further enrichment in the dataset.

The next step was to identify the value ranges of the four parameters that needed extra

measurements to efficiently complete the training and testing datasets. A deeper understanding

of the behavior of these parameters in the model should help optimizing the sampling process

while minimizing additional cost and efforts of sample collection and analysis. The temperature

is the parameter for which the reasonable predicted values of E. coli densities covered pretty well

the whole range of values [17.6-26.5 °C] (Figure 2.6). For the conductivity [data range 430-657
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µS/cm] and the flow [data range 4-101 (m3/s)] the distribution of the reasonable estimates was

not regularly disseminated along the data range, and the 24 h cumulative rainfall of the day there

was only 4 reasonable values in the [data range 0-35.4 mm] (Figure 2.6). The Figure 2.6, is a

valuable tool to identify which data are missing in the data range, and thus help to determine

where the sampling efforts should be carried out.

In our study, the RF-based model produced a versatile modeling in prediction. Based on

this observation, we were able to identify a set of parameters and values needed to complete the

dataset. An alert system based on the analysis of the reasonable and inacurate estimates would

be a valuable tool for stakeholders to optimize their sampling and measurement efforts. However

manual sampling and laboratory analysis maybe too costly and labor intensive to realistically

implement the training dataset. A network of sensors allowing continuousmonitoring of physico-

chemical parameters and the monitoring of rainfalls as well as dry weather, could help in

optimizing the sampling. Such approach may help developping models able to adapt under

environmental perturbations such as accidental pollutions or heavy rainfalls (> 30mm),which are

usually under-represented in the datasets due to their scarcity, and/or the fact that weekly/monthly

routine survey often miss such events.

2.4. Automated data collection

From the results, it is clear that the machine-learning models are capable of delivering

interesting results, as long as one can provide enough good-quality data. Thus, the use of

data sensors in addition to manual collection should be investigated as means of feeding these

models. Concerning the water quality parameters that we have investigated in this work, there

are a myriad of sensors that could perform their collection with acceptable data quality. Those

sensors may vary in price, accuracy, usage, lifespan among other characteristics, as they were

extensively studied inAbegaz et al. (2018) andKruse (2018). Therefore, to incorporate sensors as

a permanent brick in the data collection system, further studies must be conducted to determine

their optimal and sub-optimal numbers to be deployed on a given site, the expected accuracy and

the available budget for their acquisition. In this direction, Abegaz et al. (2018) have thoroughly

discussed the nature of different sensors (piezoelectric, optical, etc.) and how they fit for different

use cases, while Kruse (2018) provide interesting inputs concerning their usages for different

use cases.
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One strategy for monitoring the bathing water quality and decide when to open or

close a bathing site is to use online measurement systems that detect Beta-D-Galactosidase or

Beta-D-Glucuronidase activity. For instance, the ColiMinder automated measurement system

(Vienna Water Monitoring, VWM GmbH) (Cazals et al., 2020), ALERT system (Fluidion)

(Angelescu et al., 2019), Colifast ALARM™ (Tryland et al., 2015), TECTA-B16 (Endetec,

Veolia) (Bramburger et al., 2015), have been demonstrated to be useful to monitor E. coli in

rivers, but the price of these devices may be economically prohibitive for numerous cities, since

one unit may cost up to tens of thousand of euros. Alternatively the use of sensing technologies

to measure proxies or surrogate parameters procures high frequency, precise and accurate data.

Based on electrodes, fluorescence, colorimetry, wet analytical chemistry, or flow cytometry

techniques, these devices are deployed at fixed strategic locations (Rode et al., 2016). However

these sensors are often costly (∼10K euros unit price), for instance multiparameter sensors

such as Proteus Multi-parameter Water Quality Sensor based on tryptophane-like fluorescent

detection or sensors plateforms measuring physico-chemical proxies (such as YSI, Sea-Bird or

NKE instrument) are often used to monitor water quality.

One interesting way of integrating a network of sensors to data collection is to build an

Internet of Things (IoT) network, mixing high-quality (expensive) andmedium-quality (cheaper)

devices capable of delivering real-time analysis. In comparison, cheaper sensors can be used to

deliver good enough approximations of the correct data. For instance, the KnowFlow platform

KnowFLow (2021), based on Arduino computers and IoT long-range communication can be a

significant addition to the network. A recent review of low-cost sensors is provided by Wang

et al. (2019a).

Concerning the deployment of these heterogeneous sensors, some approaches exist to

maximize the quantity and quality of gathered data. The collection system may rely on i) deter-

ministic deployment, where sensors position is calculated before the collection begins, based on

the environmental and economic conditions (Nguyen et al., 2019) ; ii) random deployment, in

the case where areas are hard to achieve and to position sensors (Priyadarshi et al., 2020) ; iii)

hybrid deployment, a mix of aforementioned approaches, which is used indicated to very large

networks, covering vastly heterogeneous areas (Senouci and Mellouk, 2016). Some studies have

investigated this topic, with a further analysis on the advantages of IoT networks to enhance

data collection (Ciaponi et al., 2018; Ramesh et al., 2017). For instance, in Ciaponi et al. (2018)

authors proposed a methodology to derive the optimal placement of sensors in an aquatic envi-
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ronment, based on a "divide-and-conquer" approach, which could reduce the complexity of this

task for large scenarios.

The deployment of sensors will heavily depend on the battery lifespan of devices, as much

as on their communication range. Therefore, IoT-based measurement networks should be based

on Low Power Wide Area Networks (LPWAN) technologies, as LoRaWAN, Sigfox or NB-IoT.

Such technologies allow communications range up to kilometers and ensure very low energy

consumption, when compared to 4G, Wi-Fi or Bluetooth networks (Mekki et al., 2019). Users

can also consider the utilization of new 5G cellular technology, which is adapted for large-scale

sensor networks and IoT communications (Rahimi et al., 2018).

One remaining challenge to enhance the use of IoT networks for water quality assessment

is the real-data collection and visualization mechanisms. For example, Grafana allows users to

analyze sensor metrics through dashboards, messaging and alerts in real time (Betke and Kunkel,

2017). The Elastic stack application allows a deeper analysis of data logs and provides so-called

intelligent dashboards, capable of adapting screens to environmental, economic or user contexts

(e.g., what a researcher sees is not what a common user would see) (Protopsaltis et al., 2020). In

Ramesh et al. (2017), authors developed an IoT-based system within a town, capable of sensing

the environmental parameters and effectively delivering real-time information on water quality.

This clearly shows that the automation of the collection process is possible and viable for the

estimation of water quality in urban sites Chen and Han (2018).

Although the use IoT network composed of heterogeneous sensors is an interesting

solution to enhance surveillance systems, the use of low-quality devices must be taken with

caution due to their less accurate results. Therefore, the calibration of sensors remains an

important issue to be investigated. As discussed in Abegaz et al. (2018), the errors, margins

and durability of devices vary a lot. Therefore, an automated data collection must take into

account a mechanism to estimate which sensors are no longer in optimal operation conditions,

which is more likely to happen to low-quality models. One simple solution consists in compare

their output to nearby high-quality devices and analyze when important deviations occur. More

complex solutions would consist in estimating their lifespan based on already collected data to

perform changes preemptively.
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2.5. Conclusion

In this paper, we proposed a framework and statistical indicators to select among a toolbox

of six supervised learning algorithms (KNN, SVM, DT, RF, Bagging and AdaBoost) the most

suitable model for the prediction of fecal indicator bacteria in an urban river. This framework

was sucessfully applied to the Marne River (Greater Paris, France). Netherless, with regard to

the actual dataset, E. coli concentration could not be predicted in all contexts (53.2 ± 3.5% of

inaccurate predicted values). This result illustrates well the fact that predicting the microbial

quality of surface waters in urban rivers remains complex. Refining the models to be able to

adapt to environmental changes represents a future challenge in the context of the global change

which may increase the frequency of extreme rainfalls and floods Sylvestre et al. (2020). Further

amelioration and testing of predictive models is needed to reproduce and predict the temporal

and spatial dynamic of fecal indicators in changing and complex aquatic environments. Due to

the fact that our dataset was not representative of all the possible values in the data range, some

values have not yet been trained or tested by the RF-based model. For these values it is not

clear yet whether our model is able to estimate the E. coli concentration in a reasonable way at

the moment. To address this problem, we proposed a strategy and tools to help improving the

quality and quantity of the training data. The distribution of the accurate values along the data

range of each parameters seems an appropriate approach to identify which additional data are

needed for which parameter, in order to achieve a good predictive efficiency.

Acquiring additional data is usually costly because it’s a manual process that requires

human action. As a consequence our proposed approach aims to optimize the sampling process.

It requires to focus on the following points :

i) How and where to use of microbiological high-quality monitoring systems to feed

itself ; ii) How to install low cost physico-chemical sensors on an IoT network for the prediction

of microbiological quality and iii) When to perform sampling by human operators when the

model fails to correctly estimate the E. coli concentration and the microbiological quality of

surface water ?

Overall the proposed framework will help rationalize and optimize the sampling effort,

thus saving time and cost of microbiological analyses.

Data Availability Statement : Datasets are deposited in the CapGeo database of a
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working group directed by the City of Paris to study the water quality of the Seine and the Marne

river. This dataset is not yet openly accessible.
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2.6. Appendix

Table S1 – Descriptive statistics of the parameters.

Parameter Mean Standard deviation Minimum Maximum
Water temperature 21.77 1.59 17.60 26.50
Conductivity 537.36 56.09 430.00 657.00
Turbidity 7.91 7.33 0.12 132.00
TSS 9.76 9.13 0.90 190.00
NH4

+ 0.12 0.07 0.03 1.11
TKN 0.72 1.08 0.15 33.70
Number of dry days 4.80 5.72 0.00 27.00
24 h cumulative rainfall (day) 0.97 2.90 0.00 26.00
24 h cumulative rainfall (pre-
vious day)

1.86 4.69 0.00 35.40

River flow 41.68 10.59 4.00 101.00

Table S2 – Average and standard deviation of the statistic metrics (RMSE, MAE, RDP) obtained with each model
during the ten testing trials.

Metric KNN RF DT SVM AdaBoost Bagging
RMSE 0.41 ± 0.28 0.37 ± 0.20 0.54 ± 0.29 0.53 ± 0.48 0.53 ± 0.28 0.38 ± 0.19
MAE 0.09 ± 0.03 0.09 ± 0.02 0.14 ± 0.05 0.13 ± 0.05 0.10 ± 0.03 0.14 ± 0.06
RDP 1.60 ± 0.49 1.91 ± 1.65 1.12 ± 0.36 1.32 ± 0.22 1.28 ± 0.62 1.77 ± 1.62
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Figure S1 – Correlation analysis between water quality parameters and E. coli concentration estimated by RF for
(A) reasonable estimation ; (B) inaccurate estimation of E. coli (n=10).

68



Chapitre 2

3. Évaluation de la performance des approches d’appren-

tissage automatique et d’apprentissage par transfert pour

prédire la qualitémicrobienne des eaux de surface en Seine
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Résumé : Pour améliorer la gestion quotidienne des sites de baignade, la surveillance

d’E. coli est essentielle. Cependant, ce suivi est souvent limité temporellement et spatialement en

raison de contraintes méthodologiques, logistiques et financières. La modélisation constitue un

outil précieux pour gérer les pollutions à court terme et pourrait également optimiser la collecte

de données. Néanmoins, la performance des modèles varie selon les sites, rendant crucial le

choix du modèle le plus approprié. Dans notre étude, nous avons comparé les performances de

six algorithmes d’apprentissage automatique : K-nearest neighbors (KNN), Decision tree (DT),

Support vector machines (SVM), bagging, Random forest (RF) et adaptive boosting (AdaBoost)

pour prédire les concentrations d’E. coli dans la Marne et la Seine en région parisienne, France.

Nous avons proposé un cadre conceptuel pour sélectionner lemodèle le plus adapté et rationaliser

l’effort d’échantillonnage afin d’optimiser le jeu de données d’entraînement. Selon plusieurs
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mesures statistiques, le modèle RF a démontré la meilleure précision. Il apparaît que l’origine du

jeu de données d’entraînement, ainsi que la distribution et le nombre de paramètres explicatifs,

influencent significativement la performance du modèle. Si certains paramètres explicatifs sont

bien représentés dans le jeu de données, d’autres, comme la température et la conductivité,

nécessitent une optimisation pour la Seine. Ainsi, le modèle prédictif pourrait alimenter un

système combinant échantillonnage manuel in situ et déploiement de capteurs, optimisant ainsi

le suivi de la qualité microbiologique de l’eau.

Mots clés : Prédiction de la qualité de l’eau, apprentissage automatique, concentra-

tion en E. coli, optimisation de l’échantillonnage, surveillance des rivières

3.1. Introduction

Ces dernières décennies, les vagues de chaleur mondiales ont intensifié les activités

aquatiques dans les mégapoles, augmentant les interactions entre les citoyens et l’eau douce

urbaine (Jang, 2016). Cependant, nager dans des eaux de surface urbaines, rivière ou lac,

présente des risques sanitaires liés à la contamination des eaux par des agents pathogènes issus

de rejets ponctuels ou diffus (Soller et al., 2010). La surveillance actuelle repose sur des analyses

biologiques et chimiques en laboratoire, mais des modèles prédictifs pourraient compléter et

aider à rationaliser l’échantillonnage réglementaire, afin de faciliter la gestion quotidienne des

zones de baignade (OMS, 2018).

Plusieurs modèles prédictifs, allant des régressions linéaires aux réseaux de neurones,

peuvent être utilisés pour estimer les concentrations en Escherichia coli (van der Meulen et al.,

2024). Par exemple, un modèle basé sur les arbres de régression a été utilisé pour prédire en

temps réel les concentrations en E. coli dans les rivières du sud de la Nouvelle-Zélande, en se

basant sur des données météorologiques et hydrologiques (Avila et al., 2018). Cependant, la

performance des modèles peut varier en fonction du site et/ou du contexte météorologique et

hydrologique (Mälzer et al., 2016). Les modèles d’apprentissage automatique, notamment les

méthodes ensemblistes comme les forêts d’arbre de décision (Random Forest) et le bootstrap

aggregating (aussi appelé bagging), ont montré une grande précision dans la prédiction de

la qualité des eaux de surface (Bui et al., 2020). Toutefois, l’efficacité des modèles basés

sur l’apprentissage automatique est souvent limitée par la taille des ensembles de données

disponibles (Chen et al., 2020). Or, la collecte de données de haute qualité reste coûteuse
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et complexe, ce qui tend à limiter la fréquence des prélèvements au minimum exigé par la

réglementation et à limiter la période à la saison de baignade de juin à septembre (van derMeulen

et al., 2024). Par ailleurs, les données de concentration en bactéries indicatrices fécales (BIF)

sont généralement acquises de manière épisodique et ne couvrent pas toujours les différentes

conditions environnementales qui peuvent affecter le site de baignage telles que les périodes

d’étiage et de hautes eaux (Jovanovic et al., 2019). En effet, il est important d’utiliser des jeux

de données qui couvrent différentes conditions environnementales qui se produisent sur un site,

telles que les débits élevés et les débits faibles (Herrig et al., 2019).

Les connaissances sont augmentées en explorant d’autres bases de données pour identifier

des similitudes entre différents sites ou contextes, en utilisant l’apprentissage par transfert

(Dipanjan, 2018). Pour pallier la faible taille et diversité des ensembles de données, il existe

différentes stratégies tout en minimisant l’effort et le coût de l’échantillonnage (Wu et al.,

2024). D’une part, il est possible d’orienter les campagnes de mesure et d’optimiser la collecte

de données en ciblant des périodes ou des conditions environnementales stratégiques, afin

d’améliorer la quantité et la représentativité des données disponibles. D’autre part, il est possible

d’augmenter la taille et la qualité de la base de données existante sans faire de prélèvements

supplémentaires à l’aide de techniques d’apprentissage automatique, en générant des données

synthétiques, ou bien en réduisant les besoins en données du modèle, ou bien entransférant les

connaissances d’une autre base de données disponible (Wu et al., 2024). Pour cette dernière

approche, en effet, le transfert de connaissance d’une base de données à une autre peut servir soit

à compléter une série temporelle avec des données manquantes, soit à pré-entrainer un modèle.

Le transfert de connaissance consiste à tirer parti de jeux de données riches et diversifiés pour

améliorer les performances des prédictions (Noam, 2016; Segev et al., 2015). Par exemple, un

modèle initialement entraîné sur des données issues de plusieurs bassins versants peut être adapté

à d’autres sites. Les connaissances sont alors augmentées en explorant d’autres bases de données

pour identifier des similitudes entre différents sites ou contextes, en utilisant l’apprentissage par

transfert (Dipanjan, 2018).

L’objectif de notre étude est de développer un cadre conceptuel et pratique pour aider

les gestionnaires des sites de baignade à prédire les concentrations en E. coli, notamment dans

les rivières Seine et Marne en région parisienne (Île-de-France). Ce cadre inclut la sélection

des modèles les plus performants et l’optimisation des stratégies d’échantillonnage. Avec la

demande croissante pour des sites de baignade en Île-de-France, en particulier en vue des Jeux
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Olympiques et Paralympiques de 2024, il est crucial d’améliorer les méthodes de gestion de

la qualité de l’eau (Noury et al., 2018). Nous avons comparé les performances de six modèles

d’apprentissage automatique, incluant des modèles traditionnels et des méthodes ensemblistes,

pour la prédiction des concentrations en E. coli. L’entrainement a été réalisé avec des variables

prédictives physico-chimiques et des variables hydrométérologiques. Nous faisons l’hypothèse

que les concentrations en BIF peuvent être prédites avec des données acquises en routine par

les collectivités. Le modèle avec la meilleure capacité de prédiction et la meilleure précision a

été sélectionné. Afin de tenter d’améliorer la performance des modèles, nous avons testé trois

stratégies. Tout d’abord, nous avons manipulé le nombre de variables prédictives pour évaluer

si la sélection d’un nombre limité de prédicteurs peut permettre une bonne prédiction. Ainsi,

nous avons comparé les performances de six modèles d’apprentissage automatique en utilisant

11 et 8 paramètres de la base de données de la Marne. Nous avons également testé l’approche

d’apprentissage par transfert entre deux bases de données de rivières proches localement, pour

vérifier si cet enrichissement de l’entraînement apporte une amélioration de la prédiction. Pour

cela, nous avons utilisé alternativement les bases de données de la Marne et la Seine pour

entraîner et tester les modèles. Enfin, nous proposons une approche pour optimiser la collecte

des données, en identifiant les conditions physico-chimiques qui génèrent des incertitudes dans

les prédictions des concentrations en E. coli dans la Seine. Ce travail vient compléter l’article

de Naloufi et al. (2021) présenté au niveau de la section 2.
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3.2. Matériel et méhodes

3.2.1. Site d’étude et collection de données sur la qualité de l’eau

Figure 2.1 – Stations de surveillance de la qualité de l’eau de la rivière en Marne (étoiles vertes) et en Seine
(étoiles bleues).

Plusieurs sites de suivi de la qualité des eaux de surface de la Marne (Syndicat Marne

Vive) et de la Seine (Ville de Paris) ont été retenus, leurs données étant regroupées dans la base

de données CapGeo de la Ville de Paris (Figure 2.1). Cette base de données est issue de l’activité

du groupe de travail “Amélioration de la connaissance de la qualité microbiologique de la Seine

et de la Marne“ qui est piloté par la Ville de Paris et elle n’est pas en open source pour l’instant.

À partir de la base de données CapGeo, les stations de suivi pour lesquelles à la fois

les données microbiologiques, physico-chimiques et météorologiques étaient disponibles sur 5

ou 6 ans ont été sélectionnées. Pour l’ensemble de ces stations, le protocole d’échantillonnage

des eaux de surface a été réalisé selon la norme française FD T 90-523-1 (2008) pour les

paramètres physico-chimiques et selon la directive 2006/7/CE pour les concentrations en E.

coli. Huit paramètres physico-chimiques et microbiologiques sont communs pour les deux jeux

de données (Seine et Marne). Pour chaque point de prélèvement, les données météorologiques

de la station de mesure la plus proche ont été utilisées.

3.2.1.1. La Marne

Demi-juin à mi-septembre pendant 5 ans (2015, 2017-2020), des prélèvements ont été ef-

fectués de manière hebdomadaire ou bi-hebdomadaire sur 18 stations situées dans la section aval

de la rivière Marne (France). Pour chaque site d’échantillonnage, les paramètres suivants ont été

mesurés : concentrations en E. coli (NPP/100 mL), température (°C), turbidité (FNU), conducti-

vité (µS/cm), MES (mg/L), NH4
+ (mg de N/L), NTK (mg de N /L), nombre de jours secs après
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la dernière pluie (jours), pluviométrie du jour cumulée sur 24 h (mm), pluviométrie de la veille

cumulée sur 24 h (mm) et le débit (m3/s),mesuré à Gournay-sur-Marne (station hydrométrique

F664 0001 04, (https://www.hydro.eaufrance.fr). Les mesures ont été réalisées selon les

méthodes normalisées françaises. Les pluviomètres (station CHAM23, MAIS32) du conseil dé-

partemental du Val-de-Marne, (station NE-17) du conseil départemental des Seine-Saint-Denis

et (station PL14) de la Ville de Paris ont fourni les données de pluviométrie.

3.2.1.2. La Seine

De début-juin à fin-septembre pendant 6 ans (2015-2020), des prélèvements ont été effec-

tués de manière hebdomadaire ou bi-hebdomadaire sur 14 stations de la rivière Seine (France).

Pour chaque site d’échantillonnage, les paramètres suivants ont été mesurés : concentrations en

E. coli (NPP/100mL), température (°C), turbidité (FNU), conductivité (µS/cm), nombre de jours

secs après la dernière pluie (jours), pluviométrie du jour cumulée sur 24 h (mm), pluviométrie

de la veille cumulée sur 24 h (mm) et le débit (m3/s) mesuré à Austerlitz (Station hydromé-

trique F700 0001 03, (https://www.hydro.eaufrance.fr). Les mesures microbiologiques et

physico-chimiques ont été réalisées par Eau de Paris selon les méthodes normalisées françaises

NF EN ISO 9308-3, NF EN ISO 7027-1, NF EN 27888. Les données pluviométriques ont été

obtenues à partir du réseau de pluviomètres de la Ville de Paris (stations PL1, PL4, PL5).

3.2.2. Préparation des données

Après le nettoyage des données qui a consisté à supprimer les entrées avec des valeurs

manquantes, un total de 1696 mesures a été obtenu pour le jeu de données de la Marne et un total

de 985 mesures pour la Seine. Les modélisations ont été réalisées séparément sur les deux jeux

de données (Marne et Seine). L’ID de la station (ordonnée d’amont en aval) et les paramètres

physico-chimiques et météorologiques en Seine (8 paramètres) et en Marne (11 paramètres),

ont été utilisés comme entrées des modèles. La sortie des modèles était la concentration en E.

coli prédite. Chaque jeu de données (Marne et Seine) a été divisé aléatoirement en deux parties,

le jeu de données d’entraînement (90%, 1526 observations pour la Marne et 886 observations

pour la Seine) et le jeu de données test (10%, 170 observations pour la Marne et 99 observations

pour la Seine).

Afin que tous les paramètres d’entrée aient le même degré d’influence sur les résultats

finaux, nous avons effectué une normalisation Z-score pour chaque caractéristique de l’ensemble

des données (entrées et sorties) (Chen et al., 2020). Le jeu d’entraînement a été utilisé pour la
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standardisation afin de bloquer l’accès aux valeurs des données du jeu test pendant l’entraînement

des modèles.

3.2.3. Les modèles d’apprentissage automatique

Afin d’évaluer la performance de l’estimation de la concentration en E. coli par les

modèles d’apprentissage automatique, trois modèles traditionnels d’apprentissage automatique

(KNN, DT et SVM) et trois modèles d’apprentissage ensemblistes (Bagging, RF et AdaBoost),

qui combinent plusieurs modèles de base, ont été sélectionnés et utilisés dans cette étude.

Tous les modèles ont été réalisés avec les packages Scikit-learn comme décrit dans

notre étude précédente (Naloufi et al., 2021). La technique GridSearchCV a été appliquée pour

sélectionner l’hyperparamètre qui donne le modèle le plus optimal par validation croisée 5

fois, sur une grille de paramètres. Dix répliques ont été générées en divisant aléatoirement les

ensembles de données pour générer 10 jeux d’entraînement et de test différents. Les modèles

ont été formés avec les 10 jeux d’entrainement, puis chaque modèle a été testé avec un des 10

jeux test.

Après l’entraînement des 6 modèles, en vue de sélectionner le modèle le plus performant

pour prédire la concentration en E. coli, une phase de test a été réalisée avec les 10 jeux aléatoires

de données test (Figure 2.2).

Figure 2.2 – Schéma récapitulatif de la stratégie utilisée pour l’entrainement et le test de l’ensemble des modèles
sur les données de la Marne et de la Seine.

Pour la base de données de la Marne, l’entrainement à été réalisé sur 10 jeux aléatoires
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avec les 11 paramètres, puis avec uniquement les 8 paramètres physico-chimiques et hydro-

météorologiques en commun avec la base de données de la Seine (ID de la station, température,

conductivité, turbidité, nombre de jours de temps secs après la dernière pluie, pluviométrie du

jour cumulée sur 24 h, pluviométrie de la veille cumulée sur 24 h et le débit de la rivière).

3.2.4. Apprentissage par transfert

Afin d’évaluer l’approche d’apprentissage par transfert, dix tests aléatoires ont été réalisés

pour évaluer les performances des modèles entraînés. D’une part, des modèles ont été entraînés

sur les données de la Marne avant d’être testés sur celles de la Seine, et d’autre part, l’inverse a

été effectué, avec des modèles entraînés sur la Seine puis appliqués à la Marne. Seuls les huit

paramètres communs entre les jeux de données de la Seine et de la Marne ont été utilisés afin

de garantir la comparabilité et de maximiser la transférabilité des modèles.

3.2.5. Evaluation des modèles

Les tests et les calculs de métriques d’erreur et de performance des modèles ont été

réalisés alternativement sur chacun des deux jeux de données (Marne et Seine) comme explicité

dans la figure 2.2 présentant la stratégie employée.

Les performances de prédiction de chaque modèle pendant les 10 essais aléatoires ont été

évaluées par quatre mesures statistiques. Il s’agit de l’RMSE, de l’MAE, du RPD et du MAPE

(Naloufi et al., 2021). Ces métriques sont calculées comme suit :

RMSE =

√√√√ 1
N

N∑
i=1

(yi− y′i)2 (1)

MAE = 1
N

N∑
i=1
|yi− y′i| (2)

RPD = SD

RMSE
(3)

Dans ces formules, (yi) est la valeur mesurée, (y′i) est la valeur prédite, (N) est le nombre total

d’échantillons, et (SD) est l’écart-type de l’ensemble des données testées. Plus le RMSE ou le

MAE sont petits, plus la capacité de prédiction du modèle est stable. Des valeurs de RPD <1.4

indiquent que le modèle n’est pas fiable. Pour des valeurs de RPD comprises entre 1,4 et 2,0,

le modèle est modérément précis et lorsque la valeur est supérieure à 2,0, le modèle présente
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un niveau élevé de capacité prédictive (Wang et al., 2017; Naloufi et al., 2021). Le pourcentage

d’erreur absolue moyenne (MAPE), qui mesure la qualité de l’ajustement, a également été

appliqué.

MAPE = |yi− y
′i|

yi
∗ 100 (4)

Plus la valeur MAPE est faible, plus la prédiction est précise (Lu and Ma, 2020). Les valeurs

<50% peuvent être évaluées comme "raisonnables", voire bonnes si elles sont <20%. Les

valeurs MAPE supérieures à 50%, indiquent une prédiction "inexacte". Une valeur MAPE de

50% indique une surestimation ou une sous-estimation de 50% par rapport à la valeur mesurée

(Naloufi et al., 2021).

3.2.6. Identification des points faibles du jeu de données

Les valeurs MAPE calculées au cours des 10 essais aléatoires ont été utilisées pour

séparer en deux les valeurs prédites : les estimations raisonnables de la concentration en E. coli

et les estimations inexactes. L’analyse a été effectuée sur la base des prédictions générées par le

meilleur modèle et cela sur les deux jeux de données (Marne et Seine).

Afin de déterminer les paramètres physico-chimiques et météorologiques qui ont potentiellement

influencé la capacité prédictive dumeilleur modèle, une analyse de corrélation a été réalisée pour

les deux jeux de données (raisonnable et inexact). Sachant que les concentrations prédites en

E. coli n’avaient pas une distribution normale, un test du coefficent de corrélation de Spearman

a été réalisé entre chaque paramètres physico-chimiques et la concentration en E. coli prédite

par les modèles ou les valeurs mesurées (R Project V3.5.1, (R-Core-Team, 2018)). Pour tous les

tests statistiques, le niveau de signification était basé sur 5% et 1%.

Les résultats ont été utilisés pour identifier l’ensemble de paramètres présentant une

différence de corrélation entre les valeurs prédites raisonnables et inexactes. Par la suite, après

l’analyse de corrélation, les 10 jeux de test aléatoires ont été fusionnés. Pour chaque variable

physico-chimique et météorologique, l’ensemble des valeurs permettant une estimation raison-

nable a été identifié et l’ensemble des valeurs donnant une prédiction inexacte a été retiré. Le

résultat a été inspecté afin d’identifier les données supplémentaires nécessaires pour améliorer

le modèle. Cela nous a permis d’identifier l’ensemble des valeurs qui donnent au moins une

prédiction raisonnable ou bonne pour la Seine.

La stratégie utilisée pour sélectionner le meilleur modèle pour la prédiction de la concen-
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tration enE. coli et pour identifier sur l’ensemble des paramètres les plages de valeurs nécessaires

pour optimiser les stratégies d’échantillonnage pour la Marne a été présentée dans notre étude

précédente (Naloufi et al., 2021). Les scripts python et R utilisés sont disponibles sur GitHub

(https://github.com/naloufi-manel/ML_qualite_microbiologique_eau.git).

3.3. Résultats
3.3.1. Jeux de données

Deux bases de données ont été analysées, celle du suivi estival de la Marne et celle de la

Seine.

3.3.1.1. La Marne

Le jeu de données de la rivière Marne est caractérisé par une grande hétérogénéité

concernant le nombre d’observations par station (24 à 167 entrées pour les 18 stations). L’analyse

descriptive des données est détaillée dans l’étude de Naloufi et al. (2021) au niveau de la section

2.

3.3.1.2. La Seine

Le jeu de données de la rivière Seine est caractérisé par une grande hétérogénéité

concernant le nombre d’observations par station (15 à 200 entrées pour les 14 stations). La

concentration en E. coli mesurée au cours des 6 étés dans la rivière varie entre 30 et 35000

NPP/100 mL avec une valeur moyenne de 3434 ± 6987 NPP/100 mL. La distribution comprend

plusieurs valeurs extrêmes (Figure 2.3). Concernant les variables physico-chimique, hormis la

température, l’ensemble des paramètres présentent une distribution asymétrique avec la présence

de nombreuses valeurs extrêmes (Figure 2.3).
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Figure 2.3 – Description des données de la Seine pour les paramètres physico-chimiques, pluviométriques et
microbiologiques (température en °C, conductivité en µS/cm, turbidité en NTU, nombre de jours secs après la
dernière pluie, pluviométrie du jour cumulée sur 24 h en mm, pluviométrie de la veille cumulée sur 24 h en mm,
débit au pont d’Austerlitz en m3/s et le logarithme népérien de la concentration en E. coli (NPP/100 mL).

3.3.2. Prédiction de la concentration en E. coli par les modèles par apprentissage auto-

matique

Dans cette étude, nous avons comparé la performance de six algorithmes basés sur l’ap-

prentissage automatique (KNN, DT, SVM, Bagging, RF et AdaBoost) pour prédire la concen-

tration en E. coli dans deux rivières urbaines (Marne et Seine). Afin d’identifier le modèle le

mieux adapté, nous avons analysé l’erreur test de chaque modèle entrainé sur 10 jeux de don-

nées aléatoires, en utilisant les métriques RMSE, MAE et RPD pour évaluer la performance de

chaque modèle.

3.3.2.1. Effet du nombre de paramètres sur les performances des modèles en

Marne

Les six modèles ont été entrainés et testés avec les données de la Marne (avec 11

paramètres et 8 paramètres). Les valeurs moyennes des métriques calculées pour chaque essai

aléatoire sont présentées au niveau du tableau S1. Lorsque les modèles sont entrainés avec les

11 paramètres, on observe que pour le modèle RF, la valeur RPD était proche de 2 (1,91 ±

1,65), ce qui indique que le modèle avait une capacité de prédiction élevée. Une description

plus détaillée des résultats est présentée au niveau de la section 2. Par la suite, les modèles ont

été entrainés avec 8 paramètres, le modèle AdaBoost présenté le pouvoir de prédiction le plus

élevé, avec l’erreur la plus faible (valeur moyenne de 0.52 ± 0.29 pour la RMSE et 0,11 ± 0,02

pour la MAE) (Figure 2.4), suivi par les modèles RF et SVM (respectivement 0,58 ± 0,33 et
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0,59 ± 0,35 pour la RMSE et 0,15 ± 0,04 et 0,14 ± 0,03 pour la MAE). En effet, en retirant 3

paramètres du modèle, aucun des modèles testés ne pouvait être considéré comme fiable (RPD

<1,4, Tableau S1).

Figure 2.4 – Évaluation des performances de prédiction des 6 modèles d’apprentissage automatique au cours des
10 essais avec 8 paramètres issus de la base de données de la Marne. Métriques statistiques : (A) RMSE; (B) MAE;
(C) RPD.

3.3.2.2. Comparaison des performances de prédictions de E. coli avec les

données de la Seine

Aprés entrainement et test des 6 modèles sur les données de la Seine (Tableau S2), les

valeurs RMSE et RPD indiquaient que les modèles RF et Bagging étaient les plus performants

et pouvaient être considérés comme modérément précis et fiables (présentant des résultats

acceptables). L’analyse de l’indice MAE a montré que le modèle Bagging présentait l’erreur

la plus faible suivi par les modèles SVM et RF (Figure 2.5). Le modèle KNN a été estimé

également comme modérément précis avec des résultats acceptables (Tableau S2). Ainsi, le

modèle RF semble donner la meilleure estimation de la concentration en E. coli avec un rapport

de performance le plus élevé pour les données de la Seine.

Figure 2.5 – Évaluation des performances de prédiction des 6 modèles d’apprentissage automatique au cours des
10 essais avec les données de la Seine. Métriques statistiques : (A) RMSE; (B) MAE; (C) RPD.
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3.3.3. Apprentissage par transfert

Étant donné que la base de données de la Seine présente moins de données que celle de

la Marne, nous avons testé l’approche d’apprentissage par transfert entre les 2 bases de données

de bassins versants de la même région géographique. Les différents modèles ont tout d’abord

été entrainés en utilisant le jeu d’entrainement de la Seine, puis testés sur le jeu de données test

de la Marne. Nous avons également évalué un entrainement des modèles sur les données de la

Marne suivi par un test sur le jeu de données de la Seine. Pour cela nous avons utilisé pour la

Marne la base de données avec 8 paramètres.

3.3.3.1. Evaluation de l’apprentissage par transfert pour prédire les concen-

trations en Marne

Aprés entrainement des modèles sur les données de la Seine, des tests ont été effectués

avec les jeux de données de la Marne (Figure 2.6). Les valeurs moyennes des métriques calcu-

lées sont présentées dans le tableau S3. Les modèles présentaient des performances moyennes

similaires (RPD entre 0,98 et 1,00).

Figure 2.6 – Évaluation des performances de prédiction des 6 modèles d’apprentissage automatique au cours
des 10 essais avec les données de la Marne avec 8 paramètres, après entrainement avec les données de la Seine.
Métriques statistiques : (A) RMSE; (B) MAE; (C) RPD.

3.3.3.2. Evaluation de l’apprentissage par transfert pour prédire les concen-

trations en Seine

Sur les modèles entraînés par le jeu de données Marne, des tests ont été effectués avec

les jeux de données de la Seine. Les valeurs moyennes des métriques calculées pour chaque

essai aléatoire sont présentées dans le tableau S4. Les modèles SVM, Adaboost et RF présen-

taient de meilleures performances de prédiction par rapport aux autres modèles d’apprentissage

(Figure 2.7). Toutefois, aucun de ces modèles ne semblait fiable (RPD < 1.4, Tableau S4).
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Figure 2.7 – Évaluation des performances de prédiction des 6 modèles d’apprentissage automatique au cours des
10 essais en Seine avec 8 paramètres après entrainement avec les données de la Marne. Métriques statistiques : (A)
RMSE; (B) MAE; (C) RPD.

Ces résultats montrent que le jeu de données d’entraînement détermine la capacité de

prédiction au sein de chaque bassin versant. Par exemple, les modèles entraînés avec les données

de la Seine avaient une meilleure capacité prédictive pour la Seine et de même les modèles

entraînés avec les données de la Marne avaient une meilleure capacité prédictive pour la Marne

(Tableau S1 et S2). L’ensemble de ces résultats a été utilisé afin de sélectionner le meilleur

modèle pour prédire la concentration en E. coli en Seine et en Marne. C’est le modèle RF,

que se soit en Seine ou en Marne, qui a été le plus performant (entrainé sans apprentissage par

transfert). Ce dernier a été sélectionné pour une analyse plus détaillée des performances de de

prédiction. Suite à notre étude précédente sur les limites de l’estimation de la concentration

en E. coli en Marne (Naloufi et al., 2021), cette étude se focalise sur les limites des modèles

d’estimation en Seine.

3.3.4. Limites de l’estimation de la concentration en E. coli basée sur le modèle RF de la

Seine

L’identification des observations avec des prédictions incertaines est une approche per-

mettant de déterminer l’ensemble des données nécessitant une optimisation et donc de trouver un

moyen d’optimiser la collecte et de compléter efficacement le jeu d’entraînement, permettant une

meilleure prédiction dans le futur en réexécutant le modèle avec les mesures complémentaires

nouvellement collectées de manière ciblée.
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Figure 2.8 – Nombre d’observations identifiées comme des estimations raisonnables ou inexactes selon les valeurs
MAPE obtenues avec le modèle RF au cours des dix essais sur les données de la Seine.

L’indice MAPE, qui mesure la qualité de l’ajustement et examine la performance des

modèles en fonction de leur tendance à estimer la concentration en E. coli, a été calculé pour

tous les essais effectués avec les deux modèles RF respectifs pour les données de la Marne ou

de la Seine . En se basant sur la valeur MAPE calculée pour chaque observation, une distinction

a été effectuée entre les estimations raisonnables (<50%) et les estimations inexactes (>=50%),

permettant de séparer les données prédites en deux selon ces catégories, respectivement pour la

Marne et pour la Seine.

Pour les données de la Seine, sur la base des 10 essais, 35.75 ± 3.11% des concentrations

prédites en E. coli générées par le modèle RF correspondent à des estimations raisonnables. Par

contre 64,25 ± 3,11% des valeurs ont été identifiées comme des estimations inexactes, le plus

souvent surestimées (Figure 2.8).

En effet, la figure 2.9 indique une incertitude de la prédiction pour certaines des mesures

de E. coli plus élevées que pour le modèle RF de la Marne (Figure 2.5). Ainsi, les limites de

prédiction du modèle RF ont été examinées plus en détail afin d’identifier les faiblesses dans le

jeu de données de la Seine.
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Figure 2.9 – Relation entre la concentration en E. coli (NPP/100 mL) prédite par le modèle RF et la concentration
mesurée enSeine. Les cercles noirs indiquent les valeurs. La ligne rouge indique les valeurs théoriques correspondant
à une prédiction exacte dumodèle par rapport aux valeursmesurées pour les dix essais et les courbes bleues indiquent
l’intervalle d’incertitude de 50% autour de la valeur exacte de prédiction.

Ensuite les paramètres permettant une estimation raisonnable des concentrations d’E.

coli et ceux conduisant à une estimation inexacte ont été identifiés pour ce jeu de données de la

Seine. La relation entre les différentes variables explicatives et les concentrations prédites d’E.

coli a été explorée sur les données test de la Seine.

Table 2.1 – Comparaison des coefficients de corrélation (moyenne ± écart-type) obtenus entre les variables
prédictives et les concentrations en E. coli (NPP/100 mL) raisonnablement prédites par le modèle RF entrainé
et testé sur les données de la Seine et celles pour lesquelles la prédiction est inexacte. Les p-valeurs des tests
statistiques comparant les valeurs de corrélation entre les prédictions raisonnables et inexactes sont données.

Paramètres Prédictions raisonnables Prédictions inexactes p-valeur

Température -0,51 ± 0,06 -0,37 ± 0,06 0,002

Conductivité -0,45 ± 0,10 -0,26 ± 0,08 0,002

Turbidité 0,39 ± 0,15 0,28 ± 0,09 0.173

Nombre de jours secs -0,45 ± 0,16 -0,32 ± 0,09 0,139

Pluviométrie du jour 0,44 ± 0,15 0,27 ± 0,09 0,01

Pluviométrie de la veille 0,56 ± 0,08 0,45 ± 0,08 0,10

Débit à Austerlitz 0,26 ± 0,10 0,33 ± 0,08 0,18

Pour le jeu de données de la Seine, la pluviométrie de la veille cumulée sur 24 h semble

un prédicteur important avec un coefficient de corrélation élevé et aucune différence significative
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n’a été observée entre les prédictions raisonnables et les prédictions inexactes (Test deWilcoxon,

n=10, p>0,05, Tableau 2.1). La température et la conductivité semblent également être de bons

prédicteurs, mais il y avait une différence significative entre les deux ensembles de données

(Test-t, n=10, p<0,01, Tableau 2.1). Ces deux paramètres ont été classés comme ayant un impact

sur la prédiction mais nécessitant des données supplémentaires. L’ensemble des paramètres

restants ont approximativement les mêmes niveaux de corrélation à l’exception du débit au Pont

d’Austerlitz qui présente le niveau de corrélation le plus faible (r=0,26 et 0,33, Tableau 2.1).

Aucune différence significative n’étant observée entre les données raisonnablement prédites et

celles inexactes pour le débit de la Seine, ce prédicteur reste néanmoins intéressant.

Par la suite, une exploration des deux paramètres présentant une différence de corrélation

hautement significative entre les valeurs raisonnables et celles inexactes a permis d’identifier

l’ensemble des mesures permettant une estimation raisonnable. En ce qui concerne la tempé-

rature, les valeurs bien prédites sont disséminées le long de la plage de données [15,60-27,50

°C], mais nécessite principalement une optimisation dans l’intervalle de valeur [19-24°C] (Fi-

gure 2.10). Pour la conductivité, les valeurs bien prédites couvrent le début de la plage de

valeurs (Figure 2.10). Cependant, un grand intervalle de valeur [606-1393 µS/cm] nécessite des

échantillonnages supplémentaires.

Figure 2.10 – Valeurs des paramètres donnant une estimation raisonnable des concentrations en E. coli (NPP/100
mL) dans la plage de valeurs des prédicteurs pour l’ensemble de donnéesmesurées en Seine pour (A) la température ;
(B) la conductivité.

85



Chapitre 2

3.4. Discussion

E. coli est un des deux indicateurs biologiques utilisés pour évaluer la qualité de l’eau de

baignade (directive européenne sur les baignades 2006/7/CE) car il peut caractériser les risques

de contamination fécale de l’eau testée et sa présence est relativement bien corrélée avec le risque

de contracter une gastro-entérite (van Asperen et al., 1998). Ainsi dans le cadre de l’ouverture de

site de baignades en ville, disposer d’outils pour prédire la qualité microbiologique est nécessaire

pour la surveillance quotidienne de la qualité de l’eau des rivières urbaines (OMS, 2018). Dans

ce travail de thèse, différents modèles d’apprentissage automatique ont été utilisés pour prédire

la concentration en E. coli dans deux rivières urbaines et leurs performances prédictives ont été

comparées et évaluées. Nous avons également proposé une méthode d’analyse détaillée des jeux

de données afin d’évaluer les faiblesses à renforcer pour améliorer la prédiction des modèles.

3.4.1. Comparaison des méthodes d’apprentissage automatique

Plusieurs études antérieures ont utilisé des modèles d’apprentissage automatique pour

prédire la qualité des eaux de surface à l’aide des paramètres physico-chimiques (Di et al., 2019;

Avila et al., 2018; van der Meulen et al., 2024). Leur performance prédictive a été comparée à

des modèles statistiques et/ou déterministes en évaluant leur capacité de prédiction, montrant

ainsi tout leur intérêt et notamment leur grande capacité à prédire de manière fiable dans

différentes configurations de sites (par exemple Mälzer et al. (2016); Avila et al. (2018); Bui

et al. (2020)). Les modèles d’apprentissage automatique ont la capacité d’identifier des motifs

ou structures et des relations non-linéaires parmi les variables utilisées, ce qui explique le fait

qu’ils ont souvent des performances meilleures que les modèles de régression linéaire (Nafsin

and Li, 2023). Dans le cadre de notre étude, six algorithmes d’apprentissage automatique (KNN,

DT, SVM, Bagging, RF et AdaBoost) ont été utilisés pour prédire la concentration d’E. coli

dans la Marne et la Seine. Les performances de ces modèles ont été comparées. De meilleures

performances de prédiction et une plus grande fiabilité ont été observées lorsque les modèles

ont été entraînés sur un jeu de données provenant de la même rivière. Ainsi, au niveau de la

Seine, le modèle basé sur la méthode RF et entraîné avec les données de la Seine a donné

une meilleure estimation de la concentration en E. coli que lorsqu’il est entrainé avec le jeu de

données d’une autre rivière. La même conclusion a été observée sur les données de la Marne.

Ceci confirme les résultats deMälzer et al. (2016) qui ont constaté que la performance d’unmême
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modèle d’apprentissage automatique pouvait différer d’un site à l’autre le long d’une rivière.

En effet, pour chaque site, des interactions complexes entre des facteurs physico-chimiques, des

facteurs hydrométéorologiques et des caractéristiques géospatiales telles que l’usage des sols

vont déterminer la dynamique des concentrations en BIF (Nafsin and Li, 2023).

Globalement nos résultats montrent que les modèles d’apprentissage ensemblistes ont

une meilleure performance par rapport aux modèles traditionnels (Naloufi et al., 2021). Ceci est

en accord avec la littérature, avec plusieurs études qui montrent que lesméthodes d’apprentissage

d’ensembles tels que le bagging ou le boosting ont souvent une bonne capacité à prédire tout

en étant précis (Ahmed et al., 2019a; Bui et al., 2020; Qiu et al., 2017). Pour nos deux bases

de données, le modèle RF a donné une meilleure estimation de la concentration en E. coli

par rapport aux autres modèles d’apprentissage automatique. Ce résultat est en accord avec

notre précédente étude Naloufi et al. (2021) et avec plusieurs autres études (e.g. Bui et al.

(2020); Choi and Seo (2018); Sokolova et al. (2022); Iyer (2024); Weller et al. (2020)) qui ont

identifié les modèles RF et Bagging comme ayant les meilleures performances pour prédire les

concentrations en BIF dans les eaux de surface des rivières. Si les modèles RF ont souvent

les meilleures performance, ils ont aussi tendance au sur-apprentissage (Sokolova et al., 2022).

De plus, les modèles ensemblistes sont l’objet d’un compromis entre l’interprétabilité et la

précision, car ils se présentent plus comme des "boites noires" comparés aux modèles basés sur

les arbres de décision (Weller et al., 2020). Il reste néanmoins difficile de comparer nos résultats

avec ceux de la littérature car le nombre et le type de paramètres diffèrent d’une étude à l’autre,

de même que les conditions climatiques, l’usage des sols et l’urbanisation.

Nous avons également pu constater avec le jeu de données de la Marne qu’avoir des

paramètres supplémentaires en entrée du modèle permettait une amélioration de la performance

de la prédiction. Ceci est en concordance avec l’étude de Chen et al. (2020) qui a également

constaté une diminution de la performance des modèles en enlevant un ou deux paramètres lors

de l’entraînement. La sélection d’une combinaison optimale de variables et l’optimisation des

paramètres clef du modèle font d’ailleurs partie de stratégies pour augmenter la performance

d’un modèle d’apprentissage automatique (Nafsin and Li, 2023).

En conclusion, pour nos deux bases de données (Seine et Marne), le modèle RF a donné

une meilleure estimation de la concentration en E. coli par rapport aux autres modèles d’appren-

tissage automatique. Nos résultats confirment que les modèles d’apprentissage ensemblistes ont

une meilleure performance par rapport aux modèles traditionnels (par exemple DT et SVM)
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(Naloufi et al., 2021). De plus, les modèles RF ont produit une modélisation polyvalente en

matière de prédiction. Ces données sont précieuses car il y a encore peu d’études utilisant l’ap-

prentissage automatique pour prédire les concentrations en E. coli dans les rivières urbaines,

ce qui limite notre compréhension de leur capacité à prédire les pics de contaminations en BIF

(van der Meulen et al., 2024).

3.4.2. Incertitude sur la prédiction des modèles RF

En plus de la structure du modèle, nous nous sommes intéressés à la précision de la

prédiction en fonction de la qualité et de la taille des jeux de données test. En dépit de la

performance du modèle RF, une grande incertitude dans la prédiction peut être observée que

ce soit pour la Marne ou pour la Seine. Il a été établi que la qualité des eaux de surface

dépend de multiples conditions. Cependant, comme nous l’avons observé dans cette étude,

une grande variabilité de la distribution des paramètres physico-chimiques et hydrologiques

et des concentrations en E. coli en raison des faibles quantités de données d’apprentissage

peuvent conduire à une faible précision des modèles d’apprentissage automatique (Bui et al.,

2020; Naloufi et al., 2021; Nafsin and Li, 2023). Pour améliorer la capacité de prédiction des

modèles d’apprentissage automatique, ce n’est pas seulement la taille du jeu de données qu’il

faut augmenter mais aussi sa diversité. Dans le cas de notre modélisation des concentrations en

E. coli par la méthode RF, une part de l’incertitude sur la prédiction pourrait avoir pour origine

le fait que toute la gamme des mesures des différents paramètres explicatifs n’a pas encore été

testée et que l’on ne sait pas encore si le modèle RF serait capable d’estimer raisonnablement

la concentration en E. coli, avec toute l’étendue des valeurs que peuvent prendre les variables

explicatives. Une explication serait que la distribution des données était asymétrique et que

la corrélation de certains paramètres physico-chimiques et/ou hydrométéorologiques avec la

concentration en E. coli était faible dans ces jeux de données (Naloufi et al., 2021). Cela était

probablement dû à la complexité spatiale des processus dans chacun des bassins versants et aux

différentes sources de pollution qui entraînaient des relations non linéaires entre les paramètres

de l’eau et la concentration en E. coli (Bui et al., 2020). En effet, le tableau S5 montre bien

des niveaux de corrélation différentes entre la Marne et la Seine pour les différents paramètres

de l’eau avec les concentrations en E. coli prédites raisonnablement. De plus, pour plusieurs

variables, certaines classes de données étaient minoritaires (peu de données collectées sur les

événements polluants extrêmes par exemple) comparées à des classes majoritaires (conditions de
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temps sec, faibles pluies par exemple). Ce déséquilibre peut présenter un défi pour les algorithmes

d’apprentissage automatique qui tendent à être biaisés vers les classes de données majoritaires et

ainsi présentent de faibles capacités prédictives sur les classes de données minoritaires (Li et al.,

2021). Pour contourner le problème des données de qualité et quantité insuffisantes pour entrainer

les modèles, trois stratégies peuvent être employées : i) la génération artificielle de données,

ii) l’apprentissage par transfert et iii) la réduction des besoins du modèle en sélectionnant

les variables explicatives utilisées (Wu et al., 2024). Toutefois ces approches présentent des

limitations comme l’a montré le transfert de connaissance entre la Seine et la Marne. Un

transfert de connaissance pauvre peut être dû à une similarité limitée entre les deux rivières

malgré leur appartenance à la même hydroécorégion, leur taille et leur débit diffèrent, la Marne

étant un affluent de la Seine (Elbaz-Poulichet et al., 2006). La solution qui consiste à générer des

données synthétiques doit maintenir les caractéristiques réalistes d’un jeu de données réel, et

cette approche ne peut pas simuler de nouvelles conditions in situ (Wu et al., 2024). Acquérir des

données réelles par des échantillonnage plus fréquents peut être une solution pour augmenter la

base de données. Toutefois cette approche est coûteuse et laborieuse. Nous avons donc exploré

une autre stratégie qui consiste à utiliser les résultats du modèle pour identifier les classes

minoritaires dans le jeu de données existant et ainsi rationaliser l’effort d’échantillonnage pour

renforcer ces classes minoritaires et limiter le coût et l’effort de collecte. Optimiser le processus

d’échantillonnage permettrait d’obtenir une meilleure représentation de l’ensemble des valeurs

possibles sur le site évalué. L’approche que nous avons développée a permis d’identifier les

paramètres sur lesquels le focus devrait être porté, ainsi que les classes de données minoritaires

à acquérir ou renforcer dans le jeu de données. Ainsi, pour le cas de la Marne et celui de la

Seine, la température de l’eau et la conductivité ont été identifiées comme étant les paramètres

nécessitant desmesures supplémentaires. Par contre, pour la pluviométrie du jour cumulée sur 24

h et le débit de la rivière, il a été considéré que des données supplémentaires étaient nécessaires

uniquement pour le jeu de données de la Marne. En effet, les jeux de données acquis pour le

suivi des sites de baignade sont souvent limités à la saison estivale, et à des mesures au mieux

journalièremais le plus souvent hebdomadaires. De ce fait, l’étendue desmesures de température

fluctue peu, et pour les autres paramètres certains événements générant des variations intenses

peuvent ne pas avoir été échantillonnés (accidents sur le réseau, pluies extrêmes, crues). Des

capteurs en temps réel peuvent aider à augmenter le jeu de données. Toutefois certaines classes

de données minoritaires peuvent être difficiles à renforcer avec des mesures sur le terrain. Par
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exemple dans le cas de la pluviométrie, autant il est aisé de se procurer des données temporelles

avec un pas de temps fin (5min), il est plus compliqué d’acquérir des données avec une résolution

spatiale fine car le maillage des pluviomètres est relativement large sur le territoire Francilien.

De plus, l’intensité des précipitations n’est pas régulière en Ile-de-France, les pluies < 5 mm

étant plus couramment observées que les pluies >10 mm ou encore les pluies > 20 mm qui

sont plus exceptionnelles (Lucas et al., 2020). La stratégie de l’augmentation des données par

génération de données synthétiques peut alors constituer une solution pour les données difficiles

ou impossibles à acquérir (Wu et al., 2024).

3.5. Conclusion

Dans cette étude, nous avons discuté d’un modèle basé sur l’apprentissage automatique

pour la prédiction afin d’évaluer la qualité de l’eau dans des deux rivières franciliennes. D’après

les résultats, les modèles basés sur la méthode Random Forest ont donné la meilleure précision

dans la prédiction de la concentration en E. coli (RMSE de 0,37 ± 0,20 en Marne et 0,67 ±

0,09 en Seine). Néanmoins, selon le pourcentage d’erreur absolu moyen (MAPE) permettant de

distinguer entre les estimations raisonnables et inexactes, la concentration en E. coli ne peut être

prédite dans tous les contextes (la valeur de MAPE est supérieur à 50%, avec 53,20 ± 3,50% et

63,25 ± 3,11% de prédictions inexactes respectivement pour la Marne et la Seine). Étant donné

que notre jeu de données n’est pas représentatif de toutes les valeurs possibles dans la gamme

de données, il est raisonnable de penser que les modèles RF n’ont pas été encore entrainés ou

testés avec toute l’étendue des valeurs que peuvent prendre les paramètres prédictifs clefs. Pour

ces valeurs, il n’est donc pas encore clair si notre modèle est capable d’estimer la concentration

en E. coli de manière raisonnable.

Pour augmenter le jeu de données deux stratégies ont été explorées. Le transfert de

connaissance, ne s’est pas révélé concluant, conduisant à une performance moindre des modèles

(phénomène appelé "transfert négatif"). Cependant nous avons utilisé une approche simple se

limitant à utiliser les paramètres communs entre les deux jeux de données. Il existe des approches

plus sophistiquées d’apprentissage par transfer qu’il pourrait être intéressant d’explorer (Wu

et al., 2024). En effet, il est nécessaire de conduire des recherches sur le transfert négatif et

la façon de l’éviter (Wang et al., 2019b). Notre deuxième stratégie a été d’utiliser les résultats

du modèle RF pour identifier les paramètres clefs à optimiser en premiers lieu. Cette approche
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semble appropriée afin d’augmenter demanière ciblée et rationelle les bases de données. De plus,

pour ces paramètres, l’analyse de la distribution des valeurs donnant une prédiction raisonnable

le long de la plage de données permettrait d’identifier quelles données minoritaires mal prédites

nécessitent d’être renforcées dans la base de données, afin d’obtenir une meilleure efficacité

prédictive.

Afin d’améliorer les modèles prédictifs des concentrations en bactéries indicatrices de

contamination fécale (E. coli, entérocoques intestinaux), l’apprentissage actif permet d’identifier

les observations les plus pertinentes, et le déploiement de capteurs à faible coût peut aider à

densifier la collecte de données physico-chimiques (qui servent de variables explicatives dans

les modèles) en temps réel tout en réduisant les coûts (Bouneffouf, 2016; KnowFLow, 2021).

Ces capteurs, bien qu’individuellement moins précis, peuvent ainsi collectivement fournir des

informations fiables pour optimiser les bases de données pour les modèles de prédiction.
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3.6. Annexe

Table S1 – Moyenne et écart-type des mesures statistiques (RMSE, MAE, RPD) obtenues pour chaque modèle au
cours des dix essais avec 11 paramétres et 8 paramètres avec les données de la Marne.

Modèle KNN RF DT SVM AdaBoost Bagging
11 paramètres

RMSE 0,41 ± 0,28 0,37 ± 0,20 0,54 ± 0,29 0,53 ± 0,48 0,53 ± 0,28 0.38 ± 0,19
MAE 0,09 ± 0,03 0,09 ± 0,02 0,14 ± 0,05 0,13 ± 0,05 0,10 ± 0,03 0,14 ± 0,06
RPD 1,60 ± 0,49 1,91 ± 1,65 1,12 ± 0,36 1,32 ± 0,22 1,28 ± 0,62 1,77 ± 1,62

8 paramétres
RMSE 0,62 ± 0,35 0,58 ± 0,33 0,63 ± 0,32 0,59 ± 0,35 0,52 ± 0,29 0,63 ± 0,28
MAE 0,16 ± 0,04 0,15 ± 0,04 0,18 ± 0,03 0,14 ± 0,03 0,11 ± 0,02 0,16 ± 0,03
RPD 0,98 ± 0,04 1,08 ± 0,06 0,94 ± 0,09 1,07 ± 0,04 1,19 ± 0,16 0,92 ± 0,16
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Table S2 – Moyenne et écart-type des mesures statistiques (RMSE, MAE, RPD) obtenues avec chaque modèle au
cours des dix essais avec les données de la Seine.

Modèle KNN RF DT SVM AdaBoost Bagging

RMSE 0,69 ± 0,09 0,67 ± 0,09 0,77 ± 0,12 0,75 ± 0,12 0,73 ± 0,10 0,68 ± 0,09

MAE 0,34 ± 0,03 0,33 ± 0,02 0,40 ± 0,03 0,32 ± 0,04 0,35 ± 0,02 0,30 ± 0,03

RPD 1,43 ± 0,21 1,47 ± 0,23 1,30 ± 0,13 1,33 ± 0,11 1,37 ± 0,25 1,44 ± 0,18

Table S3 – Moyenne et écart-type des mesures statistiques (RMSE, MAE, RPD) obtenues avec chaque modèle au
cours des dix essais avec les données de la Marne avec 8 paramètres, après entrainement avec les données de la
Seine.

Modèle KNN RF DT SVM AdaBoost Bagging
RMSE 3,73 ± 0,04 3,70 ± 0,04 3,76 ± 0,06 3,68 ± 0,04 3,77 ± 0,06 3,73 ± 0,04
MAE 0,72 ± 0,03 0,81 ± 0,01 0,83 ± 0,09 0,66 ± 0,01 0,79 ± 0,03 0,93 ± 0,01
RPD 0,99 ± 0,02 1,00 ± 0,01 0,98 ± 0,01 1,00 ± 0,01 0,98 ± 0,01 0,99 ± 0,01

Table S4 – Moyenne et écart-type des mesures statistiques (RMSE, MAE, RPD) obtenues avec chaque modèle
au cours des dix essais avec les données de la Seine avec 8 paramètres après entrainement avec les données de la
Marne.

Modèle KNN RF DT SVM AdaBoost Bagging
RMSE 0,33 ± 0,07 0,32 ± 0,02 0,34 ± 0,06 0,28 ± 0,01 0,32 ± 0,03 0,48 ± 0,02
MAE 0,25 ± 0,04 0,23 ± 0,01 0,24 ± 0,02 0,22 ± 0,01 0,17 ± 0,01 0,33 ± 0,02
RPD 0,83 ± 0,09 0,81 ± 0,07 0,81 ± 0,10 0,90 ± 0,01 0,82 ± 0,06 0,54 ± 0,03
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Table S5 – Comparaison entre les jeux de prédictions raisonnables en Marne et en Seine des coefficients de
corrélation (moyenne et écart-types) entre les variables prédictives et les valeurs de concentrations en E. coli
prédites.

paramètres Prédictions raisonnables

pour la Marne

Prédictions raisonnables

pour la Seine

Température -0,17 ± 0,05 -0,51 ± 0,06

Conductivité -0,05 ± 0,11 -0,45 ± 0,10

Turbidité 0,42 ± 0,07 0,39 ± 0,15

MES 0,43 ± 0,09 NA

NH4
+ 0,54 ± 0,06 NA

NTK -0,03 ± 0,08 NA

Nombre de jours secs -0,10 ± 0,09 -0,45 ± 0,16

Pluviométrie du jour 0,09 ± 0,10 0,44 ± 0,15

Pluviométrie de la veille 0,17 ± 0,08 0,56 ± 0,08

Débit 0,54 ± 0,09 0,26 ± 0,10
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Abstract : Monitoring water quality in urban rivers is crucial for water resource manage-

ment since point and non-point source pollution remain a major challenge. However, traditional

water quality monitoring methods are costly and limited in frequency and spatial coverage. To

optimize the monitoring, techniques such as modeling have been proposed. These methods rely

on networks of low-cost multiprobes integrated with IoT networks to offer continuous real-time

monitoring, with sufficient spatial coverage. But challenges persist in terms of data quality. Here,

we propose a framework to verify the reliability and stability of low-cost sensors, focusing on the
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implementation of multiparameter probes embedding six sensors. Various tests have been deve-

loped to validate these sensors. First of all, a calibration check was carried out, indicating good

accuracy. We then analyzed the influence of temperature. This revealed that for the conductivity

and the oxygen sensors, a temperature compensation was required, and correction coefficients

were identified. Temporal stability was verified in the laboratory and in the field (from 3 h to

3 months), which helped identify the frequency of maintenance procedures. To compensate for

the sensor drift, weekly calibration and cleaning were required. This paper also explores the

feasibility of LoRa technology for real-time data retrieval. However, with the LoRa gateways

tested, the communication distance with the sensing device did not exceed 200 m. Based on

these results, we propose a validation method to verify and to assure the performance of the

low-cost sensors for water quality monitoring.

Keywords : Arduino sensor ; stability ; water quality ; chemical parameters ; urban rivers

4.1. Introduction

Monitoring the water quality of urban rivers is one of the most important issues in

water resources management (Bunsen et al., 2021). However water quality degradation is still

problematic, due to leaky sewers, rain runoff on contaminated surfaces, and untreated wastewater

discharge in surface waters during rain events (Whelan et al., 2022). The spatial and temporal

monitoring of water quality in rivers is crucial to optimize the management of freshwater

resources since it provides important information to guide stakeholders (Sutadian et al., 2016;

Carvalho et al., 2019; Whelan et al., 2020). However for most regulatory parameters, expensive

and time-consuming field collection and laboratory analysis are necessary. For instance, for the

management of bathing sites, the regulatory monitoring of the bathing waters is based on the

enumeration of cultivable fecal indicator bacteria following the European Bathing directive

2006/7/EC (WHO, 2018; Mouchel et al., 2020). Such a monitoring approach is restrictive both

in terms of frequency and spatial coverage, resulting in poor comprehension of the actual water

quality in a particular area at a particular time (Yaroshenko et al., 2020; Sutadian et al., 2016).

More effective water quality control should rely on methods that are rapid and low cost

with minimum sampling required, and, ultimately, it should provide real-time results (Farouk

et al., 2022; McGrane, 2016; Yaroshenko et al., 2020). In addition, in situ sensing devices

combined with machine learning could help stakeholders to detect in real time the possible
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contamination and to optimize the sampling effort (Carvalho et al., 2019; Whelan et al., 2020).

Cost-effective strategies should rely on few selected parameters with available low-cost sensors

that will serve as indicators of water quality. As pointed out by Zhu et al. (2023), there is no

consensus definition of ‘low-cost’ sensors. The cheapest sensors available on the market are

usually considered "low cost", and price ranges can depend on the parameter (Zhu et al., 2023).

Several physico-chemical parameters can easily be measured in situ, with sensors. For instance,

(Kannel et al., 2007) showed the usefulness of monitoring temperature, pH, dissolved oxygen

concentrations, conductivity and turbidity to assess the spatial and temporal changes of water

pollution and to classify rivers according to their water quality.

A high number of low-cost sensors could be deployed in networks at large spatial scale

(Internet of Things, IoT). Each individual sensing device may present a slightly greater error

margin than the precision obtained with high-cost equipment. However, the multitude of sensors

should compensate by increasing the amount of information both temporally and spatially (Wang

et al., 2019a). The continuous development of IoT solutions based on non-proprietary methods

during the last decade allows a viable real-time measurement of the water quality for a large

spectrum of applications such as monitoring drinking water resources and bathing sites (Bogdan

et al., 2023; Wuĳts et al., 2022b,a). Many initiatives have arisen, and the interest of the research

community has tremendously increased over time (de Camargo et al., 2023). Real-time water

quality monitoring through IoT application is expected to help reduce costs associated with

logistics and increasing the number of sites monitored. However, the energy autonomy of the

monitoring devices deployed on the field needs to be considered. Usually, the sensor is powered

by batteries or solar cells. Data are then transmitted either using SMS or long-range (LoRA)

technology. In order to be energy-efficient, the long-range (LoRA) technology offers an inter-

esting solution, making it suitable for devices deployed over long periods of time (de Camargo

et al., 2023; Huan et al., 2020).

Many challenges remain and need to be covered, such as the reliability, the stability and

the repeatability of the measurement, the similarity of performance between sensor units and

their interoperability in order to implement in the field reliable continuous monitoring of the

water quality (de Camargo et al., 2023). Therefore, the general objective of this paper is to

propose a framework to verify the reliability and the stability of the readings and to identify the

necessary maintenance of low-cost sensors in order to optimize the quality of the acquired data

to assist the stakeholders in the daily management of river water.
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Indeed, few studies have focused on the long-term reliability and viability of the sensors,

and were restricted to a maximum of 20–30 days despite the fact that river monitoring requires

longer periods (Hong et al., 2021; Gowri et al., 2023; Sekhar et al., 2023; Bogdan et al., 2023;

de Camargo et al., 2023; Cheniti et al., 2023; Hacker, 2023). As a consequence, our first objective

was to analyze the stability over a longer period of 3 months.

Moreover, previous papers highlighted the need for maintenance and cleaning routines

to avoid the deposition of debris and biofouling of the sensors that would impair the measure-

ment (Trevathan et al., 2021; Wong et al., 2021). However, no best-practice guideline for the

calibration and validation of low-cost sensor networks exists. As the consequence, our second

objective was to propose a framework for validation of low-cost sensors.

An additional crucial issue is to consider the data loss due to the limited communication

distance between the sensors and the LoRa gateway (Huan et al., 2020). As a consequence,

our third objective was to test two LoRa gateways in order to determine the maximum distance

between the devices and the gateway without data loss.

In order to address these three objectives, we designed a low-cost multiparameter pro-

totype that can monitor surface water quality using IoT technology. Several sensors such as

temperature, pH, conductivity, turbidity and dissolved oxygen were embedded in this device.

After the calibration of each sensor, their precision and stability were analyzed in laboratory

using reference solutions. The low-cost sensing device was validated for long-term monitoring

in the field by comparing it with highly accurate monitoring platforms. In order to validate the

possibility of using the prototype in networks, two units were compared, and the performance

of the LoRA gateways was assessed.

4.2. Materials and Methods

To monitor water quality, we implemented a LoRa-based wireless system network which

includes a LoRa gateway and a network of low-cost sensing devices with real-time data recovery

(Figure 2.1). Arduino technology was selected to design this multiparameter sensing device.

To execute instructions, process the data, and perform data transmission, two boards can be

used : the Arduino UNO R3 based on the Microchip ATmega328P, or the Arduino Mega 2560

microcontroller board based on ATmega2560. The latter was chosen for its compatibility with

a high number of monitoring devices (Abotaleb, 2023). Indeed, the Arduino mega board has 8
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times more memory space than the UNO R3 board (Abotaleb, 2023; RANDIKA et al., 2022).

Figure 2.1 – Synoptic view of the low-cost system for water quality monitoring in real time.

4.2.1. Prototype Design

Each monitoring device (called "unit") included an external battery (20,000 mAh), 6 ana-

log or digital sensors from DFRobot (Shanghai, China) (temperature, 2 pH, conductivity, tur-

bidity, and dissolved oxygen), a micro SD module/card for data storage, a 16 Bit ADC module

V1.0 to increase the precision of the conductivity, turbidity and dissolved oxygen sensors, and a

LoRa Shield to connect to a LoRa network (DFROBOT, 2023; Gravity, 2023). Zhu et al. (2023)

and de Camargo et al. (2023) compared a list of low-cost water quality sensors with their

specifications and a summary of their performance characteristics. These studies were used to

select the sensors for our device in order to have a range of reliable low-cost and medium-cost

sensors (Zhu et al., 2023). No true low-cost sensors exist for monitoring nutrient concentra-

tions, such as nitrogen and phosphorus. The cheapest from Vernier costs around EUR 300

(Zhu et al., 2023). For pH, two different types of sensors were mounted in the sensing devices

in order to compare their performance, which are later named “pH-1” and “pH-2”. All parts

of the system were contained in a waterproof box. Analog isolators were used to avoid any

signal interference among the sensors, except for the pH sensor. The code allowing the measu-

rement of all parameters at regular intervals was uploaded to the Arduino board and is available

on GitHub (https://github.com/naloufi-manel/low_cost_sensor.git (accessed on 20

March 2024) with the Python (version 3.8.1) and R scripts (version 4.1.1).

4.2.1.1. Low-Cost Sensors

The pH sensor,whichmeasures the hydrogen ion activity in solution, comprises a pHglass

electrode and a silver/silver chloride reference electrode (Bogdan et al., 2023). The pH-1 sensor
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(SEN0161-V2, DFRobot) was cheaper than the industrial pH-2 sensor (SEN0169-V2, DFRobot,

Shanghai, China).

The specific conductivity reflects the number of electrolytes dissolved in the wa-

ter (Conductivity Meter V2, 2023). We selected the DFR0300 (DFRobot) sensor since it is

the cheapest sensor compatible with Arduino (Zhu et al., 2023). However, its detection range

may be more adapted for coastal environments than rivers (Table 2.1). For the conductivity

measurements, Equation (3.2) is commonly used to correct the measurements by comparing

with a reference measurement at 25 °C :

EC25 = ECT

1 + a(T − 25) (2.1)

where ECT is the conductivity at temperature T (°C), EC25 is the conductivity at 25 °C,

and (°C−1) is a temperature compensation factor corresponding to the percentage increase per

degree (Hem, 1985).

Table 2.1 – Characteristics and specifications of the Arduino sensors (Farouk et al., 2022; DS18B20, 2023; pH
V2, 2023a,b; Conductivity Meter V2, 2023; Hakim et al., 2019; Arduino, 2023; DO, 2023; Villeneuve et al., 2006).

Parameters Temperature pH-1 pH-2 Conductivity Turbidity Dissolved

Oxygen

(°C) (mS·cm−1) (NTU) (%)

Sensor DS18B20 SEN0161-V2 SEN0169-V2 DFR0300 SEN0189 SEN0237-A

Detection

range

−10 to 85 0 to 14 0 to 20 0 to 1000 0 to 100

Resolution 0.010 0.010 0.001 1.000 0.050

Measurement

Accuracy

±0.5 ±0.5 ±0.1 ±1.0 ±3.6 ±2.0

Price (EUR) 8 39 65 70 9 148

For turbidity measurement, the selected sensor (SEN0189, DFRobot) measures the light

transmittance and scattering rate which changes with the amount of total suspended solids (Ar-

duino, 2023). The sensor uses an infrared LED as a light source and an infrared phototransistor to

detect the amount of light not blocked by the water. A change in voltage is obtained and conver-

ted into unit measuring turbidity NTU (Nephelometric Turbidity unit) using Equation (3.1) in a
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range from 1 to 1000 NTU (Hakim et al., 2019; Arduino, 2023). The upper part of the sensor is

covered with a heat-shrink sheath to make it waterproof, and the sensor is shielded from external

light using an opaque plastic cover (Trevathan et al., 2020) :

Turbidity = 3.9994− voltage
0.0008 (2.2)

For measuring dissolved oxygen (SEN0237-A, DFRobot), we select a galvanic sensor

with a filling solution and a membrane cap. Its response time stands within a few seconds. Since

dissolved oxygen concentration is directly influenced by temperature, we include a temperature

compensation in our code (DO, 2023; Villeneuve et al., 2006). Equation (3.3) is usually used to

take into account the temperature effect (DO, 2023) :

DO = volt+ b ∗ T − b ∗ Tcal

volts + b ∗ T − b ∗ Tcal

∗ 100 (2.3)

whereDO is the dissolved oxygen (in saturation (%)), volt is the voltagemeasured at a temperature

T , volts is the voltage corresponding to the saturated dissolved oxygenmeasured at a temperature

Tcal, and b (°C−1 ) is a temperature compensation factor (DO, 2023).

4.2.1.2. Reference Sensors

To validate the low-cost sensors (noted Arduino sensor), we compared their readings with

2 high-end HYDROLAB Series 5 multiparameters (OTT, Aix-En-Provence, France), which

embedded 4 sensors (noted OTT). For dissolved oxygen, we also compared the low-cost sensor

with a MINIDOT LOGGER sensor (PME, California, United States), which recorded data on

an internal SD card (PME, 2023). The PME sensor measures dissolved oxygen concentration in

water using a fluorescence method (PME, 2023).

4.2.2. Specifications and Price

Tables 2.1 and 2.2 show the specifications, operating range, accuracy, and the price of

each sensor. The price of the monitoring devices includes the 6 sensors prices added to EUR

159 for the total price of the other components (battery, microSD card and reader, ADCmodule,

box, Arduino card, and isolators) and EUR 93 for the LoRa connection. The total price of each

monitoring device was between EUR 285 and EUR 400. For the Hydrolab multiprobes from

OTT, the price reached EUR 3050 and the PME sensor cost EUR 1775.
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Table 2.2 – Characteristics and specifications of the Hydrolab multiprobes (OTT) (Hydrolab DS5X, 2024).

Parameters Temperature pH Conductivity Turbidity

(°C) (mS·cm−1) (NTU)

Detection range −5 to 50 0 to 14 0 to 100 0 to 3000

Resolution 0.01 0.01 0.0001 0.10

Measurement Accuracy ±0.100 ±0.200 ±0.001 ±1.000

Price (EUR) 480 380 1540

4.2.3. Cleaning and Calibration

Standard solutions at different concentrations were used to calibrate each sensor except

for the temperature sensor. The standard solutions were checked using an Eutech multiparameter

probe for pH and conductivity, the CellOx® 325 sensor for the dissolved oxygen and the 2100P

turbidimeter (HACH) for turbidity. For the pH, we used standard buffer solutions (pH 4, 7 and

10) from VWR. To remove contamination, which leads to a reduction in slope and unstable

readings, every month, the pH sensor must be immersed in 0.1 mol · L−1 of HCL solution for

a few hours then rinsed with deionized water. For conductivity, the standard solutions were

prepared from a 1 M stock solution of potassium chloride. Standard solutions were diluted in

deionized water to reach 0.36 mS · cm−1, 0.72 mS · cm−1 and 1.41 mS · cm−1. For the turbidity

sensor, we used a Formazin stock solution at 4000 NTU (prepared from dissolved hydrazine

sulfate and dissolved hexamethylenetetramine). The stock solution was diluted to 0, 20 and 200

NTU in deionized water. Finally, for the dissolved oxygen sensor, a sodium sulfite solution was

used for the zero point (VWR), and tap water maintained at saturation with a bubbler served

as a 100% standard solution. The oxygen sensor needed to be prepared before use by adding

a filling solution into the membrane cap, which consisted of a 0.5 mol · L−1 NaOH solution.

The filling solution needed to be changed every month. Then, the sensor was calibrated at a fixed

temperature (between 20 and 25 °C) in the 100% saturated water.

Each sensor was carefully washed with deionized water and wiped before calibration.

The calibration took place at a fixed temperature and under agitation at 700 rpm using amagnetic

stirrer. The sensor was kept in the standard solution for a few minutes to stabilize, after which

the calibration point could be set. Each calibration point was measured 10 times, and the fitting

regression curve (y = cx + d ) was determined. For each parameter, the coefficients (c and d)
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were used to correct the measured values after data recovery. Calibration needed to be performed

once a week.

4.2.4. LoRa Gateway

The LoRa Shield v1.4 from Dragino with SX1276 LoRa Chip fully compatible with

Arduino models was associated with the Arduino Mega 2560, which operates at a frequency

of 868 MHz (European Union) and contains an external antenna (Dragino LoRa Shield, 2023).

The LoRa modules were configured at a bandwidth of 125 kHz, transmit power of 14 dBm,

and spread factor of 12. We tested 2 different models of the LoRa Gateway to compare their

performance in terms of range coverage. The first gateway is a Raspberry gateway made of LoRa

hat for RPi (Raspberry Pi) with a SX1276 LoRa Chip associated to a RPi 3 and implemented

with a single-channel gateway program (LoRa, 2023). The second gateway is the Arduino

pro Gateway LoRa connectivity. It allows up to 8 LoRa Channels in the 868 Mhz frequency

(Semtech solution) and includes a microchip SX1301 with two SX1257 and an on-board UFL

antenna. According to the manufacturer, LoRa gateways allow connecting devices within several

kilometers (Arduino Pro Gateway Documentation, 2023). For the two gateways, we estimated

the spatial coverage of the gateways by measuring the distance between the end node and the

gateways using a signal levels analysis. The transmission distance was tested regarding the

quality of the signal by analyzing the Received Signal Strength Indicator (RSSI), the Signal-

to-Noise Ratio (SNR) measured by the gateway and the time interval between the reception of

2 successive data. RSSI measures the distance between a transmitter and a receiver and SNR

quantifies the strength of the signal regarding the amplitude of the ambient noise (Tsanousa

et al., 2021; Audéoud et al., 2020). These indicators are commonly used for the estimation of

the maximum distance (Guidara et al., 2021). The tests were performed in dense and residential

urban zones (Greater Paris area), with the gateway placed at a fixed position and the end device

at different positions (Figure S9).

4.2.5. Sensor Validation

The reliability and the long-term stability of the tested low-cost sensors were checked

in laboratory and in the field. The field tests were conducted in Bassin de La Villette (Paris,

France), where OTT sensors were already deployed (Guillot-Le Goff et al., 2023).

4.2.5.1. Accuracy
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The accuracy of each sensor after a calibration was tested for 2 sensing device units

in order to evaluate the linearity and the repeatability of each sensor (norm ISO 21748 : 2017

and NF EN 17075 2018) (Venelinov, 2016). The tests were performed in the laboratory at

ambient temperature (20.97 ± 0.12 °C) under agitation at 700 rpm. To validate the temperature

sensor, the reading was performed in a water bath with a range of temperature from 5 °C to 30 °C,

incremented by 5 °C every 8 min, followed by stabilization for 15 min at the same temperature.

For the other sensors, between 2 and 7 standard solutions at varying concentrations were used.

For each sensors, readings were repeated 10 times for each standard solution (Table 2.3).

Repeatability was estimated by calculating the standard deviation of the sensor’s measurements

during the repeated trials. Trueness and linearity were evaluated by comparing the readings with

the value of the standard solutions (true value). A linear regression was generated by plotting

the low-cost sensor measurements against the known concentration of the standard solutions.

Reproducibility of the sensing devices was evaluated by inter-comparison of the performance

of two sensing devices. For each sensor, 2 units were tested in parallel for a week with the

same standard solutions. Each parameter except for oxygen (due to high-cost of the sensor)

was measured every 15 min. The temperature was maintained at around 20 °C, the pH sensors

were placed in a pH 4.22 solution, the conductivity sensors were placed in a 1.42 mS · cm−1

solution and finally, the turbidity sensors were placed in a 10 NTU solution. Reproducibility was

estimated by calculating the standard deviation between 2 units.
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Table 2.3 – Descriptive analysis of sensors calibration for 2 units.

Parameters Temperature pH-1 pH-2 Conductivity Turbidity Dissolved

Oxygen

(°C) (mS · cm−1) (NTU) (%)

Number of

measures (n)

368 30 30 44 77 20

Standard solu-

tions

Temperature

from 5 to 30°C

4, 7 and 10 4 standards from

0.22 to 1.42

7 standards

from 0 to 800

0 and 100

Linearity

(units 1–2)

0.999 0.999 0.999 0.998–0.993 0.998 0.999

Slope of the

curve

Unit 1 0.999 0.938 0.959 1.060 0.947 1.038

Unit 2 0.999 0.950 0.984 1.083 0.916

Repeatability

Unit 1 0.01 0.02 0.01 0.02 3.66 1.74

Unit 2 0.01 0.02 0.01 0.02 3.69

Reproducibility 0.03 0.02 0.01 0.02 3.54

4.2.5.2. Temperature Effect

In order to analyze the effect of temperature on the measurement by all the sensors and

to identify the correct parameters for compensation, each sensor measured every 15 min under

agitation at 700 rpm a standard solution previously cooled at 10 °C, allowing the solutions

to reach an ambient temperature for 3 h (from 10 to 19 °C). The standard solutions were the

following : pH 10.2 ; conductivity 0.72 mS · cm−1 ; turbidity 20 NTU; and dissolved oxygen

100% O2 saturated water via a bubbler. For dissolved oxygen, the age of the membrane cap

was also taken in consideration by using a 6-month-old membrane and a new membrane.

For the new membrane, the temperature variation analyzed was between 14 and 25 °C. In order

to distinguish variations due to temperature fluctuations from sensor errors, the results were

compared to readings of the same standard solutions at a fixed temperature of 20.97 ± 0.12 °C

for 3 h.

4.2.5.3. Temporal Stability in the Laboratory
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Testing a probe’s stability in the laboratory, where environmental conditions are tightly

regulated, provides reliable test conditions (de Camargo et al., 2023). The controlled conditions

of the laboratory enable the probe’s readings to be compared with known standards to verify

that the measurements are accurate and consistent. The short-term and long-term stability of the

sensors was tested in the laboratory at a steady ambient temperature of 19 ± 2 °C. To evaluate

the short-term stability, we collected 3 replicates of 1 L water samples from Créteil Lake and

from the lower Marne River (Paris area, France) in April 2022. The samples were placed under

agitation, and measurements were taken continuously with the sensors every 10 s for 3 to 6 h.

This short-term analysis was carried out under continuous supervision in order to immediately

detect any problem or rapid variations. The pH-2 was not tested, as it was bought later.

The long-term stability was analyzed by placing each sensor in a standard solution (pH :

7 ; conductivity : 0.72 mS · cm−1 ; turbidity : 20 NTU; and dissolved oxygen : 100%O2 saturated

water via a bubbler). Measurements were taken every 3 to 5 min for approximately 3 months.

For dissolved oxygen, the PME sensor was used as a reference.

4.2.5.4. Temporal Stability in the Field

To test the long-term stability of the sensors in the field, we installed the low-cost

monitoring devices at two sites 1 km apart from each other (A and B) at Bassin de la Villette

(Paris area, France), as shown in Figure 2.2. Site B is in front of the bathing site of Paris

Plage, and site A is upstream of site B, enabling contamination to be anticipated at the bathing

site. Every year, analyses are regularly carried out by the City of Paris during the summer

period (June to September) to monitor the microbiological quality in the proximity of site B.

In 2022, the results indicated a good microbiological quality, with an average concentration of

Escherichia coli and intestinal enterococci of 101 ± 78 MPN/100 mL and 44 ± 50 MPN/100

mL, respectively. As for the physico-chemical parameters measured, the temperature was 21.27

± 2.83 °C, the conductivity was 0.65± 0.03 mS · cm−1, and the turbidity was 7.32± 2.61 NTU.

These 2 selected sites are part of a research project where high-precision OTT multiparameter

probes have been deployed continuously since 2020. This long deployment was regularly verified

and maintained in order to provide reliable data. OTT multiparameters were used as a reference.

Measurements were performed in situ at site A from early September 2022 to early January

2023 and then from May 2023 to June 2023, and at site B from early September 2022 to the

end of November 2022 . For site B, the OTT probe only measures temperature and conductivity.

Occasional loss of data occurred due to unit malfunction or installation problems on site.
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The installed low-cost devices were changed every week in order to clean the sensors and to

check their calibration. In the beginning, cleaning and calibration were carried out directly

in the field on the same unit. However, because of the length and complexity of the process

starting from ”15 October 2022”, the method was modified by alternating between two units

each week. The sensors of device N°2 were cleaned, calibrated and stabilized for a few hours

in the laboratory before replacing the device N°1 in the field, and vice versa. The measurement

interval was also optimized during these stability tests.

Figure 2.2 – Installation sites (A,B) and parameters measured by each type of sensor (source : Google Maps).

4.3. Results and Discussion

Figure 2.3 shows a low-cost sensing device once it is completely assembled.
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Figure 2.3 – Hardware components involved in the field experiment : 1 : temperature, 2 : turbidity, 3 : conductivity,
4 : pH-1, 5 : pH-2, 6 : dissolved oxygen, A : LoRa HAT gateway, B : LoRa Arduino Pro gateway.

4.3.1. Accuracy of the Sensors

After calibration, the accuracy of each sensor was evaluated with the linearity and

repeatability (Table 2.3). Correlation between measured values and the expected values of the

standard solutions showed good linearity with a significant rh > 0.99 (p < 0.01) for all sensors

(Figure S1). The slopes were between 0.92 and 1.08, which showed a good precision of the

measure compared to the true value (Table 2.3). Each sensor from both devices showed high

repeatability with low standard deviation values between the repeated measures, with values

ranging from 0.01 to 0.02 for temperature, pH and conductivity sensors (Table 2.3). Turbidity

and dissolved oxygen sensors showed less accuracy with higher standard deviation between

repeated measures. The reproducibility between units was satisfactory for all sensors except the

turbidity since measurements of the 2 sensing devices were in good agreement as demonstrated

by the low standard deviation values. A recent review of Zhu et al. (2023) compiled performance

indicators of several low-cost sensors, including the SEN0169, DFR0300, and SEN0189 sensors

selected in our study (Moyón Rivera and Ordóñez Berrones, 2019; Saputra et al., 2017; Rozaq
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et al., 2020; Hakim et al., 2019; Trevathan et al., 2020). Zhu et al. (2023) noticed that the

information was heterogeneous and somewhat difficult to compare for trueness and linearity,

and most of the time repeatability and reproducibility were not estimated.

4.3.2. Reproducibility of the Sensors

In order to verify if there is a difference in the accuracy of different units of the same

type of sensor, a one-week experiment was carried out with two units of each sensor placed in

the same standard solutions (Figures 2.4 and S5). The temperature measurements of the two

units matched almost perfectly. The average difference between the 2 units was only 0.07 °C,

with a significant correlation of Spearman (Figure 2.4A, r = 0.98, p < 0.01, n = 434). There

was fairly good reproducibility between the 2 conductivity sensors, with a mean deviation of

0.04 mS · cm−1, a low coefficient of variation of 2.83% for unit 1 and 2.14% for unit 2 and a

low but significant correlation (Figure 2.4B, r = 0.30, p < 0.01, n = 434).

Figure 2.4 – Comparison of two unit sensors placed simultaneously in the same solution. In blue unit 1, and in red
unit 2. (A) Temperature, (B) turbidity.

The pH-1 sensor needed a few hours to stabilize its reading and the pH-2 meter took one

day (Figure S5A,B). After stabilization, the mean deviation between the 2 units was low for both

sensors (pH-1 : 0.09 and pH-2 : 0.02), with a low coefficient of variation for pH-1 of 0.47% for

units 1 and 1.71% for unit 2 and for pH-2 0.23% for unit 1 and 0.47% for unit 2.

For the turbidity sensor, the two units differed by an average of 3.91 NTU (monitoring of

a 10 NTU solution, Figure 2.4B). The correlation was significant but weak (r = 0.32, p < 0.01,

n = 434). Figure 2.4B shows that the 2 units displayed the same trend over time but with a greater

dispersion for the 2nd unit (coefficient of variation 29.81% for units 1 and 38.06% for units

2). The reproducibility appears rather poor for the sensor. This may be due to the difference in
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performance of the infrared LED and phototransistor inside the sensors (Zhu et al., 2023).

4.3.3. Sensitivity to the Environment

Low-cost sensors are usually sensitive to the environmental conditions and need retrofit

actions such as compensation equations, waterproof enclosure, or coating (Zhu et al., 2023).

For instance, water temperature is known to influence the measure of some parameters and the

sensitivity to sensor current (Hayashi, 2004; Jeroschewski and Zur Linden, 1997). We analyzed

the effect of temperature by comparing between 3 h series of measurements under increasing

temperature conditions with measurement at fixed ambient temperature. Under fixed conditions

of temperature, for all of the sensors, the fluctuation over time of the measurement was low,

showing a good stability of the measure. Compensation for the temperature effect was not

necessary for the 2 pH meters and the turbidity sensor. The coefficients of variation of the stable

temperature series for pH-1 and pH-2 meters were 0.45%, 0.22% (respectively), and 12.76%

for the turbidity sensor. Under fluctuating temperature condition, the coefficients of variation

were higher (0.52% and 0.47% for pH meters and 14.38% for the turbidity sensor). This slight

variation as confirmed by Figures S2A,B and 2.5A,B was rather due to random variations

observed over time.

In the case of conductivity and dissolved oxygen sensors, there was a noticeable deviation

in the measurement under varying temperature (3.09% and 5.88%) compared with the fixed-

temperature measurements (1.60% and 0.63%) (Figures S2C,D and 2.5C,D). This indicates that

a compensation for temperature effect was required. Compensation coefficients were determined

by fitting a model linear curve to the data. Several values of the ‘a’ coefficient (Equation (3.2))

are commonly cited in the literature. For example, Hayashi (2004) reported an average a value

of 0.0187 °C−1(minimum–maximum : 0.0175–0.0198 °C−1), which is in accordance with the

0.019 °C−1 value recommended by Clesceri (1998). Based on the EC-temperature relation, we

identified a compensation factor of 0.0265 °C−1, which is comparable to the 0.025 °C−1 value

reported by Keller and Frank (1966). After compensation of the measured values using the

coefficient 0.0265 °C−1, the coefficient of variation displayed a lower value (1.19%), close to the

coefficient of variation obtained at a fixed temperature. The 0.0265 coefficient provided a better

fit (Figure S2D) compared to the 0.0185 factor recommended by the manufacturer (Conductivity

Meter V2, 2023).

For the dissolved oxygen sensor, there was an effect of temperature on the readings
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(Figure 2.5C,D). This result is not surprising since the saturation of oxygen in water is

dependent on the temperature and due to the change in permeability of the sensor mem-

brane (Hitchman, 1978; Villeneuve et al., 2006). By fitting Equation (3.3) to the increasing

temperature series, a factor ‘b’ of 14.48 °C−1 was determined and used for the temperature

compensation of the sensor signal. After compensation, the coefficient of variation decreased

from 5.88% to 1.78%, which is closer to the coefficient of variation of 0.63% obtained for the

reference analysis at a fixed temperature (Figure 2.5D). Moreover, the cap membrane should be

replaced at least every 6 months since the coefficient of variation with a new membrane was

1.78%, whereas it was 7% with a membrane used for 6 months (Figure S4).

Figure 2.5 – Temperature effect on the turbidity and dissolved oxygen. (A–C) Fixed temperature analysis, (B) turbi-
dity measurement at different temperatures, (D) Dissolved oxygen before compensation in blue, after compensation
in black and the PME sensor in red.

Other external factors may affect the sensing device, causing irreversible damage and

reducing its lifespan. We tested if the battery was overheating the sensors housing and whether

this might affect vulnerable components on the Arduino board. The manufacturer specify that

Arduino boards should be operated between −25 °C and +70 °C (Arduino Boards, 2023).

During 3 months of monitoring temperature in the laboratory, the temperature in the box

(19.97 ± 1.77 °C) and the water temperature (19.15 ± 1.91 °C) remained steady. This indicates
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that at ambient temperature, the battery did not overheat the waterproof box.

4.3.4. Temporal Stability in the Laboratory

Following calibration, a short- and long-term stability analysis was carried out with all

sensors. This checking was rarely performed for the low-cost water quality sensors (Zhu et al.,

2023).

4.3.4.1. Short-Term Stability

Different surface water samples were monitored for 3 to 6 h at room temperature. The rea-

dings showed a relatively satisfactory temporal stability with average standard deviation values

not significantly different from those obtained during the calibration, except for temperature (t

test, n = 3, p > 0.05) (Table 2.4). Different studies checked the stability of DFRobot sensors using

standard solutions but only for a few minutes to several hours (Saputra et al., 2017; Trevathan

et al., 2021; Alimorong et al., 2020; Saha et al., 2018) (and Atlas Scientific (Méndez-Barroso

et al., 2020)). Generally speaking, in situ water measurement with low-cost sensors appears pro-

mising, with relatively satisfactory temporal stability for all parameters (temperature (Méndez-

Barroso et al., 2020; Alimorong et al., 2020; Saha et al., 2018), pH (Méndez-Barroso et al.,

2020; Saha et al., 2018), turbidity (Trevathan et al., 2020; Alimorong et al., 2020), conducti-

vity (Méndez-Barroso et al., 2020; Alimorong et al., 2020; Saha et al., 2018; Saputra et al.,

2017), and dissolved oxygen (Méndez-Barroso et al., 2020)).

Table 2.4 – Short-term analysis of sensors (repeatability).

Parameters Average Min-Max

Temperature (°C) 0.78 0.38–1.01

pH-1 0.04 0.02–0.08

pH-2 0.03 0.02–0.06

Conductivity (mS · cm−1) 0.04 0.02–0.08

Turbidity (NTU) 4.68 3.89–5.46

Dissolved Oxygen (%) Arduino Sensor 2.33 1.55–3.71

Dissolved Oxygen (%) PME Sensor 0.31 0.16–0.59

4.3.4.2. Detection and Removal of Outlier for Long-Term Series

The long-term stability was checked by placing each sensor in a standard solution for
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3 months. The turbidity sensor showed a wide dispersion, which required rectification (Figure

2.6A). Indeed,the measurement of the 20 NTU standard solution gave values ranging from

0 to 1000 NTU. Filtering noise is a common pre-processing step of real-time datasets, and

numerous noise-reduction methods have been used to detect and remove outliers (Xu et al.,

2015; Le Deunf et al., 2020). A set of filtering methods was tested to identify the most optimal

one : interquartile range, density-based methods K-means, DBSCAN (Density-Based Spatial

Clustering of Applications with Noise) clustering, combining DBSCAN with Local Outlier

Factor, Mean-shift and the ARIMA (Autoregressive Integrated Moving Average) model with

the median filter approach (Xu et al., 2015; Wang and Wang, 2019; Sedaghat et al., 2013; Yang

et al., 2021; Bianco et al., 2001).

Figure 2.6 – Long-term turbidity analysis. The blue dots correspond to measurements taken by the sensors and
the red dots to measurements taken by the laboratory turbidimeter. (A) Raw data, and (B) after removal of outlier
using ARIMA with a median filter (width of 5).

The first five methods removed mainly extreme outliers, corresponding to 2.69% to

9.84% of the data. The ARIMA model, which can be used for data cleaning of non-stationary

time series (Wang and Wang, 2019; Bianco et al., 2001), seemed the best for cleansing this

turbidity dataset (Figure 2.6B). With a moving window of 3, 5 and 8 points, 18.84%, 26.77%

and 37.12% of the data were identified as outliers, respectively. Considering the data density

and trend, the optimal window seemed to be 5, but this parameter is data-dependent (Le Deunf

et al., 2020). The conductivity and the dissolved oxygen datasets did not require extensive

cleaning since less than 0.01% and 0.001% (respectively) of the data were removed using

the ARIMA approach. Time series methods are robust, and efficient data cleaning tools can

process a dynamic dataset within a solid theoretical framework and detect outliers with different

properties (Xu et al., 2015; Liu et al., 2004). Since the cleaning process should be based on a

minimum modification of the original data Liu et al. (2004), for each dataset of the different
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sensors, different parameters were tested and retained.

4.3.4.3. Long-Term Stability

After cleaning of the datasets, the long-term stability was estimated using the standard

deviation. Given the manufacturer’s precision values for each sensor, the calculated standard

deviation values could be considered reasonable (Tables 2.1 and 2.5). Long-term measurements

remained quite stable for most of the sensors, with the exception of turbidity and dissolved

oxygen, which showed greater variability (Figures 2.6B and 2.7). It could be noted that the

temperature sensor correctly measured two air-conditioning incidents in the laboratory in early

November and early December (Figure 2.7A).

Figure 2.7B shows that both pH meters were fairly stable (standard deviations of 0.04).

However, after 3 months, the pH-1 meter drifted by 1.0 pH unit (Figure 2.7B). This was due

to the fouling of the electrode which was removed by soaking the sensor in a 0.1 M solution

of HCl for at least 8 h to a maximum of 24 h (pH V2, 2023a). After regeneration at the end of

December, the pH-1 meter was back to a stable reading (Figure 2.7B). The pH-2 meter is more

suitable for long-term online detection due to its ring PTFE membrane that confers resistance

to clogging (pH V2, 2023b).

Table 2.5 – Stability analysis of sensors : standard deviation (* without missing values during the sensor regene-
ration, ** values cleaned with an ARIMA method using a median filter).

Parameters Value
Temperature (°C) 1.91
pH-1 * 0.04
pH-2 0.04
Conductivity (mS·cm−1) 0.03
Turbidity (NTU) 64.85
Turbidity ** (NTU) 13.23
Dissolved Oxygen (%) Arduino Sensor 12.42
Dissolved Oxygen (%) PME Sensor 0.73
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Figure 2.7 – Long-term stability of sensors reading standard solutions. (A) Temperature, (B) pH, (C) conductivity
measurement cleanedwith anARIMAmodel andmedian filter (width of 11), and (D) dissolved oxygenmeasurement
cleaned with an ARIMA model and median filter (width of 5).

For the conductivity sensor, only minor variations could be observed (Figure 2.7C).

A sharp decrease in the reading happened in early December due to a sudden drop in the

laboratory temperature to 11 °C (Figure 2.7C). The compensation equation was not sufficient to

make up for this sudden temperature variation. It may have originated from a desynchronization

between the water temperature variation and the optical components heat change (Shi et al.,

2022). Special care should be taken with rapid temperature variations, as the reading will not

be totally reliable. Finally, at the end of the 3-month period, the sensor needed to be cleaned to

restore a stable monitoring.

For the oxygen sensor, after one month of stable measurements, the percentage of oxygen

decreased from 95.00 ± 4.37% to 36.87% (Figure 2.7D). A new calibration only helped to

stabilize the reading for a few days until the measures raised to 154.93%. A change in filling

solution is in fact necessary every month. Finally, for the turbidity sensor, the long-term standard

deviation remains quite high 13.23 NTU, though the data cleaning tremendously improved the

situation (Figure 2.6B). This high variability indicates a certain instability of the sensor. In fact,

the study of Trevathan et al. (2020) also reported low reliability and accuracy for the same

sensor with values below 100 NTU. The difference in performance of the infrared LED and
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phototransistor of this equipment probably affects the detection limit, making the sensors more

adapted for monitoring high-turbidity waters (Zhu et al., 2023; Trevathan et al., 2021).

Overall, laboratory experiments showed that the measurements were relatively stable

over the short and long term. Readings were concordant between two units of the same sensor,

with the exception of turbidity, which fluctuated considerably and was not reliable. In terms of

sensor maintenance, the pH-1 and the dissolved oxygen sensor needs to be maintained monthly.

In addition to the oxygen sensor, the membrane should be changed twice a year. Finally, for the

conductivity sensor, care must be taken when dealing with sharp temperature variations fully.

The longevity of the sensors was not checked ; however, the manufacturer datasheets usually

indicate a lifespan > 6 months (Zhu et al., 2023).

4.3.5. In Situ Validation

The accuracy and stability of the low-cost sensors was estimated by comparing with

high-end probes at two sites in Bassin de la Villette (Paris), which were already equipped with

OTT multiparameter probes (Hydrolab Sensor, 2024). Field monitoring also raised concerns

about the interferences of environmental parameters (such as sunlight and temperature variation)

with the reading signal of the low-cost sensors, especially with the turbidity sensor (Trevathan

et al., 2020).

4.3.5.1. Light Interference with the Turbidity Sensor

The ambient infrared radiation interfered with the detection of the sensor infrared LED by

the infrared photo transistor. This resulted in a daily oscillation of the turbidity readings, with a

peak in the late afternoon and evening (Figure 2.8A). Trevathan et al. (2020) also identified

a degree of ambient infrared interference during the daytime using the same sensor. To avoid

light interference from external light, the sensor should be shaded by a cover, an opaque box

or a tubing, with the bottom open to allow water to circulate freely. Half of the bottom of the

sensor with the infrared LED and the infrared phototransistor is not in the opaque box. This

allows water to circulate between the two ends, without affecting the results obtained. We partly

solved this light interference problem by shading the sensor using an opaque shell held with a

weight above the sensor submerged in the water (Figure 2.8B). However, some variations were

still present (Figure 2.8B), probably due to the inherent instability of this sensor and due to the

indirect refracted light penetrating the water (Trevathan et al., 2020).
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Figure 2.8 – Effect of the ambient light on the reading of the turbidity sensor. (A) Before shading, and (B) af-
ter shading.

4.3.5.2. Temporal Stability in the Field

Although calibrationwith standard solutions is crucial to improve the accuracy of sensors,

it is not sufficient. It is also essential to compare the results obtained from low-cost sensors with

those of reference devices, such as high-resolution sensors, to ensure their validity (de Camargo

et al., 2023).

To provide reliable data, the frequency of data acquisition should be selected to compro-

mise between noise minimization and time resolution. During the first week of monitoring at La

Villette, the time interval of 10 sec was too short and produced noised time series (Figure S6).

Later, a setup of three measurements with 10-second intervals every 20 min helped in optimizing

the data quality for the remaining monitoring period (Figure S6). The mean standard deviation

between the three measurements was low for the temperature sensor (0.010 ± 0.004 °C), the 2

pH meters (0.028± 0.012 for pH-1 and 0.010± 0.007 for pH-2) and for the conductivity sensor

(0.004 ± 0.001mS · cm−1). However, the difference between the repeat measurements of the

turbidity sensor was high (42.4 ± 43.9 NTU), indicating low repeatability.

As already observed in the laboratory, the two units of the temperature sensor were highly

reliable and accurate. The readings of the Arduino sensor were similar to the readings of the

OTT sensor at both sites (A and B) (Figures 2.9 and S8A). Similarly, Méndez-Barroso et al.

(2020) obtained very good performance results of the DS18b20 temperature sensor.
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Figure 2.9 – Temperature analysis at Site A at Bassin de La Villette. Values from OTT sensors are displayed in red,
Arduino sensors in blue. Black dots indicate that the sensor has been calibrated, green dots that it has been cleaned,
and gray dots that the sensor has been replaced. Replacements were carried out by alternating the two units of the
same sensor every week. (A) From early September 2022 to early January 2023, and (B) from May to June 2023.

Figure 2.10 – Conductivity measurement at site A at Bassin de la Villette. Values of the OTT sensors are displayed
in red, and Arduino sensors in blue. Black dots indicate that the sensor has been calibrated, green dots that it has
been cleaned, and gray dots that the unit has been replaced. Replacements were carried out by alternating the two
units of the same sensor every week. (A) From early September 2022 to early January 2023, (B) from May to June
2023, and (C,D) data from (A,B) averaged over 4 h and cleaned by ARIMA.

Field campaigns also confirmed that the pH-1 sensor, although reliable enough to enable

monitoring, was less accurate and stable than the pH-2meter (Figure S6). The standard deviation

for the pH-1 meter was 0.14 (unit 1) and 0.33 (unit 2), whereas for the pH-2 meter, the deviation

was slightly lower, at 0.10 and 0.22 for each unit, respectively. The OTT sensor was the most

reliable, with a standard deviation of 0.09. Indeed, Demetillo et al. (2019) also identified an

average error of 0.18 for Atlas scientific sensors (which are slightly more costly than the pH-1

sensor) during a two-week test. This indicates the need to find the right balance between the cost
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and the accuracy of the sensor, which will depend on its intended use.

The Arduino conductivity sensors displayed a similar trend compared with the OTT

sensors at both sites (Figures 2.10 and S8B), although in May and June, few measurement errors

could be observed due to soiling. During the spring and summer, regular maintenance is required

due to biofouling as is visible for both the Arduino and the OTT sensors (Figure 2.10B). Data

post-treatment (averaging over 4 h and removal of the outliers with ARIMA model) helped in

providing time series of sufficient quality. Overall, the data obtained from the Arduino sensors

agreedwell with the OTT sensors, indicating that the low-cost sensors were effective in providing

usable data. However, for setting an IoT of low-cost sensors, it should be kept in mind that the

reproducibility of the two units of Arduino conductivity sensors was sometimes low (standard

deviation of 0.17 mS·cm−1 and 0.02 mS·cm−1, respectively). It should not be forgotten that

this sensor has low accuracy (factory certificate) since it is more suitable for monitoring water

quality in mariculture (ConductivityMeter V2, 2023). Some other sensors are more accurate and

more suitable for freshwater water ; however, they are three times more expensive. For instance,

the SEN0451 sensor from DFRobot displays an accuracy of 0.1 mS·cm−1 (Conductivity Meter,

2024; de Camargo et al., 2023; Zhu et al., 2023).

Concerning the turbidity sensor, the readings were highly noised due to the instability of

the sensor and light interference (Figure S7). Hacker (2023) tested for a month the same turbidity

sensor and also identified an instability in the measurement. As noted by Hong et al. (2021),

the cable being too short, the sensor floats at the surface, leading to light interference. Fouling,

as indicated by the gradual increase in NTU values (Figure S7B), triggered the requirement for

regular maintenance.

Finally, the dissolved oxygen was measured over a few days, both by the Arduino sensor

and the PME sensor at site B (Figure 2.11). The two sensors displayed similar trends, although the

variation deviation was slightly greater for the Arduino sensor compared to the PME sensor

(respectively 3.56% and 1.80%). Huan et al. (2020) designed a low-cost dissolved oxygen sensor,

which displayed an average error of 2.47%.Using this sensor, they also observed daily oscillations

like we did, with peaks in the afternoon when the temperature increased. To demonstrate

that low-cost sensors operate properly on site and to help in establishing their accuracy and

reliability, long-term exposure in the field is a recommended procedure (de Camargo et al.,

2023). The low-cost temperature sensor was highly reliable, while the pH, conductivity and

dissolved oxygen sensors gave relatively satisfactory results. Over time, small measurement
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errors tended to appear. This phenomenon was more pronounced for the Arduino sensors than

for the OTT sensors. Similarly, other sensors from DFRobot or Atlas Scientific showed good

stability and effectiveness with small measurement errors (Demetillo et al., 2019; Huan et al.,

2020; de Camargo et al., 2023). Considering the cost of the sensors tested in our study and

their relatively low margin of error, their utilization for continuous measurement in the field

was validated, given regular maintenance to ensure the reliability of the results. The results we

obtained indicate that weekly cleaning and calibration of the Arduino sensors are necessary for

some parameters. The labor cost associated with the weekly maintenance is hard to quantify

since it depends on a variety of factors, such as the installation time, the number of sensors, and

also the sites.

Figure 2.11 – Dissolved oxygen measurements at site B at Bassin de la Villette. Values of the PME sensor are
displayed in red, Arduino sensors in blue, and Arduino temperature sensors in black.

After each calibration, we recommend letting the sensors stabilize for a few hours in

the standard solution before installation in the field. Finally, the turbidity sensor does not

seem suitable for the continuous monitoring of fresh waters. In environmental conditions,

the turbidity sensor quickly becomes soiled by biofilm, and the slightest particle or element

that passes through, such as a leaf, may cause a variation in the readings. Trevathan et al.

(2020) also identified a fast negative impact of fouling (less then 48 h) on signal transmission.

Zhu et al. (2023) showed that even with other brands (TSD-10 and TSW-10 from Amphenol),

the reproducibility appears rather poor for these low-cost turbidity sensors since they are all built

on the same principle. The turbidity sensor should potentially be more suitable for detecting

particular events with significantly high turbidity levels, such as wastewater (Trevathan et al.,

2020; Hakim et al., 2019). The error rate decreased with increasing turbidity (Zhu et al., 2023).

This rate was higher for turbidity levels above 100 NTU (Hakim et al., 2019; Gusri and Harmadi,
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2021).

Based on this sensing device performance,we propose a framework to verify the reliability

and stability and to identify necessarymaintenancemeasurement intervals for each of the sensors

(Figure 2.12). This framework can be generalized to all types of sensors other than those presented

in this study so that they can be verified before installation and data processing. A more detailed

synopsis of the framework is presented in Figure S10.

Figure 2.12 – Framework for testing the reliability of sensors.

4.3.6. LoRa Gateway Performance

Long-range wide-area networks (LoRaWANs) were recently introduced as a promising

low-power technology for several IoT applications, including networks to monitor water qua-

lity (Jiang et al., 2020; Wang et al., 2019a). We analyzed the performance of two different LoRa

gateways (a LoRa Arduino Pro gateway and a LoRa HAT gateway) in their ability to retrieve

data from the end node device and to send them to the server without data corruption and loss.

Both gateways were first tested in a dense urban area (Campus of Vitry, France). The maximum

distance at which the node managed to send data was 200 m for the LoRa Arduino Pro gateway
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and 170 m for the LoRa HAT gateway, which is far below the potential distance announced by

the manufacturer for the Arduino gateway (Figure 2.13).

Figure 2.13 – LoRa gateway performance. Arduino LoRa gateway in pink, LoRa HAT gateway in blue light. (A)
Received signal strength indicator (RSSI), (B) Signal-to-Noise Ratio (SNR).

Sendra et al. (2023) similarly identified a maximum distance of 150 m with the same

LoRa HAT gateway we used. Interference and path loss can occur due to structural obstacles,

such as glass, metallic surfaces or walls, and due to the interference of other electronic com-

ponents (Sendra et al., 2023; Guidara et al., 2021; Zourmand et al., 2019). As a consequence,

the signal propagation is obstructed, resulting in deterioration of the SNR and reduction in the

RSSI levels with the increasing distance. After 100 m, we observed a rapid decline in the signal

quality (RSSI levels) of both gateways, in the zone with the most obstacles. In the zone with

fewer obstacles, the quality remained relatively unchanged between 100 and 200 m. Under 100

m, the LoRa HAT gateway exhibited better performance than the Arduino gateway, while it was

the opposite between 100 and 200 m (Figure 2.13). Using a gateway combining the sx1278

(433 MHz) and ESP8266 modules, Zourmand et al. (2019) also found that the quality signal

decreased above 120 m from the gateway as indicated by the negative SNR (below the noise

floor).

We also assessed the performance of the LoRa gateways with the time interval between

the reception of two successive data (Figure S11). Up to 100 m, the interval between two measu-

rements was short 5.25± 5.20 min for both gateways, though the LoRa HAT gateway displayed

a better signal quality. Above 150 m, the time interval increased beyond 15 min for the LoRa

HAT gateway, and over 20 min above 200 m for the LoRa Arduino gateway. However, even with

a longer time reception, the quality and quantity of the data were still integral without any loss

or degradation of the data collected. Beyond this distance limit, no data were received by the

LoRa gateways.
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The effect of the environment on the signal quality was tested with the LoRa Arduino

gateway positioned in two different sites at a distance of 50 and 100 m. The first site was

densely built, while the second site (residential area at Vitry, France) presented fewer buildings,

and therefore fewer obstacles. Figure S12A,B show that for site 2, the signal quality was slightly

better with higher RSSI at 50 m. However, there was no significant difference between the two

sites (Wilcoxon test, p = 0.25, n = 72). This result is not surprising since coverage is usually much

lower in urban areas than in open land such as rural areas, reaching up to several kilometers for

the latter (Petrariu et al., 2019).

4.4. Conclusions

Our study demonstrated the suitability of theArduino sensors (except the turbidity sensor)

for monitoring water quality. In particular, the low-cost temperature sensor performed very well,

as well as the two pH sensors, showing good repeatability and stability in the laboratory and

in the field. However the pH-1 meter requires monthly maintenance, including regeneration of

the sensor to remove any residue on the electrode. The low-cost conductivity sensor gave more

variable results with lower accuracy. Similarly, the dissolved oxygen sensor was satisfying in

terms of data acquisition and in terms of required maintenance. The filling solution should

be changed every month and the membrane every 6 months (depending on frequency of use).

The turbidity sensor is not recommended since it is too unstable and sensitive to external light.

For a reliable low-cost sensing device, a balance has to be struck between cost and sensor

reliability, depending on the sensor’s intended use.

A frameworkwas then proposed to help characterizing and validating the sensing devices.

This flexible framework makes it possible to integrate various sensors, to add or replace sensors

as required, and to create a variety of devices to meet different measurement objectives and

different water matrices. Finally, with a view to having a network of monitoring system, we

tested two LoRa communication modules (LoRa HAT gateway and the LoRa Arduino pro

gateway). Both performed well, with maximum communication distances, respectively, of 170

m and 200 m.

This low-cost monitoring device will be used in networks for the continuous acquisition

of water quality data in a river. The provision of a dense multiprobes network integrated into

an IoT system would enable real-time monitoring with greater precision due to the multitude
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of sensors. Coupling with a real-time anomaly detection system, like a nonlinear cooperative

control algorithm based on game theory (Casado-Vara et al., 2018), would help in improving

the continuous monitoring of surface water and reducing maintenance costs. Further studies are

required to verify this hypothesis. The data collected with the devices will also feed machine

learning models to predict the water quality and set up an alert system for urban bathing

sites. It will also help with rationalizing the sampling strategy during the bathing season to

measure bacterial indicators of fecal pollution. These combined approaches will improve sensor

performance, reduce cost, and accelerate decision-making processes.

Data Availability Statement : This dataset is not yet openly accessible.
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4.5. Appendix

Figure S1 – Analysis of the sensors calibration for 2 units (The results of the first unit in blue and the second unit
in red). (A) Temperature. (B) pH. (C) Conductivity. (D) Turbidity. (E) Dissolved oxygen.

124



Chapitre 2

Figure S2 – Temperature effect on the pH and conductivity. (A–C) Reference, fixed temperature analysis. (B) pH
measurement at different temperature. (D) Conductivity at different temperature without compensation (raw data)
in blue and with compensation by using 2 compensation coefficients (coef of 0.0185 in black and 0.0265 in red).

Figure S3 – Effect of battery temperature in the box. In blue, the temperature in the waterproof box, and in red,
the solution at laboratory temperature.
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Figure S4 – Effect of long-term use of Dissolved Oxygen sensor Membrane Cap. (A) After 6 months of use. (B)
New membrane cap.

Figure S5 – Comparison of two unit sensors placed simultaneously in the same solution : in blue, unit 1, and in
red, unit 2. (A) pH-1, (B) pH-2, and (C) conductivity.
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Figure S6 – pH analysis at site A at Bassin de la Villette. OTT sensors in red, Arduino sensors in blue. The black
dot indicates the date of calibration, green only if the sensor was cleaned, and grey when the analysis process has
changed, alternating between sensor units each week : (A) from early September 2022 to early January 2023 for
the pH-1 meter, (B) in June 2023 for the pH-2 meter, (C) From May to June 2023 for the pH-1 meter, and (D) data
from (C) averaged over 4 h and cleaned by ARIMA.

Figure S7 – Turbidity analysis at site A in Bassin de la Villette. OTT sensors in red, Arduino sensors in blue.
The black dot indicates the date of calibration, green dots if the sensor has been cleaned, and grey dots when the
analysis process has changed, alternating between sensor units each week and pink dots for external light protection :
(A) from early September 2022 to early January 2023, and (B) from May to June 2023.
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Figure S8 – Temperature (A) and conductivity (B) analysis at site B in Bassin de la Villette. OTT sensors in red,
Arduino sensors in blue. The black dot indicates the date of calibration, green dots if the sensor has been cleaned,
and grey dots when the analysis process has changed, alternating between sensor units each week.

Figure S9 – Site 1 (Campus of Vitry) (A) and site 2 (residential area at Vitry) (B) for the 2 LoRa gateways tests.
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Figure S10 – More detailed synopsis of the framework for testing the reliability of the sensors.

Figure S11 – Time gap between two measures. Arduino LoRa gateway in pink, LoRa HAT gateway in light blue.
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Figure S12 – Performance analysis of the LoRa gateways in the two sites (site 1 (Campus of Vitry) in pink, site 2
(residential area at Vitry) in light blue). (A) Received signal strength indicator (RSSI), (B) Signal-to-Noise Ratio
(SNR).
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5. Conclusion
Permettre la baignade en rivière est un enjeu à plusieurs niveaux : i) améliorer la qualité

de l’eau, ii) favoriser le cadre de vie des habitants et iii) diminuer, in fine, les risques pour les

futurs baigneurs, incluant dangers physiques, tels que les courants forts, les obstacles submergés

ou les risques liés aux bateaux et aux infrastructures hydrauliques, nécessitant une vigilance

accrue et le risque microbiologique. Un suivi de la qualité bactériologique est requis par la

directive 2006/7/EC pour autoriser la baignade et assurer une surveillance continue. Dans le

cadre de notre approche cela nécessite de trouver le bon équilibre entre :

- L’utilisation de systèmes de surveillance microbiologique de haute qualité comme

ColiMinder, dont le coût est élevé, à des positions stratégiques au niveau de la rivière pour la

zone de baignade.

- L’installation des capteurs physico-chimiques à faible coût sur un réseau Internet des

Objets pour la prédiction de la qualité microbiologique permettant un suivi en continue des

différents paramètres.

- En combinant des modèles d’apprentissage automatique et des capteurs comme outils

de prédiction de la qualité microbiologique et d’alerte, il est possible d’optimiser, tant sur le

plan temporel que spatial, l’effort d’échantillonnage effectué par des opérateurs humains.

Ces interventions sont particulièrement nécessaires lorsque le modèle ne parvient pas à

estimer correctement la concentration en E. coli, contribuant ainsi à enrichir la base de données

et à améliorer les performances des modèles de prédiction.

Les progrès de la technique de surveillance de la qualité de l’eau soulignent l’importance

d’optimiser l’échantillonnage, car ceci impacte fortement le coût du suivi de routine (Jiang et al.,

2020). S’ajoute à cela la mise en place d’un réseau de capteurs dont les données collectées

serviront à alimenter des modèles de machine learning pour prédire la qualité de l’eau et

optimiser les stratégies d’échantillonnage dans les zones de baignade urbaines. Un cadre flexible

a été proposé au niveau de notre étude pour intégrer divers capteurs et créer des dispositifs adaptés

à différents besoins. Notre étude a montré que les capteurs Arduino, à l’exception du capteur

de turbidité, sont adaptés pour surveiller la qualité de l’eau. Le capteur de température à faible

coût et les capteurs de pH se sont révélés fiables, bien que le capteur pH-1 nécessite un entretien

mensuel. Le capteur de conductivité a offert des résultats plus variables, et le capteur d’oxygène

dissous, bien qu’efficace, requiert un entretien régulier. Le capteur de turbidité, en revanche, est
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trop instable et sensible à la lumière ambiante. Nous avons testé un système d’ombrage qui c’est

révélé insuffisant. Il serait intéressant d’explorer l’utilisation d’un tube opaque pour protéger le

capteur de la lumière. Corriger l’interférence crée par la lumière ambiante sur le signal pourrait

constituer une autre piste d’amélioration comme suggéré par Trevathan et al. (2021). Concernant

l’envoi des données, la communication via LoRa nécessite encore des améliorations, notamment

en testant d’autresmodules, avant son déploiement pour la surveillance en temps réel de la qualité

de l’eau. En effet, la portée actuelle de communication avec les passerelles testées ne dépasse

pas 200 mètres.

Avoir une meilleure représentation des données permettrait d’augmenter la performance

et la fiabilité des modèles pour le développement d’un système de surveillance en temps réel et

d’alerte précoce (Jiang et al., 2020). Dans le cadre des méthodes d’apprentissage automatique,

les algorithmes reposent sur l’hypothèse que le jeu de données utilisées pour l’entraînement et

pour le test présentent les mêmes caractéristiques (Noam, 2016). La méthode d’apprentissage

par transfert repose sur cette hypothèse. Cependant, nos résultats montrent que transposer

directement à un site un modèle entrainé sur un jeu de données d’un autre site ne donne pas

toujours des résultats fiables. Une autre possibilité qui peut être explorée afin d’améliorer les

performances des modèles de prédictions est de créer un méta-modèle regroupant par exemple

2 modèles ayant des bonnes performances de prédictions. En effet, nous avons constaté que

les modèles peuvent être complémentaires pour certains paramètres. En sélectionnant deux

modèles présentant un bonne performance de prédiction chacun, par exemple, Random forest

et KNN, nous avons observé que pour 32,9% des mesures un des deux modèles permettait

une estimation raisonable de la concentration en E. coli. Toutefois, l’apprentissage par transfert

peut être plus optimisé en combinant un méta-modèle avec l’utilisation de larges bases de

données publiques. Explorer d’autres bases de données avec un plus grand jeu de données

permettrait d’augmenter les connaissances en identifiant les similarités avec notre cas d’étude.

Ainsi grâce à l’apprentissage par transfert, les connaissances acquises à partir d’un jeu de

données d’entraînement (source) peuvent être transférées sur un autre jeu de données (cible)

(Noam, 2016). Cette stratégie peut offrir un avantage car l’entraînement de plusieurs modèles

peut être gourmand en données et coûteux en temps de calcul. Ainsi, une collaboration a été mise

en place avec le Syndicat Marne Vive pour explorer l’approche d’apprentissage par transfert à

l’aide de base de données internationales pour prédire la qualité microbiologique de la Marne

en utilisant la base de données de la nouvelle zélande, 3 fois plus grande (Balachandran et al.,
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2022). Les résultats ont montré qu’en combinant les meilleurs modèles obtenus sur les deux

jeux de données pour prédire la qualité de l’eau en Marne, on obtient un modèle plus précis,

avec un RPD passant de 1,25 pour le meilleur modèle de machine learning initial (entraîné et

testé sur la Marne) à 1,47 pour le métamodèle final.

Enfin, comme nous avons pu l’observer à travers les modèles de prédiction appliqués

sur la Marne et la Seine, il existe un défaut de transférabilité d’un modèle entraîné sur une

rivière vers une autre. Cette limitation pourrait être liée à des différences spécifiques entre les

deux environnements. Ainsi, une meilleure compréhension des sources d’incertitude au niveau

du modèle, ainsi qu’une étude approfondie de la dynamique des contaminations microbiolo-

giques, permettrait potentiellement d’améliorer la précision des prédictions et de mieux saisir

la variabilité des résultats entre les différentes rivières.
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Chapitre 3 : Incertitudes et variabilité des

dynamiques bactériologiques dans la sur-

veillance des eaux de surface

1. Introduction
L’accès à une eau douce de qualité est fondamental pour la santé humaine et l’environ-

nement. Environ 60 à 80% des besoins mondiaux en eau douce sont satisfaits par les eaux de

surface (Bunsen et al., 2021), faisant de la gestion durable des ressources en eau une priorité

de l’agenda 2030 des Nations Unies (Bunsen et al., 2021). Divers services écosystémiques et

besoins sociaux dépendent de la qualité et de la quantité d’eau douce disponible : le soutien de

la faune aquatique et de la biodiversité, l’irrigation, les activités récréatives, ainsi que les usages

industriels (Giri, 2021).

En région parisienne, les activités récréatives en lien avec les eaux douces constituent un

enjeu relativement ancien qui réémerge récemment. En effet, depuis le milieu du XIXe siècle,

de nombreuses piscines municipales ont vu le jour le long des rives de la Seine et de la Marne.

Les Parisiens ont ainsi commencé à profiter de ces espaces pour se détendre et se baigner

(Pardailhé-Galabrun, 1983; Kistemann et al., 2016). Cependant, au début du XXe siècle, en

raison de la mauvaise qualité des eaux, la baignade en Marne a été interdite dans le Val de

Marne en 1970 par un arrêté préfectoral (Schaffner et al., 2009; Qin et al., 2011). Au cours des

cinquante dernières années, l’amélioration de la qualité de l’eau a progressivement mis l’accent

sur la qualité microbiologique, régulée par la directive 2006/7/CE pour les eaux de baignade

(Schreiber et al., 2015). Ce désir politique et sociétal de reconquête des rivières urbaines pour

la baignade est de plus en plus pressant en Île-de-France, tant pour la Seine que pour la Marne,

avec l’ouverture de plusieurs sites de baignade prévue pour l’été 2025 en héritage des Jeux

Olympiques et Paralympiques 2024.

Dans cette région, les projets de réhabilitation des rivières et de création de zones de

baignade symbolisent cette volonté de reconquête. Ces initiatives s’inscrivent dans une démarche
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de préservation des écosystèmes aquatiques et visent à restaurer la qualité des eaux, notamment

en réduisant la contamination microbiologique d’origine anthropique, qui constitue une source

majeure de risques pour la santé publique. L’ouverture de sites de baignade en Marne et en Seine

illustre cette dynamique (Schaffner et al., 2009; Qin et al., 2011).

Bien que la qualité de l’eau se soit globalement améliorée en Europe depuis le XXe siècle,

malgré la croissance démographique, cette amélioration est principalement attribuée à la gestion

des sources de pollution ponctuelles, favorisée par les législations européennes (91/271/CEE,

2000/60/CE, 2006/07/CE). Ces législations ont conduit à une meilleure gestion des réseaux

d’assainissement, à la modernisation des stations d’épuration et à une réduction des émissions

polluantes (Mouchel et al., 2020; Whelan et al., 2022). Cependant, les sources de pollution

diffuses demeurent problématiques et encore peu étudiées comparé aux sources ponctuelles,

plus faciles à identifier (Garcia-Armisen and Servais, 2007; APE États-Unis, 2022). Or, les

schémas de pluie et de ruissellement peuvent conduire à des déversements d’eaux usées non

traitées dans les eaux de surface (Whelan et al., 2022) et la pollution chimique et microbienne

limite l’utilisation de l’eau en raison des risques sanitaires, impactant ainsi l’état écologique des

plans d’eau et des rivières.

L’intégration de l’incertitude dans lesmodèles de gestion de la qualité de l’eau est cruciale

pour prendre des décisions éclairées sur l’ouverture des zones de baignade. Les évaluations de

la qualité de l’eau, dans le cadre de programmes de gestion des ressources en eau, comparent

souvent les concentrations mesurées d’indicateurs de contamination fécale à des normes de

qualité établies sur la base de risques épidémiologiques (Benham et al., 2006; Gronewold and

Wolpert, 2008). Toutefois, la variabilité méthodologique associée à la quantification des BIF

peut avoir un impact significatif sur les actions de gestion (Griffin et al., 2001; McBride et al.,

2003; Gronewold and Wolpert, 2008). Une meilleure compréhension des sources de variabilité,

y compris celles introduites par les méthodes de mesure et les conditions environnementales, est

nécessaire pour générer des décisions de gestion robustes, telles que l’ouverture ou la fermeture

des sites de baignade.

La dynamique de dégradation de E. coli après un événement pluvial ou une pollution

accidentelle est un autre facteur essentiel à considérer. Les modèles utilisés pour évaluer la

qualité de l’eau doivent intégrer des paramètres reflétant le taux effectif de perte des BIF

au fil du temps, en tenant compte de divers facteurs environnementaux (Auer and Niehaus,

1993; Ferguson et al., 2003). La modélisation de la décroissance bactérienne, souvent basée
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sur des modèles de décroissance de premier ordre, est couramment appliquée dans les études

sur la décroissance des BIF (également désigné comme un taux de « disparition » ou de

« mortalité ») (Sinton et al., 1999; Noble et al., 2004). Ce taux varie selon différentes conditions

environnementales, telles que l’irradiation solaire et la température de l’eau ; nous désignerons

donc ce taux comme un « taux de disparition ». Cependant, la variabilité du taux de disparition

des BIF en réponse à d’autres facteurs, y compris la concentration initiale, n’est pas encore bien

comprise (Gronewold et al., 2011). La plupart des études sur la décroissance des bactéries ont

été menées dans des conditions contrôlées en laboratoire ou in situ (Korajkic et al., 2014; Dick

et al., 2010; Tĳdens et al., 2008). Il est donc nécessaire d’incorporer aussi une approche qui

prenne en compte l’effet de la variabilité des différents paramètres environnementaux sur le taux

de disparition pour améliorer la précision des prévisions concernant la qualité de l’eau. Si les

taux de décroissance pour E. coli sont relativement stables d’un pic de pollution à l’autre pour

un même site, cela pourrait permettre d’avoir un outil utilisable par les gestionnaires dans le

futur (Dick et al., 2010).

Ainsi, la prise en compte de l’incertitude et de la dynamique bactériologique dans

l’évaluation de la qualité de l’eau est cruciale pour une évaluation précise et fiable des risques

sanitaires. En intégrant ces éléments, il sera possible d’établir des prévisions plus précises

concernant la qualité de l’eau et d’assurer la protection de la santé publique tout en favorisant la

reconquête des rivières pour des usages récréatifs (Dick et al., 2010).
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grant par la logique floue l’incertitude de la mesure des
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Résumé : La gestion quotidienne des sites de baignade implique un suivi de la qualité

microbiologique. Or, une incertitude de mesure peut exister au niveau des différentes étapes du

processus, du prélèvement jusqu’à l’analyse de l’échantillon en laboratoire. En effet, la régle-

mentation et les normes laissent une marge de liberté qui peut induire des pratiques différentes

d’échantillonnage et d’analyse.

Dans notre étude, nous avons analysé la variabilité liée à la méthodologie de prélèvement

ponctuel et automatique pour la mesure des bactéries indicatrices fécales réglementaires, de

3 indicateurs de sources animales, d’un indicateur de source humaine et de 2 pathogènes du

genre Campylobacter. Aucune différence significative de concentration en BIF dans les eaux

de surface n’a été constatée en comparant différents modes de prélèvement ponctuel depuis la

berge (seau, bécher, pompe), quelque soit le site de prélèvement. Les résultats des équipements

de prélèvement montraient que les rinçages avec l’eau du site préconisés par la réglementation

étaient suffisants pour éviter les contaminations croisées pour les équipements de prélèvement

ponctuel des eaux de surface même lorsque le site précédent était 10 fois plus contaminé. Pour

le préleveur automatique entre deux prélèvements d’eau de surface, un nettoyage du système

à l’eau stérile suffisait. Par contre, pour les eaux résiduaires, une désinfection à l’eau de Javel
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suivie de 3 rinçages à l’eau stérile pouvait s’avérer nécessaire.

Les résultats indiquaient qu’il est recommandé de limiter le temps de stockage de l’échan-

tillon, en privilégiant un transport réfrigéré. Une fois l’échantillon ensemencé sur le milieu de

culture, le temps minimal d’incubation des BIF (24 h, 48 h, 72 h) présentait une variation inverse

à la concentration de l’échantillon. L’identification et l’estimation de ces sources de variabilité

permettront ainsi la mise en place d’un guide d’échantillonnage pour une surveillance optimale

des sites de baignade.

L’intégration de la logique floue dans l’évaluation de la qualité de l’eau, notamment

en ce qui concerne les concentrations en Escherichia coli, s’est révélée être une approche

efficace pour la gestion des zones de baignade. En combinant des méthodes de défuzzification

appropriées avec des dispositifs de surveillance en temps réel tels que le ColiMinder, il est

possible de classer rapidement et de manière fiable les sites de baignade, tout en tenant compte

des incertitudes inhérentes aux mesures. Les résultats obtenus montraient une forte concordance

avec les méthodes couramment utilisées par les gestionnaires, offrant ainsi une évaluation plus

nuancée des données et une prise de décision accélérée.

Mots clés : Bactéries indicatrices fécales ; incertitude ; échantillonnage, prélèvement,

logique floue

2.1. Introduction

Différentes sources de contamination ponctuelles et diffuses peuvent apporter un flux de

pathogènes au niveau des sites de baignade et ainsi générer un risque sanitaire lié au contact ou

à l’ingestion des eaux contaminées (Guérineau et al., 2014). En zone urbaine, les rivières sont

particulièrement sujettes à des dégradations de la qualité microbiologique lors des événements

pluvieux qui génèrent du ruissellement sur des surfaces contaminées par des déjections animales

et des rejets urbains de temps de pluie pouvant contenir des eaux usées non traitées. Ainsi, les

principales sources de pathogènes d’origine hydrique sont les fèces humaines et animales,

provenant d’individus porteurs sains ou malades (Passerat et al., 2011). Les sources animales

typiquement associées aux contaminations fécales des eaux de surface en zone urbaine incluent

les chiens, les chats et les oiseaux aquatiques, dont la présence peut contribuer à augmenter

fortement les quantités en indicateurs bactériens de contamination fécale (Simpson et al., 2002;
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Wright et al., 2009).

Dans le cadre de la directive européenne 2006/7/CE qui porte sur la gestion des eaux

de baignade, la qualité microbiologique des eaux de surface est actuellement estimée à l’aide

de deux groupes de bactéries, dites bactéries indicatrices fécales (BIF), les Escherichia coli

et les entérocoques intestinaux (EI), dont l’analyse permet d’évaluer la conformité des eaux

aux normes de qualité microbiologique. Il est possible de compléter le diagnostic de l’origine

des sources de contamination en utilisant des bactéries ou des virus spécifiques des sources

humaines ou animales (Devane et al., 2007).

La gestion quotidienne des zones de baignade nécessite donc un suivi régulier de la qualité

microbiologique de l’eau pour limiter les risques sanitaires (OMS, 2018). En cours de saison,

l’ouverture ou la fermeture d’un site de baignade est basée sur la confrontation des mesures de

concentration en BIF à des valeurs seuils suivant l’instruction N° DGS/EA4/2022/168 du 17

juin 2022 relative aux modalités de recensement, gestion et classement des eaux de baignade.

Toutefois, cette prise de décision peut être rendue délicate lorsque les concentrations mesurées

sont proches des seuils, sachant qu’il existe plusieurs sources d’incertitude sur le prélèvement,

le stockage et la mesure des BIF dans les échantillons d’eau de surface. Une surveillance

optimale de la qualité ne peut être atteinte que si l’incertitude sur les niveaux de BIF mesurés

est identifiée et qu’un moyen pour la réduire est considéré lors de l’échantillonnage et de la

mesure. De ce fait, les laboratoires habilités pour le suivi de la qualité des eaux de baignade sont

accrédités et les méthodes d’échantillonnage et d’analyse sont normées. Malgré tout, il subsiste

une incertitude non négligeable qui peut rendre l’interprétation des résultats délicate. Pour la

gestion quotidienne des sites de baignade, une prise de décision éclairée est nécessaire, souvent

face à une incertitude significative (Brandão et al., 2022). L’hétérogénéité et l’incertitude liées

aux échantillons compliquent cette tâche lorsque la qualité de l’eau est proche d’un seuil, car

des valeurs peuvent chevaucher les valeurs limites réglementaires, créant des doutes quant à leur

conformité (Rabinovici et al., 2004).

En effet, les textes réglementaires et normatifs fournissent un corpus de recommandations

pour le prélèvement d’eau de baignade et permettent ainsi d’avoir un référentiel commun pour

l’analyse de la qualitémicrobiologique de l’eau. Par exemple en France, dans le cadre Européen il

existe un corpus réglementaire traduit en droit français et des guides produits par les Agences de

l’eau qui donnent des directives sur le prélèvement et l’analyse, tels que la directive européenne

2006/7/EC, le guide de prélèvement de l’Agence de l’Eau Loire-Bretagne (AELB, 2006), ainsi
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que l’ensemble de normes NF EN ISO 19458, FD T 90-521 et FD T 90-523-1. Ce référentiel

contribue à diminuer l’incertitude sur l’échantillonnage,maismême avec ces instructions il existe

une certaine liberté d’interprétation et d’adaptation entrainant potentiellement une incertitude.

Ainsi, différents équipements peuvent être utilisés lors du prélèvement ponctuel : flacon ou

pompe reliés à une perche télescopique depuis la berge ou encore seau lesté lancé depuis un pont

ou une berge (guide FD T 90-523-1). Avec la perche, le prélèvement peut s’effectuer directement

dans le flacon stérile ou par un flacon de prélèvement intermédiaire (que nous appellerons bécher)

pour transvaser dans le flacon stérile (guide FDT90-523-1).De plus, des contaminations croisées

des équipements peuvent avoir lieu entre deux sites consécutifs et des procédures de désinfection

avec des lingettes et/ou de rinçage avec l’eau du site sont prescrites. Plusieurs pratiques sont

aussi constatées sur le terrain quant aux conditions de transport et de stockage des échantillons

avant l’analyse. Ainsi, entre les différents textes francais, la température et le temps de transport

recommandés sont de 5 ± 3°C avec un temps de retour au laboratoire le plus rapide et une analyse

au plus tard dans les 24 heures.À celà s’ajoute des contraintes de terrain et d’éloignement des sites

qui demandent parfois une adaptation de la part des personnels. L’ensemencement et la lecture

des milieux comportent également une certaine incertitude liée aux erreurs de manipulation,

à l’homogénéisation de l’échantillon, à l’équipement et aux réactifs. Dans le cadre du suivi

réglementaire, l’incertitude est minimisée par le fait que des laboratoires accrédités réalisent le

suivi. Par contre, pour les échantillonnages avec les préleveurs automatiques, il n’existe pas de

protocole normé et l’incertitude peut atteindre des valeurs de l’ordre de 15 à 67% (McCarthy

et al., 2008). Lorsque les indicateurs spécifiques de sources humaines ou animales (bactériens

ou viraux) sont suivis, la mesure en laboratoire ne fait pas l’objet de normes (hormis le marqueur

humain HF183 aux USA qui fait l’objet d’une norme US-EPA 1696.1) et en dehors du guide

MIQE pour l’analyse en PCR quantitative en temps réel (qPCR), il n’y a pas ou peu d’effort de

normalisation ou de tests interlaboratoires (EPA, 2019; Layton et al., 2013; Lane, 2019; Ahmed

et al., 2020).

Mieux définir l’incertitude associée à la surveillance des BIF et des marqueurs bactériens

ou viraux spécifiques de sources de contamination permettra une amélioration des bases scienti-

fiques des normes et des réglementations en vigueur. Intégrer cette notion d’incertitude dans la

prise de décision lors de la gestion quotidienne des sites de baignade est essentiel pour garantir

la sécurité des usagers et prévenir les risques sanitaires. Les décisions liées à la qualité de l’eau

ne se limitent pas à des critères quantitatifs simples mais intègrent également des éléments
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plus subjectifs qui peuvent rajouter de l’ambiguïté. Dans cette optique, Gharibi et al. (2012)

soulignent l’importance d’une approche fondée sur la logique floue qui permet de modéliser

l’incertitude dans l’évaluation de la qualité de l’eau comme la qualité microbiologique. La lo-

gique floue (Zadeh, 1965) est devenue une approche courante particulièrement adaptée pour des

indices environnementaux. Cette approche se base sur une méthodologie robuste, intégrant les

incertitudes associées aux données et aux décisions (Ross, 2005). Elle permet d’incorporer les

réflexions et l’expertise humaine dans les indices, ce qui facilite la gestion d’informations non

linéaires, incertaines, ambiguës et subjectives (Gharibi et al., 2012). Un aspect particulièrement

délicat, principalement pour les gestionnaires, est que lorsque les valeurs mesurées approchent

la valeur seuil, la prise de décision devient complexe. Dans ces situations, la logique floue offre

un cadre permettant d’évaluer les nuances et de rationaliser le processus décisionnel en tenant

compte de cette incertitude supplémentaire. Quelle que soit la source d’information, elle sera

associée à un certain degré d’incertitude (Ross, 2005).

Dans l’évaluation de la conformité avec une limite de spécification supérieure, des

scénarios typiques émergent lorsque les résultats de mesure et leurs incertitudes sont pris en

compte. Lorsque la valeur mesurée, ajoutée à son incertitude, est clairement au-dessus ou en

dessous de cette limite, la décision est évidente. Cependant, des erreurs peuvent survenir en

raison du chevauchement partiel des bandes d’incertitude autour des limites de spécification

(Brandão et al., 2022). De plus, un article souligne que «le problème de la prise de décision sous

incertitude est que la majorité des informations que nous avons sur les résultats possibles est

généralement vague, ambiguë et autrement floue» (Ross, 2005). Intégrer ces perspectives dans

le cadre de l’évaluation de la qualité microbiologique des eaux de baignade vise à établir un

cadre de décision robuste qui tienne compte de la complexité et de l’incertitude inhérentes aux

contextes de baignade. Deux études offrent un éclairage précieux sur l’intégration des méthodes

de décision dans des contextes environnementaux complexes, renforçant ainsi la pertinence de

cette approche (Ross, 2005; Zhou and Chen, 2023).

L’objectif de notre étude est donc de proposer une nouvelle approche de prise de décision

sous incertitude utilisant la logique floue pour aider à la gestion quotidienne des eaux de

baignade. Dans un premier temps, les sources de variabilité seront identifiées et l’incertitude

associée à l’échantillonnage dans l’analyse des BIF, ainsi que dans celle de six marqueurs de

contamination fécale d’origine animale et humaine, sera quantifiée. Pour ce faire, nous avons

procédé à une analyse statistique des modalités de prélèvement, des protocoles de nettoyage,
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ainsi que de toutes les étapes de transport et de stockage des échantillons, en incluant la recherche

et le dénombrement des BIF. Cette démarche vise à établir une incertitude globale qui facilitera

dans un deuxième temps la mise en place d’une prise de décision s’appuyant sur une approche de

logique floue. Pour tester l’efficacité de cette nouvelle approche de classement des échantillons

selon la réglementation française pour la gestion quotidienne, nous utiliserons les données

provenant du dispositif de suivi en continu de la qualité microbiologique, ColiMinder, installé

sur plusieurs sites dans la Seine et la Marne en région parisienne (France). Placé en amont d’un

site de baignade, ce type d’équipement permet d’accélérer le processus décisionnel d’ouverture

et de fermeture du site le jour même, et de rationaliser l’effort d’échantillonnage supplémentaire

avec les analyses réglementaires qui rendront un résultat au plus tôt 18 h ou 24 h plus tard

(Angelotti et al., 2022). Cet équipement installé sur berge estime la concentration en BIF à partir

de mesures enzymatiques sur un volume d’eau prélevé et filtré (Cazals et al., 2020).

2.2. Matériel et méthodes

2.2.1. Site d’échantillonnage

Au cours de cette étude, des prélèvements d’eau de surface ont été effectués de mai

à octobre sur 4 sites en Ile-de-France (France) entre 2022 et 2023. Ces sites représentent un

gradient de concentrations en BIF allant d’un site de baignade de bonne qualité microbiologique

à des eaux usées non-traitées. Deux sites étaient situés au lac de Créteil (Val-de-Marne, France),

où les concentrations en BIF étaient 10 fois plus élevées sur le site 2 que sur le site 1. Ces

deux sites lacustres ont fait l’objet de prélèvements ponctuels depuis la berge avec différents

équipements. Des prélèvements moyens sur 24 h à l’aide d’un préleveur automatique Bühler

2000 réfrigéré (Hach) ont été réalisés au pont de Crimée sur l’eau du canal de l’Ourcq au niveau

du second bassin de la Villette (Paris, France) et dans la Marne à Saint-Maur-des-Fossés (Val-

de-Marne). De plus, les eaux brutes en entrée de la station de traitement des eaux usées de Saint-

Thibault-des-Vignes (Seine-Saint-Denis) et les eaux pluviales en amont du bassin de rétention

de Sucy-en-Brie (Val-de-Marne) et au rejet de l’ouvrage cadre du centre urbain de Noisy-le-

Grand (Seine-Saint-Denis) ont également été prélevées pendant 24 h à l’aide d’un préleveur

automatique. Différentes techniques et protocoles ont été testés afin d’étudier la variabilité liée

à la méthodologie de prélèvement, de transport, de stockage des échantillons et de mesure des

BIF, des marqueurs de contamination fécale animale et humaine et des pathogènes du genre
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Campylobacter. Pour les protocoles d’échantillonnage, de lavage, de transport et de stockage

des échantillons, un total de 5 prélèvements a été effectué avec chaque équipement au niveau de

chaque site.

De plus, nous avons exploité les résultats entre 2020 et 2023 des prélèvements hebdo-

madaires ou bi- hebdomadaires effectués par la Ville de Paris entre 7 h et 12 h au niveau de 3

sites dans la Seine (Pont de l’Alma et Pont de Tolbiac en rive gauche et en rive droite ; Paris,

France). Les mesures ont été effectuées selon la méthode de référence NF EN ISO 9308-3 pour

E. coli. Nous avons également utilisé des mesures estivales effectuées entre 2020 et 2023 par le

système de suivi automatisé ColiMinder (Vienna Water Monitoring, VWM) au niveau de 2 sites

en Seine (en rive gauche à Pont de l’Alma et Pont de Tolbiac à Paris) mis en place par la Ville

de Paris.

2.2.2. Équipements d’échantillonnage ponctuel depuis la berge

Les eaux de surface du lac de Créteil ont été prélevées dans les 30 premiers cm à 1-

2 m de la berge selon la norme FD T90-523-1. Selon cette même norme, trois équipements

peuvent être employés pour le prélèvement ponctuel : un bécher associé à une perche (ou canne)

télescopique, une pompe dont le tuyau est associé à une perche télescopique et un seau lancé

depuis un pont ou une berge. Ainsi, au niveau des 2 sites du lac de Créteil, ces 3 équipements

ont été testés depuis la berge. Nous avons choisi un milieu lentique pour nous affranchir d’une

trop grande hétérogénéité spatio-temporelle entre chaque prélèvement comme dans le cas d’une

rivière. L’analyse de l’incertitude a été réalisée en utilisant l’équation 3.1.

2.2.3. Protocole de nettoyage des équipements d’échantillonnage ponctuel

Il est généralement recommandé d’avoir les mains propres, de nettoyer le matériel de

prélèvement, d’utiliser un flaconnage stérile et d’effectuer le prélèvement de manière aseptique,

mais sans plus de précision (norme de prélèvement FD T90-521, Directive 2006/7/CE, Arrêté

du 19 octobre 2017 sur les méthodes d’analyse pour le contrôle sanitaire des eaux). Le guide des

directions régionales et départementales des affaires sanitaires et sociales de la région Rhône-

Alpes (2006) précise de flamber la canne télescopique sur la partie en contact avec l’eau ou de

désinfecter avec un produit adapté. Le guide FD T90-523-1 préconise pour la pompe de laisser

couler l’eau le temps nécessaire pour rincer le tuyau avant le prélèvement et pour le bécher

intermédiaire de bien le rincer avec l’eau du site. Sur la base de ces recommandations, nous

143



Chapitre 3

avons testé plusieurs protocoles de désinfection et/ou rinçage du bécher de prélèvement et du

tuyau de la pompe, en simulant un risque de contamination croisée entre deux sites avec un écart

de contamination d’1 Log10 en concentration de BIF.

Ainsi au lac de Créteil, la contamination croisée a été simulée en prélevant d’abord sur

un site peu contaminé (site 1), puis sur un site 10 fois plus contaminé (site 2) et à nouveau

au site 1, en utilisant les mêmes équipements ayant subi ou non un protocole de nettoyage.

Trois protocoles de nettoyage ont été testés pour le tuyau de la pompe et pour le bécher : i)

rinçage 3 fois à l’eau du lac avant prélèvement, ii) désinfection à l’éthanol et séchage à l’air ou

iii) désinfection à l’éthanol puis rinçage 3 fois avec l’eau du site de prélèvement. L’analyse de

l’incertitude a été réalisée en utilisant l’équation 3.2.

2.2.4. Protocole de nettoyage du préleveur automatique

Les prélèveurs automatiques sont utiles pour effectuer des échantillonnages sur un inter-

valle de temps (par exemple un échantillon moyen sur 24 h) ou pour échantillonner un événement

pluvieux au pas de temps ou en fonction d’un débit, ou d’un seuil. Le prélèvement peut être initié

à un temps donné ou sur des paramètres hydrologiques (débit, hauteur d’eau...). Par ailleurs,

le pourcentage d’incertitude ne semble pas dépendre de la concentration en BIF de chaque site

comme il a pu être démontré sur les rejets pluviaux (McCarthy et al., 2008). Toutefois, une

contamination du système de prélèvement peut survenir après l’échantillonnage en contaminant

les échantillons suivants (Hathaway et al., 2014).

Le système de prélèvement de ces échantillonneurs équipés d’une pompe péristaltique,

comporte un tuyau d’aspiration, un tuyau d’écrasement, un bol de prélèvement, un logement

pouvant accueillir une rosette de 24 flacons d’un litre. Ces éléments peuvent générer une conta-

mination, il est donc nécessaire de bien les nettoyer (Wilson et al., 2024). La réglementation

française est assez succincte quant à leur protocole de nettoyage pour l’analyse microbiologique.

Le guide FD T90-523-1 et celui de l’Agence de l’eau Loire-Bretagne ne donnent pas de recom-

mandation sur le nettoyage mais plus sur l’installation du tuyau de prélèvement et les conditions

de stockage des flacons de prélèvement. L’Institut d’études géologiques des États-Unis (USGS)

propose un guide plus détaillé dans lequel il est recommandé, entre chaque prélèvement, de

démonter le système de prélèvement pour autoclaver les flacons et les tuyaux, et, si nécessaire,

d’utiliser une solution de Javel domestique diluée à 5%, suivie de plusieurs rinçages à l’eau

désionisée (Wilson et al., 2024). Des blancs de terrain du système de prélèvement servent de
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contrôle qualité.

Le but de notre expérience est de déterminer s’il existe une contamination résiduelle

après un prélèvement et si le protocole de rinçage à l’eau du site programmé sur le préleveur

suffit, ou s’il est nécessaire d’effectuer une désinfection à l’eau de Javel puis un rinçage à

l’eau stérile. Pour ce faire, pour les eaux de surface du canal de l’Ourcq, nous avons comparé

les niveaux de BIF mesurés dans des prélèvements ponctuels pris au préleveur automatique

(Bühler 2000 réfrigéré Hach) avant et après désinfection suivis de rinçages à l’eau du robinet

stérile. Le préleveur automatique est équipé de deux électrodes de remplissage conductrices qui

nécessitent une conductivité minimale de 50 µS/cm pour détecter correctement le niveau de

liquide et gérer les prélèvements (Lange, 2012). Or, l’eau distillée, en raison de sa conductivité

très faible (généralement inférieure à 1 µS/cm), ne permet pas le bon fonctionnement de ces

électrodes. Pour éviter ces problèmes, nous avons utilisé de l’eau du robinet autoclavée pendant

20 minutes à 120°C qui présente une conductivité suffisante. Un prélèvement manuel au bécher

directement à côté du tuyau du préleveur représentait la référence avec laquelle les prélèvements

à l’échantillonneur Hach ont été comparés (avant et après stérilisation et rinçage). En effet, il a été

démontré que lors de prélèvements ponctuels par méthode manuelle au bécher et par préleveur

automatique, les concentrations en BIF ne différaient pas significativement (Ferguson, 1994;

Galfi et al., 2014). Le système de pompage (tuyau et bol) du préleveur automatique a été nettoyé

avec l’eau de Javel à 0,5% (degré chlorhydrique) suivi de 3 rinçages à l’eau du robinet autoclavée

20 min à 120°C. Ces tests ont été effectués 1 à 63 jours après un prélèvement automatique pour

vérifier si une contamination résiduelle persiste entre deux prélèvements plus ou moins éloignés

dans le temps (par exemple entre deux événements pluvieux). L’analyse de l’incertitude a été

réalisée en utilisant l’équation 3.2. De plus, des blancs de terrain ont également été réalisés en

prélevant de l’eau du robinet stérile soit après désinfection suivie de trois rinçages à l’eau du

robinet autoclavée, soit directement après un prélèvement d’eau sur site, ou encore 3 à 10 jours

après le dernier prélèvement.

2.2.5. Protocole de transport et stockage

Selon la directive 2006/7/CE, l’analyse en laboratoire doit être effectuée le plus rapide-

ment possible après prélèvement. Cependant, le transport peut parfois prendre du temps suivant

l’éloignement du site d’échantillonnage et la circulation routière. Selon la norme FD T90-523-1,

l’échantillon doit être conservé à une température de 5 ± 3 °C et l’analyse doit être effectuée
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au mieux dans les 8 h et au plus tard dans les 24 h. Cependant, le système de réfrigération des

échantillons peut dysfonctionner ou ne pas être installé en raison des limitations de l’infrastruc-

ture de la zone d’installation. Ainsi, l’effet de la réfrigération pendant le transport et le stockage

des échantillons a été testé au lac de Créteil sur le site 2 avec un temps de transport de 0,5 h et 6

h à 5°C (glacière) ou à température ambiante (19,2 ± 2,4°C), à l’ombre, avec un ensemencement

immédiatement dès le retour au laboratoire ainsi qu’après 24 h de stockage des échantillons au

réfrigérateur à 5°C. L’analyse de l’incertitude a été réalisée en utilisant l’équation 3.2.

2.2.6. Dénombrement des BIF

Afin d’estimer la concentration (exprimée en nombre le plus probable NPP/100mL), d’E.

coli et des EI, les échantillons ont été ensemencés sur les microplaques MUG/EC et MUD/SF

(BioRad) selon la méthode de référence NF EN ISO 9308-3 pour E. coli et NF EN ISO 7899-1

pour EI. Les microplaques ont été incubées à 44°C pendant 24 à 48 h selon les normes précitées

et le nombre de puits positifs a été dénombré sous lampe UV. Le calcul du NPP/100 mL dans

un intervalle de confiance de 95% a été réalisé à l’aide d’une feuille de calcul Excel® publiée

par Jarvis et al. (2010).

2.2.7. Incertitude analytique et temps d’incubation

Nous avons procédé à une analyse de l’incertitude analytique par ensemencement d’un

même échantillon sur 5 microplaques différentes représentant 5 réplicats. Pour chaque réplicat,

des dilutions ont été préparées à nouveau, en homogénéisant entre chaque dilution et avant

ensemencement. L’analyse de l’incertitude a été réalisée en utilisant l’équation 3.1.

Lors du dénombrement des BIF, les normes NF EN ISO 9308-3 et NF EN ISO 7899-1

précisent que la lecture doit être réalisée au minimum 36 h et au maximum 72 h après l’ense-

mencement. Cependant, dans la pratique, une lecture est souvent faite dès 24 h. La variabilité

des concentrations liées au temps d’incubation a été évaluée sur des échantillons représentant un

gradient de contamination : les eaux usées en entrée et sortie de la station de traitement des eaux

usées de Saint-Thibault-des Vignes (échantillon moyen sur 24 h), les eaux de surface du canal

de l’Ourcq (échantillon moyen sur 24 h) et les eaux de surface du Lac de Créteil (échantillons

ponctuels au bécher ou à la pompe). Les microplaques MUG/EC et MUD/SF ont été lues après

24, 48 et 72 h.
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2.2.8. Extraction et quantification de l’ADN

La variabilité liée au prélèvement, transport et stockage a également été évaluée pour

des indicateurs bactériens de contamination fécale humaine ou animale (oies bernaches, chiens,

mouettes et goélands), deux espèces du genre Campylobacter et pour les bactéries totales. Dans

ce cas, uniquement 2 prélèvements sur 5 ont été utilisés. La filtration des différents échantillons

a été réalisée sur des cartouches SterivexT M de 0.22 µm de porosité (Milipore) qui ont été

stockées à -20° C avant extraction de l’ADN. Chaque SterivexT M a été ouvert stérilement et le

filtre a été découpé en morceaux d’environ 1-2 mm à l’aide d’un scalpel stérilisé, selon Roguet

(2015). Les fragments ont été insérés dans un tube Lysing Matrix E du kit FAST DNA SPIN

KIT for soil (MP Biomedical) pour en extraire l’ADN total selon les instructions du fabricant

modifiées par Roguet (2015). La concentration et la pureté de l’ADN extrait ont été mesurées à

230, 260 et 280 nm avec un spectrophotomètre (WPA, BioWave DNA). Puis l’ADN a été stocké

à -20°C en attendant son amplification.

2.2.9. Amplification des marqueurs spécifiques et des pathogènes

Six espèces bactériennes ont été utilisées comme marqueurs de contamination fécale

animale et humaine. Pour les marqueurs bactériens suivants, le gène de l’ARNr 16S a été amplifié

et quantifié : Catellicoccus marimammalium (Bacillota) pour les mouettes et goélands (Gull2,

Ryu et al. (2012)) ; et trois espèces du groupe des Bacteroidales pour les chiens (BacCan,Kildare

et al. (2007)), les oies bernaches (CGOF1, Fremaux et al. (2010)), et les humains (HF183, Green

et al. (2014)) . De plus, les pathogènes du genre Campylobacter ont été quantifiés en amplifiant

un fragment du gène hipO codant pour l’hippurate hydrolase pour C. jejuni et un fragment du

gène codant pour la peptidase T pour C. lari (He et al., 2010; Vondrakova et al., 2014). En

plus de ces marqueurs, une estimation de la charge bactérienne totale a été réalisée par une

quantification du nombre de copies du gène de l’ARNr 16S (BactQuant, Liu et al. (2012)).

La PCR quantitative en temps réel (qPCR) a été réalisée sur les ADN extraits en utilisant

le thermocycleur CFX96 (BioRad). Un contrôle positif interne (β-actine) a été ajouté pour

évaluer la présence d’inhibiteurs résiduels selon Wurtzer et al. (2014). Un contrôle négatif (eau

stérile) a été inclus également lors des amplifications. Pour chaque cycle, des courbes standard en

triple ont été générées (de 101 à 107 copies/µL) en utilisant un plasmide linéarisé ou des gBlocks

contenant la séquence cible. Un coefficient de corrélation supérieur à 0,995 a été observé pour
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chaque courbe standard de dosage. Les réactions contenaient 1X de iTaqT M Universal probes

Supermix (Bio Rad), les amorces sens et antisens de la β-actine et de la cible bactérienne, une

sonde à hydrolyse spécifique de chaque cible, 104 copies/µl d’ADN de β-actine et 1 µL d’ADN

matrice pour un volume total de 20 µL. Le tableau S1 montre les séquences des amorces et des

sondes et leur concentration finale. Les réactions ont été soumises à une dénaturation initiale à

95°C pendant 10 min puis 40 cycles de dénaturation à 95°C pendant 20 sec et hybridation et

élongation à 60°C pendant 1 min.

2.2.10. Analyse statistique

Afin d’évaluer l’effet significatif de chaque protocole et technique, une analyse statistique

a été effectuée avec le logiciel R pour les BIF par des tests appariés : de Friedman, de Wilcoxon

ou de Student (R Core Team, 2021). La normalité des données a été vérifiée avec un test de

Shapiro-Wilk. Dans le cas des tests de Wilcoxon ou test t répétés pour tous les échantillons 2

à 2, la correction de Bonferroni a été appliquée. Pour tous les tests statistiques, le niveau de

signification était basé sur 5%.

2.2.11. Analyse et estimation de l’incertitude

L’incertitude représente le manque partiel de connaissance, réduite par une amélioration

de la collecte de données. Afin d’estimer le pourcentage d’incertitude au niveau de la mesure

de la concentration en BIF et de la quantification des indicateurs de sources et des 2 pathogènes

du genre Campylobacter. Une mesure du pourcentage d’erreur relative d’échantillonnage a été

réalisée (Harmel et al., 2016; Esbensen and Wagner, 2014). Pour cela, 3 équations différentes

peuvent être utilisées en fonction des données à disposition.

Pour plusieurs échantillons :

±%Inc = 2 ∗ ecartype(Xi)
moyenne(Xi)

∗ 100 (3.1)

Si Xrf est la valeur de référence :

%Inc = X2 −Xrf

Xrf

∗ 100 (3.2)
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Si la valeur de référence est inconnue :

±%Inc = |X2 −X1|
moyenne(X1, X2) ∗ 100 (3.3)

Au niveau de ces formules, %Inc représente le pourcentage d’incertitude, ( Xi, X1 et

X2) sont des valeurs de concentration d’un échantillon et Xrf est supposée être la vraie valeur

(échantillon de référence).

2.2.12. Prise de décision sous incertitude

Afin de proposer une aide à l’utilisation de la qualification des échantillons en cours

de saison en tenant compte de l’incertitude liée au prélèvement et à l’analyse, nous avons

implémenté un outil d’aide à la décision basé sur la logique floue. Les seuils utilisés sont de

100 et 1800 NPP/100 mL servant au classement des échantillons ponctuels en cours de saison

sur un site de baignade classé (Instruction DGS/EA4/2022/168 du 17 juin 2022 relative aux

modalités de recensement, gestion et classement des eaux de baignade). Pour ce faire, nous

avons utilisé les résultats des prélèvements hebdomadaires ou bi-hebdomadaires au niveau de 3

sites en Seine (Pont de l’Alma et Pont de Tolbiac en rive gauche et en rive droite). Au niveau

du pont de Tolbiac, un système de mesure en continu ColiMinder avait également été installé

sur la rive gauche et a servi à classer les deux sites rive-gauche et rive-droite. En effet, il n’y

avait pas de différence significative entre les 2 sites avec les mesures réglementaires (Test de

Wilcoxon, p>0.57, n=547). L’intégration de l’incertitude dans la classification de la qualité

de l’eau a été réalisée en appliquant une approche basée sur la logique floue (Ross, 2005).

L’incertitude globale, de l’échantillonnage à la lecture des milieux de culture, a été calculée

comme la racine carrée de la somme quadratique de l’incertitude sur le nettoyage, le stockage

et la mesure, conformément à la méthode proposée par Brandão et al. (2022). Cette approche

permet d’englober l’ensemble des incertitudes associées à la mesure de la concentration d’E.

coli obtenue.

La logique floue a ensuite été utilisée pour intégrer ces incertitudes dans les valeurs seuils

utilisées en cours de saison, selon l’instruction n°DGS/EA4/2020/111 du 2 juillet 2020 : Bonne

(<100 NPP/100 mL), Moyenne (<1800 NPP/100 mL) et Mauvaise (>1800 NPP/100 mL). Nous

nous sommes focalisés sur le paramètre le plus déclassant pour ces sites en Seine, à savoir la

concentration en E. coli (NPP/100 mL). Des ensembles flous ont été définis pour refléter les
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niveaux de qualité avec des sous-ensembles se chevauchant pour représenter l’incertitude dans

les valeurs seuils. Les fonctions d’appartenance ont été définies à l’aide de fonctions sigmoïdes,

permettant d’incorporer un pourcentage d’incertitude associé à chaque sous-ensemble. Chaque

mesure s’est vue attribuer un degré d’appartenance à plusieurs ensembles flous simultanément.

Ensuite, l’inférence floue a été effectuée en utilisant la méthode de défuzzification pour prendre

la décision (Ross, 2005). Une méthode dite de défuzzification a permis de convertir les sorties

floues résultant dumoteur d’inférence floue en une valeur numérique non floue. Il existe plusieurs

méthodes de défuzzification, telles que le centre de gravité (COG), le bisecteur (BS), la moyenne

des maxima (MOM), le maximum le plus à gauche (LOM) et le maximum le plus à droite (ROM)

(Akkurt et al., 2004; Jantzen, 1999). Parmi ces méthodes, le COG, souvent appelé méthode du

centroïde, est la plus couramment utilisée. Cette méthode calcule le barycentre des valeurs

d’appartenance et fournit ainsi une estimation précise de la qualité de l’eau (Ross, 2005). La

méthode du bisecteur (BS) divise l’aire sous la courbe d’appartenance en deux parties égales

pour estimer le résultat. Quant à la méthode de la moyenne des maxima (MOM), elle prend la

moyenne des points où la fonction d’appartenance atteint son maximum, tandis que les méthodes

du maximum le plus à gauche (LOM) et du maximum le plus à droite (ROM) sélectionnent

respectivement le premier et le dernier maximum rencontré. Ces méthodes permettent chacune

une approche différente de la défuzzification et ont été toutes testées dans cette étude pour

évaluer la qualité de l’eau, en fonction des critères flous définis.

Afin d’appliquer lesméthodes de défuzzification, nous avons utilisé les données collectées

par le système ColiMinder avec la valeur d’incertitude associée. La qualité de l’eau a été évaluée

pour chaque jour en testant la méthode de logique floue sur plusieurs intervalles de temps

permettant de classer la qualité de l’eau pour le matin (8 h) ou l’après-midi (12 h). Nous avons

testé des intervalles de 24 heures (de midi la veille à midi, ou de 8 h la veille à 8 h), des intervalles

de 12 heures (de minuit à midi, ou de 20 h la veille à 8 h) permettant une analyse temporelle plus

fine des variations de la qualité de l’eau dans les différentes stations de prélèvement. De plus,

un intervalle de 4 heures (de 4 h à 8 h et de 8 h à 12 h) comparable à celui utilisé par la Ville de

Paris durant les jeux olympiques a également été testé (Desir, 2024). Un total de 6 intervalles

de temps a été testé.

Les résultats de classification obtenus avec les 5 méthodes de défuzzification mises

en œuvre sur les données du ColiMinder ont été comparés en utilisant deux approches : i)

la classe identifiée après défuzzification a été comparée à la classification des données du
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suivi réglementaire par rapport aux valeurs seuils de gestion en cours de saison (Instruction

n°DGS/EA4/2020/111 du 2 juillet 2020), ii) la classe de défuzzification est comparée au résultat

de la méthode de classification utilisée par la Ville de Paris pendant les Jeux Olympiques 2024.

Cette dernière calcule une moyenne glissante de 4 heures, qui est comparée à celle des 24 heures

précédentes, pour évaluer la dégradation, l’amélioration ou la stabilité de la qualité de l’eau, et

réalise une classification (Desir, 2024). Ceci a permis de valider l’efficacité de la logique floue

sous incertitude par rapport à la méthode réglementaire dont les résultats ne sont généralement

disponibles qu’après 36 h d’incubation des microplaques.

2.3. Résultats et discussion

2.3.1. Variabilité liée à l’équipement pour le prélèvement ponctuel

Le type d’équipement utilisé (bécher, pompe, seau) pour le prélèvement ponctuel depuis

la berge ne semble pas avoir d’impact sur les concentrations en BIF de l’eau de surface. En

effet, aucune différence significative n’a été observée entre les résultats obtenus avec les trois

systèmes, quel que soit le site de prélèvement (2 sites du lac de Créteil) et que ce soit pour les E.

coli ou pour les EI (Test de Friedman apparié, n=30, p>0,05, Figure 3.1A). Ce résultat conforte

le fait que le guide FD T 90-523-1 propose ces trois équipements comme options possibles pour

le prélèvement. Toutefois, il est recommandé de n’utiliser le seau qu’en dernier recours du fait

de la difficulté à maintenir propre cet équipement. La suite de l’étude se concentrera donc sur

la pompe et le bécher comme méthode de prélèvement. Nos résultats montrent globalement que

les incertitudes sur la mesure des indicateurs étaient similaires entre les équipements, confortant

ainsi la polyvalence du protocole (AELB, 2006). Combinés à une perche, ces équipements

permettent d’effectuer un prélèvement à 2 m de la berge et dans les 30 premiers centimètres

(AFNOR). La variabilité estimée pour les deux équipements était la plus faible pour les BIF, le

marqueur Humain HF183 et le marqueur oie CGOF1 (Figure 3.1B).
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Figure 3.1 – Comparaison des équipements de prélèvement ponctuel depuis la berge au niveau des 2 sites du lac
de Créteil. (A) concentration en E. coli en NPP/100 ml, (B) Pourcentage moyen d’incertitude lié aux équipements
et à la variabilité temporelle. La taille des cercles représente l’écart type du pourcentage d’incertitude.

2.3.2. Répétabilité dans le temps

La mise en oeuvre d’échantillonnages répétés sur un intervalle de temps court permet

d’évaluer une partie de l’incertitude liée à l’échantillonnage que l’on nomme la répétabilité. Si

l’intervalle de temps est plus long, il est possible alors d’évaluer l’incertitude temporelle de la

qualité de l’eau. Dans la littérature, il est rapporté une incertitude moyenne de répétabilité pour

E. coli de ±(23 ± 16)%, pour un intervalle de 1 minute d’échantillonnage ponctuel avec des

flacons plongés dans l’eau de rivière (Pendergrass et al., 2015; Harmel et al., 2016). Dans notre

étude, l’incertitude liée à la variabilité temporelle (toutes les 10 minutes) a été estimée avec

l’équation 3.3 pour le bécher de prélèvement et la pompe utilisés au site 2 du Lac de Créteil.

Pour les deux équipements, l’incertitude était relativement similaire quel que soit l’indicateur

microbien (Figure 3.1B). L’incertitude moyenne des deux équipements était respectivement pour

E. coli de ±(40 ± 40)% et pour les EI de ±(74 ± 59)%. Cette disparité entre BIF a également été

remarquée par une étude antérieure Jin et al. (2004), qui a montré que l’incertitude temporelle

était plus élevée pour les entérocoques intestinaux que pour les coliformes fécaux, à la fois en

surface et en profondeur dans la colonne d’eau du lac d’eau saumâtre Pontchartrain (USA). Du

fait que les EI sont plus résistants. Ils peuvent ainsi mieux survivre dans divers environnements

(Alm et al., 2003).
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2.3.3. Protocole de nettoyage

Figure 3.2 – Pourcentage d’incertitude pour l’estimation d’E. coli (A) et des différents marqueurs (B) par rapport
à l’échantillon référence lors des différentes étapes du protocole de nettoyage du bécher et du tuyau de la pompe
pour les équipements manuels (M) au niveau du site 1 du lac de Créteil et avec le préleveur automatique (A) à La
Villette et à Saint-Maur-des-Fossés.

2.3.3.1. Equipements pour les prélèvements ponctuels

Au cours des campagnes de prélèvement, une contamination croisée peut avoir lieu d’un

site à l’autre et les protocoles de nettoyage des équipements sont relativement peu détaillés dans

les textes réglementaires, normes et guides. La stratégie mise en oeuvre a donc été d’estimer

l’incertitude liée au nettoyage des différents équipements disponibles pour le prélèvementmanuel

depuis la berge. Pour cela nous avons utilisé le site 1 du lac de Créteil qui présente une

concentration moyenne en E. coli de 164 ± 102 NPP/100 mL et le site 2 avec une concentration

moyenne enE. coli de 853 ± 1070NPP/100mL. L’analyse du pourcentage d’incertitude amontré

qu’après un prélèvement par un site plus contaminé (site 2), l’incertitude du prélèvement sur

le site 1 moins contaminé était en moyenne pour E. coli de 30 ± 24% et pour les EI de 81 ±

90%. Un rinçage de l’équipement 3 fois avec l’eau du site ou une désinfection à l’éthanol sans

rinçage suffisait pour diminuer l’incertitude (Figure 3.2A). La combinaison de la désinfection

avec le rinçage triple à l’eau du site réduisait l’écart type de l’incertitude pour E. coli (31 ±

11%) (Figure 3.2A), pour les EI (34 ± 34%) et pour le marqueur humain HF183 (de 313 ±

503% à 222 ± 189%) (Figure 3.2B). Cependant, aucune différence significative n’a été constatée

pour les 2 BIF entre le protocole sans rinçage et le protocole avec désinfection et rinçage (Test

de Wilcoxon, p=0.677 pour E. coli, p=0.288 pour les EI, n=20). En ce qui concerne les autres

indicateurs bactériens, les protocoles de désinfection et de lavage nemodifiaient pas l’incertitude
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moyenne (Figure 3.2B). Cependant, pour le marqueur canin BacCan une très grande incertitude

était observée après la stérilisation (3314 ± 4825%).

Globalement les résultats indiquent, qu’entre des sites avec des concentrations d’environ

1Log10 d’écart en BIF, un rinçage 3 fois avec l’eau du site est suffisant quelque soit l’équipement

utilisé. Ce résultat est conforme au guide de prélèvement de l’Agence de l’eau Loire-Bretagne

(AELB, 2006). Il est également recommandé de nettoyer le bécher et la perche avec une lingette

désinfectante dans les normes et guides, mais ce protocole ne peut pas s’appliquer à l’intérieur

du tuyau de la pompe. Ainsi procéder à une étape de désinfection de l’intérieur et extérieur

du tuyau à l’éthanol et rinçage peut être une alternative afin de réduire l’incertitude liée à la

contamination du tuyau de prélèvement de la pompe. Il faudrait toutefois vérifier qu’il en va de

même avec des sites qui ont un écart de qualité microbiologique plus élevé.

2.3.3.2. Prélèveur automatique

L’échantillonnage ponctuel réglementaire est généralement effectué à des dates fixes

écartées d’une semaine à un mois, au mieux il peut être réalisé une fois par jour, mais pendant

la semaine de travail (Burnet et al., 2021). De ce fait, des événements polluants de court terme

peuvent ne pas être échantillonnés (Burnet et al., 2021). Les échantillonneurs automatiques

peuvent alors être utilisés pour échantillonner sur 24 h ou à l’événement un échantillon composite

ou des échantillons discrets multiples (Wilson et al., 2024). Le protocole de nettoyage des lignes

de prélèvement des préleveurs automatiques recommandé par l’USGS (Wilson et al., 2024) est

relativement lourd puisqu’il nécessite un démontage et nettoyage en laboratoire. Nous avons

donc testé si une désinfection à l’eau de Javel et des rinçages directement sur le terrain étaient

suffisants, à l’aide d’un préleveur automatique installé au canal de l’Ourcq à la Villette, et

en Marne à Saint-Maur-des-Fossés. Les concentrations en BIF sur les deux sites différaient

légèrement puis la concentration moyenne en E. coli était respectivement de 266 ± 142 NPP/100

mL pour l’Ourcq et de 616 ± 500 NPP/100 mL pour la Marne. Quel que soit le temps écoulé

depuis la dernière utilisation du préleveur automatique, les résultats ont montré que l’utilisation

sans nettoyage supplémentaire autre que la purge automatique donne des niveaux de BIF qui

ne différaient pas significativement des prélèvements effectués après une stérilisation et trois

rinçages du préleveur à l’eau du robinet stérile, ni des valeurs de référence par échantillonnage

manuel, malgré une faible augmentation de l’incertitude (de 40 ± 46% avant stérilisation et

rinçage à 63 ± 32% après stérilisation et rinçage pour E. coli par exemple) (Test de Wilcoxon

apparié, n=16, p>0,05, Figure 3.2B). De même, dans notre étude, l’étape de stérilisation et
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rinçage s’accompagnait d’une augmentation de l’incertitude pour les autres marqueurs (Tableau

S2 et S3). Cependant, une incertitude plus faible entre ± 7 à 9% pour les concentrations en BIF

a été mesurée dans les eaux d’un rejet pluvial (McCarthy et al., 2008). Nos résultats étaient

probablement liés à des résidus d’eau de Javel dans les tuyaux et le bol de prélèvement qui

généraient pour certains essais une sous-estimation des concentrations en BIF. Ces résultats

indiquent que pour les eaux de surface avec des concentrations faibles en BIF, un rinçage de la

ligne de prélèvement à l’eau du robinet autoclavée serait suffisant même après plusieurs semaines

sans utilisation du préleveur.

Figure 3.3 – Blancs de terrain après prélèvement d’eau de surface au Bassin de la Villette (BV) et en Marne à
Saint-Maur-des-Fossés (M) et d’eau résiduaire à l’ouvrage cadre du Centre Urbain (CU) et au bassin de rétention de
Sucy-en-Brie (SB). Le symbole représente une comparaison des blancs par rapport à l’échantillon du site prélevé
avant le blanc.

Par contre, comme le montre la figure 3.3, pour les eaux résiduaires, une étape de

décontamination de la ligne de prélèvement était nécessaire, surtout pour l’analyse des BIF.

En effet, les blancs de terrain (eau du robinet autoclavée) après un prélèvement d’eau de rejet

pluvial montraient une concentration résiduelle élevée de 35000 ± 16000 NPP/100 mL pour les

eaux pluviales en entrée du bassin de rétention de Sucy-en-Brie et de 1090 ± 410 NPP/100 mL

au rejet de l’ouvrage cadre du Centre Urbain de Noisy-le-Grand. Après décontamination à la

Javel et rinçage à l’eau du robinet stérile, une diminution supplémentaire d’environ 0.5 à 1Log10
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(Figure 3.4A) de la contamination résiduelle en BIF était observée dans les blancs terrains. Bien

qu’il restait encore 2 à 3Log10 de BIF dans les blancs, l’impact de cette contamination résiduelle

pouvait être considéré négligeable sur des échantillons d’eau résiduaires qui présentaient des

concentrations en E. coli entre 2.5 et 4.7 Log10 /100 mL. Le prélèvement d’un échantillon très

contaminé en BIF (6.3-6.4 Log10 NPP/100 mL) avait entraîné une contamination croisée 10

fois supérieure sur 1 à 3 prélèvements successifs d’un échantillon de concentration plus faible

(4,6-4,9 Log10 NPP/100 mL), et ceci malgré la purge automatique de la ligne de prélèvement

(Galfi et al., 2014). Ces contaminations résiduelles du système de prélèvement peuvent entraîner

un biais lorsque l’étude vise à analyser la dynamique temporelle des concentrations en BIF

pendant un événement pluvieux. Dans notre étude, cette contamination croisée s’atténuait de

moitié lorsque 7 jours s’étaient écoulés entre les prélèvements (500 ± 200 NPP/100 mL) au

rejet de l’ouvrage cadre du Centre Urbain de Noisy-le-Grand. Par contre, pour des eaux de

ruissellement d’un parking en entrée et sortie de filtre de roseaux plantés, une contamination

<1% dans le tuyau du préleveur après 7 jours secs a été constatée dans une étude précédente

(Hathaway et al., 2014).

Figure 3.4 – Blancs de terrain après décontamination et rinçage du préleveur au bassin de rétention de Sucy-en-
Brie. Le symbole représente une comparaison des blancs par rapport à l’échantillon du site prélevé avant le blanc.

En ce qui concerne les autres marqueurs bactériens, une contamination résiduelle de

la ligne de prélèvement a été observée pour les blancs lorsque les eaux de surface étaient

prélevées préalablement, principalement pour le marqueur humain HF183 et les bactéries totales
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BactQuant (Figure 3.3). Les résultats étaient aléatoires, parfois la désinfection était efficace

(blancs terrains négatifs) comme pour les marqueurs canin et aviaires. La désinfection permettait

également une diminution de l’incertitude sur la mesure des marqueurs spécifiques pour les

échantillonnages de rejets pluviaux (Figure 3.4B).

Il ne faut pas oublier de prendre en compte l’influence de la longueur et de l’inclinaison

du tuyau de prélèvement qui peut se contaminer du fait d’un volume mort d’eau qui reste à

l’intérieur malgré la purge automatique (Galfi et al., 2014; Hathaway et al., 2014). En effet, une

incertitude moyenne plus faible (1.7%) avait été mesurée lorsque le tuyau était incliné, alors

qu’elle était de 5.5% avec un tuyau droit (Hathaway et al., 2014). La longueur du tuyau (1,5

vs 5 m) ne semblait pas influencer la contamination croisée lors d’un passage d’un échantillon

très contaminé (6.3-6.4 Log10 NPP/100 mL) à un échantillon moins contaminé (4,6-4,9 Log10

NPP/100mL) (Galfi et al., 2014). Il est donc important de privilégier une installation du préleveur

automatique proche du bord et en hauteur, comme il est recommandé dans les guides FD t90-

523-1 et de l’agence de l’eau Loire-Bretagne. La désinfection terrain suivie de 3 rinçages à

l’eau stérile couplée à une installation adéquate, conduit donc à diminuer l’incertitude liée à la

contamination résiduelle de la ligne de prélèvement.

2.3.4. Protocole de transport et stockage

Figure 3.5 – Pourcentage d’incertitude pour l’estimation d’E. coli par rapport à l’échantillon référence en fonction
du temps (6 h ou 24 h) et de la température de stockage les 6 premières heures à 5°C (froid) ou à température
ambiante (ambiant).

Pour évaluer l’incertitude liée aux conditions de température durant le transport et le

stockage des échantillons, des prélèvements manuels ont été effectués avec la pompe et la
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perche au niveau du site 2 du lac de Créteil, avec une concentration moyenne en E. coli de

353 ± 233 NPP/100 mL et en EI de 568 ± 882 NPP/100 mL (n=5). Pour les deux groupes de

BIF (respectivement E. coli et EI), aucune différence significative n’a été observée entre les

échantillons transportés à température ambiante ou à 5°C, que les analyses aient été réalisées

après 6 h ou 24 h (Test t apparié, p>0.06, p>0.18, n=36, Figure 3.5). Toutefois, à 24 h le

pourcentage de perte des BIF était légèrement plus élevé avec un stockage les 6 premières

heures à température ambiante (67 ± 21% pour E. coli et 57 ± 22% pour EI) qu’avec un stockage

tout le temps à 5°C (55± 26%pourE. coli et 31± 13%pour EI). Les résultats sont pas tout à fait en

concordance avec une étude antérieure qui a montré que jusqu’à 24 h le stockage des échantillons

d’eau pluviale à température ambiante ne constitue pas un facteur significatif de variation de

la concentration en E. coli (McCarthy et al., 2008). Toutefois, à 5°C, une faible décroissance

au cours du temps a été rapportée par Harmel et al. (2016). Pour une période de stockage de

24 h à 10-15°C d’eau douce et marine, l’existence d’une réduction de la concentration en E.

coli de 28% en moyenne a été démontrée (Crane and Moore, 1986). De plus, cette variabilité

est dépendante du niveau de contamination de l’échantillon (Ferguson, 1994). En effet, pour

les échantillons de rivière relativement contaminés (coliformes fécaux 2,7 à 3,9 Log10 NPP/100

mL), la concentration ne différait pas entre un stockage froid pendant 9 h ou 18 h. Par contre,

pour une rivière 10 fois moins contaminée, une variation de 0,1 Log10 de la concentration en

coliformes fécaux était visible entre les deux durées (Ferguson, 1994). Toutefois, aucune analyse

statistique n’avait été menée dans cet article.

En ce qui concerne le marqueur d’ADN total (BacQuant), la variabilité était la plus faible

avec 6 h de stockage à 5°C (Tableau S2) et pour lemarqueur humainHF183, le profil de variabilité

était relativement similaire à celui des BIF (Figure S1). Par contre, une plus grande variabilité

a été observée avec les marqueurs aviaires (CGOF1 et gull2) pour le stockage à température

ambiante, l’incertitude étant la plus élevée au-delà de 6 h qui se traduit par une décroissance de

ces marqueurs (Figure S1). Pour le marqueur canin, il est plus délicat de conclure car il n’a été

détecté que lors d’une seule campagne. Une décroissance après 6 h à 5°C a été observée, alors

qu’après 24 h à 5°C, la concentration était élevée (Tableau S3).

Les résultats de notre étude montrent donc que le transport à température ambiante peut

entraîner une forte variabilité des concentrations en BIF, ainsi que les autres marqueurs fécaux

bactériens si la mesure n’est pas effectuée avant 24 h. L’ensemble de ces résultats indique qu’il est

recommandé de limiter le temps de stockage à moins de 6 h, en privilégiant un transport à 5°C.
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Ceci apporte une précision et un éclairage sur les textes réglementaires, normes et guides français

qui recommandent pour le transport de placer les échantillons dans une enceinte réfrigérée à

5 ± 3°C au maximum pendant 24 h, à l’abri du rayonnement solaire (NF EN ISO 19458). Le

guide FD T90-523-1 précise que pour les échantillons de rivière, la température doit être de 4 ±

2°C pendant <8 h au mieux et dans les 24 h au plus. L’analyse doit avoir lieu le jour même de

préférence et au plus tard dans les 24 h s’il existe une impossibilité géographique (Arrêté du 19

octobre 2017).

2.3.5. Impact du temps d’incubation sur la lecture

Pour la mesure des BIF, les Normes NF EN ISO 9308-3 et NF EN ISO 7899-1 spécifient

un temps d’incubation de 36 à 72 h et une lecture à 36 h. Cependant, une lecture dès 24 h est

souvent pratiquée pour la surveillance des eaux de baignade. Afin de savoir quel est l’impact du

temps d’incubation sur l’incertitude de la mesure des BIF, nous avons comparé les lectures à 24,

48 et 72 h sur une large gamme d’échantillons provenant de 4 sites. La gamme de concentrations

moyennes en E. coli s’étendait de 1,56.102 NPP/100 mL (site 1 du Lac de Créteil) à 7,77.106

NPP/100 mL en entrée de la station de traitement des eaux usées de St-Thibault-des-Vignes.

L’ensemble des résultats indiquait que plus la concentration au niveau d’un site était faible,

plus le temps d’incubation nécessaire avant une stabilisation de la lecture était long. Ainsi, par

exemple, à St-Thibault-des-Vignes la lecture était stable dès 24 h d’incubation (Test deWilcoxon

et test t apparié, p>0,05, n=12) alors que pour le site 1 du Lac de Créteil une différence

significative était observée entre les 3 temps d’incubation (Test de Friedman, n=177, p=0,02).

En effet, les tests microbiologiques sont souvent moins précis pour des échantillons complexes.

Par exemple, les résultats faux positifs pour la mesure d’E. coli atteignent 4% dans l’eau de pluie

mais jusqu’à 40% dans les eaux usées (McLain et al., 2011). Cependant, il faut être vigilant que

d’autres micro-organismes non ciblés ne se développent pas dans ces microplaques au-delà de

48 h d’incubation à 44°C (Ndione, 2022). Sachant que la lecture à 24 h peut générer une sous-

estimation pour certains échantillons, il s’agit donc d’un compromis entre rapidité et exactitude

du résultat. Or, pour la gestion d’un site de baignade, connaitre le résultat le plus tôt possible est

crucial. La méthode NPP ColiLert (IDEXX) peut offrir une alternative intéressante à la méthode

par microplaque puisqu’elle permet une lecture en 18 h pour E. coli (ISO 9308-2 :2012) et en

24 h pour les entérocoques intestinaux (certification NF Validation du test Enterolert®-E).
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2.3.6. Synthèse globale des incertitudes

Figure 3.6 – Schéma récapitulatif de l’analyse de l’incertitude pour l’ensemble des indicateurs fécaux analysés ;
en noir (équipements manuel), en vert (préleveur automatique) ; en bleu (tous les équipements).

La figure 3.6 récapitule l’ensemble des pourcentages d’incertitude liés au prélèvement, au

transport et au stockage des échantillons. Afin de limiter l’incertitude globale liée au prélèvement,

nos recommandations sont les suivantes pour le prélèvement manuel depuis la berge :

- privilégier le bécher ou la pompe associés à une perche télescopique depuis la berge ou

un bateau.

- un rinçage à l’eau du site est généralement suffisant pour des écarts de concentration en

BIF d’environ 1 Log10 pour les eaux de surface. Toutefois, pour des écarts de concentration plus

élevés, une désinfection préalable du bécher ou du tuyau de prélèvement permettra de réduire
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l’incertitude liée aux contaminations croisées.

- réaliser des blancs de terrain avec de l’eau stérile.

Pour les préleveurs automatiques, les recommandations sont les suivantes :

- limiter la longueur du tuyau de prélèvement et favoriser une inclinaison.

- la purge automatique n’est pas suffisante pour éviter les contaminations croisées, un

rinçage à l’eau du robinet stérile de la ligne de prélèvement est toutefois suffisant pour des eaux

de surface peu contaminées. Pour les sites très contaminés ou pour les eaux résiduaires il est

nécessaire de procéder à une désinfection à la Javel à 5% comme recommandé par l’USGS

(Wilson et al., 2024), suivie d’a minima trois rinçages à l’eau du robinet stérile.

- limiter le stockage dans le préleveur à 24 h maximum, et privilégier une embase

réfrigérée ou l’ajout de pains de glace dans le logement des flacons. En cas d’impossibilité, les

échantillons pourront être à température ambiante tant que le préleveur est à l’ombre à l’extérieur

ou à l’intérieur du réseau.

Une fois l’échantillon collecté, leur transport et leur stockage doivent, idéalement, être

limités à moins de 6 heures avec un stockage à 5 ± 3°C. Au-delà de 24 heures ou à température

ambiante, une variabilité accrue des résultats a été observée, notamment pour les marqueurs

animaux et humains.

Il est également crucial de connaitre l’incertitude associée aux méthodes analytiques,

car celles-ci peuvent avoir un impact sur l’incertitude finale à prendre en compte. Les erreurs

liées à la mesure de la qualité de l’eau peuvent être attribuées à plusieurs facteurs, notamment la

méthode demesure, les dilutions en série, et la distribution hétérogène desmicroorganismes dans

le volume prélevé, les réactifs et équipements, les erreurs humaines (Harmel et al., 2016). Un

temps d’incubation de 36 ou 48 heures est recommandé pour stabiliser les résultats de lecture des

microplaques. Pour les BIF, nous avons estimé une incertitude analytique de 31% [IC95%26 : 35]

pour E. coli et 45% [IC95% 35 : 56] pour les EI par les méthodes miniaturisées en microplaques.

Chaque étape de dilution augmente l’incertitude, surtout avec des faibles concentrations (Harmel

et al., 2016). Pour les quantitray Colilert (IDEXX), l’incertitude rapportée dans la littérature est

de 22 ± 15% (McCarthy et al., 2008). De plus, Tiwari et al. (2016) ont montré que la méthode

Colilert-18 et la méthode en microplaque ISO 9308-3, avaient un taux de concordance supérieur

à 90%, la concentration estimée par les deux méthodes n’étant pas significativement différente.

Pour les estimations par PCR quantitative (qPCR), l’incertitude peut être estimée en s’appuyant

sur une étude comparative qui rapporte une incertitude de 67% pour E. coli et 27% pour EI dans
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un premier essai inter-laboratoire, contre 25% pour E. coli et de 21% pour EI dans un second

essai (Noble et al., 2010). De même, une incertitude sur la quantification par qPCR d’E. coli

a estimé des valeurs inférieures à 25% (Bergeron et al., 2011). Concernant l’incertitude liée à

la mesure des BIF par le système online ColiMinder, une analyse a été menée en laboratoire

par Eau de Paris avec des échantillons de la Seine, ce qui a permis d’estimer une incertitude

de 14% (n=10) avec un nettoyage automatique entre les échantillons prélevés successivement

(Loiodice, 2024). Au niveau de la littérature, une incertitude analytique sur E. coli avec le

système ColiMinder a été estimée à 6% en laboratoire à 22% en terrain (Cazals, 2019).

Enfin pour la détection par qPCR des marqueurs spécifiques de sources humaines et

animales, une répétabilité de la mesure (coefficient de variation) a été estimée à <5% pour

le marqueur aviaire Gull2, <6% pour le marqueur humain HF183 et <3% pour le marqueur

canin BacCan lors d’essais intra-laboratoire (Ebentier et al., 2013). Dans cette même étude

inter-laboratoires, la répétabilité entre laboratoire était estimée à <20% pour le marqueur Gull2,

<10% pour lemarqueur HF183 et <6% pour lemarqueur BacCan. En effet, les espèces et souches

bactériennes peuvent réagir différemment, selon leur métabolisme et les conditions de stress au

moment de l’analyse (Sutton, 2011). Ces éléments sont essentiels à considérer pour interpréter

les résultats.

2.3.7. Incertitudes retenues pour E. coli

Pour aider à la prise de décision lors de la gestion active des sites de baignade, nous

avons pris comme un cas d’utilisation la concentration en E. coli car ce paramètre est le plus

déclassant pour la gestion journalière des rivières franciliennes telle que la Seine ou la Marne

(Mouchel et al., 2020). Ainsi pour les mesures avec le système ColiMinder en Seine (Ville

de Paris), le calcul de l’incertitude globale a regroupé l’ensemble des incertitudes rapportées

dans la figure 3.6. Ainsi l’incertitude analytique de 14% estimée par Eau de Paris (Loiodice,

2024) qui comprend l’étape de nettoyage automatique entre les échantillons, l’incertitude sur

les mesures qui sont réalisées rapidement sans stockage. Cette incertitude ayant été évaluée en

laboratoire, une incertitude temporelle de 40% a également été incluse (Figure 3.7). L’incertitude

globale qui a été retenue était donc de 42%. Pour les analyses réglementaires d’E. coli, le guide

technique FD T 90-521 est le référentiel suivi par les équipes de prélèvement de la Ville de

Paris. Une incertitude de 12% a été retenue pour la stérilisation et le rincage des équipements,

une incertitude de 23% liée au stockage à froid et analyse le jour même et une incertitude
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analytique de 31% (Figure 3.6). Au total cela représentait une incertitude globale de 40%

(Figure 3.7). Des coefficients de variations allant de 0.9 à 7.2% pour le système ColiMinder, et

de 12.4 à 34.0% pour la mesure avec les quantitray Colilert (IDEXX) sur des mesures repliquées

6 fois ont été rapportés dans la litérature (Burnet et al., 2019). Des coefficients de variation

allant de 31 à 105% ont été estimé dans une étude antérieure pour la méthode de mesure en

microplaque (NPP) (Servais et al., 2005). En effet, les méthodes basées sur le NPP peuvent

présenter des incertitudes qui dépassent 30% du fait de la probabilité de distribution du nombre

le plus probable (Gronewold and Wolpert, 2008). Considérant ces valeurs de la litérature, nos

estimations pouvaient donc être considérées raisonnables.

Figure 3.7 – Schéma récapitulatif de l’analyse de l’incertitude pour E. coli, en bleu les incertitudes sur les
équipements automatiques pris en compte pour les mesures obtenues avec le système ColiMinder et en vert les
incertitudes sur les équipements manuels pris en compte pour les mesures ponctuelles en culture * : (Bergeron
et al., 2011; Noble et al., 2010).
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2.3.8. Intégration de l’incertitude dans la prise de décision

En France, pour la gestion quotidienne d’un site de baignade, la qualité microbiolo-

gique instantanée d’un prélèvement est qualifiée suivant des valeurs seuils de l’instruction

n°DGS/EA4/2022/168 du 17 juin 2022 relative aux modalités de recensement, gestion et clas-

sement des eaux de baignades. Ces valeurs seuils sont basées sur un rapport de l’AFSSET de

septembre 2007 (Duboudin et al., 2007) et s’appliquent sur un site de baignade classé par une

Agence Régionale de la Santé (ARS). Elles sont utilsées en cours de saison pour aider les ges-

tionnaires à décider de l’ouverture ou la fermeture du site de baignade. Pour les eaux douces,

ces seuils sont de 100 et 1800 NPP/100 mL, afin de catégoriser l’échantillon en qualité bonne,

moyenne ou mauvaise.

Figure 3.8 – Fonction d’appartenance avec la logique floue. En vert : qualité bonne, en Bleu : qualité moyenne, en
rouge qualité mauvaise et les traits noirs représente les seuils réglementaires.

Lors de la décision, les gestionnaires vont classiquement comparer la valeur mesurée de

l’échantillon ponctuel à la valeur seuil, sans tenir compte de son incertitude sur la détermination

du NPP la plupart du temps (Sylvestre et al., 2020), pour décider si l’échantillon est conforme

avec une ouverture de la baignade (méthode de référence 1). Dans le cas de la Ville de Paris,

pour la prise de décision de tenue des épreuves de nage ou triathlon lors des Jeux Olympiques,

l’historique des mesures du système ColiMinder a été pris en compte sur une fenêtre de 4 h

précédant le matin (méthode de référence 2). En vue d’améliorer ce processus de prise en compte

de l’historique des données des systèmes de mesure en temps réel ou quasi réel, nous proposons
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d’utiliser la logique floue pour intégrer d’une part l’incertitude sur la mesure et d’autre part

l’historique des données précédant le matin. Nous avons testé 6 intervalles de temps allant de 4

à 24 h. Nous avons comparé les résultats de classification obtenus, avec ceux obtenus en mettant

en oeuvre les méthodes de référence 1 et 2 utilisées par les gestionnaires.

Table 3.1 – Pourcentage de vrais positifs pour les 5 méthodes de défuzzification par rapport aux 2 méthodes de
référence (méthode 1 et méthode 2), (NC) non classé avec la méthode par la Ville de Paris pendant les JOP 2024.

Intervalle
d’analyse

Méthode de
référence

COG MOM LOM ROM BS NC

[12 h : 12 h] 1 81 79 79 79 78 0
2 30 31 31 31 27 51

[8 h : 8 h] 1 80 80 80 80 77 0
2 31 31 31 31 28 53

[0 h : 12 h] 1 77 77 77 77 77 0
2 30 32 32 32 27 51

[20 h : 8 h] 1 78 77 77 77 77 0
2 31 30 30 30 29 53

[4 h : 8 h] 1 77 77 77 77 75 0
2 29 29 29 29 28 53

[8 h : 12 h] 1 78 78 78 78 76 0
2 32 32 32 32 32 52

Figure 3.9 – Comparaison de la méthode du (A) centre de gravité (COG) et de (B) moyenne des maxima (MOM)
pour les mesures réglementaires au niveau des 3 sites avec une classification utilisant l’intervalle de 24 h de midi à
midi. La couleur représente la classe d’appartenance et l’axe des abscisses représente la méthode de défuzzification.
Le trait noir épais représente le seuil réglementaire et les traits fins représentent l’incertitude associée au seuil pour
les analyses ponctuelles.

Après fuzzification pour déterminer les probabilités d’appartenance aux 3 classes de

qualité, pour l’étape de défuzzication qui permet de classer les valeurs mesurées, nous avons
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testé 5 méthodes de calcul (COG, MOM, LOM, BS et ROM). Nous avons classé l’ensemble

des mesures réglementaires du suivi estival sur la Seine de 2020 à 2023. Les 3 méthodes

(MOM, LOM et ROM) présentaient les mêmes résultats de classification. Aucune différence

significative n’est observée pour les 5 méthodes de défuzzification après comparaison des

classifications avec la (méthode de référence 1) et la (méthode référence 2) (Test de Khi2

d’ajustement, p<0.001, n=154). Toutefois, en ce qui concerne le pourcentage de vrais positifs,

après comparaison aux méthodes de référence 1 ou 2, pour les différents intervalles de temps

analysés, la méthode BS présentait des pourcentages de vrais positifs similaires ou légèrement

plus faibles (Tableau S1). De plus, l’emploi d’une des méthodes des maxima (MOM, LOM et

ROM) pour la défuzzification entraînait des classements très incohérents pour certains jours,

avec des échantillons très contaminés classés comme étant de qualité "bonne" (Figure 3.9).

Le centre de gravité qui donnait des résultats corrects a été ainsi retenu comme méthode de

défuzzification. En effet, parmi les méthodes de défuzzification, le calcul du centre de gravité

est l’un des plus utilisés (Mahabir et al., 2003).

La méthode de défuzzification (COG) retenue générait en moyenne 78 ± 2% de vrais

positifs communs avec la méthode de référence 1 et 30 ± 1% avec la méthode de référence 2.

Il faut noter que la méthode de référence 2 classait en moyenne 52 ± 1% des valeurs comme

incertaines. La logique floue est particulièrement adaptée pour traiter des données aux connais-

sances très variables, vagues ou incertaines, permettant ainsi un flux d’information logique,

fiable et transparent depuis la collecte des données jusqu’à leur utilisation dans des contextes

environnementaux (Icaga, 2007). Pour les différents intervalles de temps analysés, les résultats

étaient statistiquement similaires, la majorité (entre 87 et 97%) des mesures étaient classées de

la même manière (Test de Khi2 d’ajustement, p<0.001, n=154). Ces résultats indiquaient qu’au

pont de l’Alma et Tolbiac, les 6 intervalles de temps donnaient la même classification. Il y avait

majoritairement (72%) des mesures classées selon la méthode de référence 1 comme étant de

qualité moyenne. Parmi celles-ci, une large proportion (entre 84 et 90%) de ces mesures était

attribuée par la méthode de logique floue à la classe de qualité moyenne. De même, entre 52

et 57% des valeurs au-dessus de 1800 NPP/100 mL (classe mauvaise, selon la méthode de

référence 1) étaient classées en qualité mauvaise par la méthode de logique floue. Le processus

de logique floue utilise une approche simple basée sur des règles pour résoudre des problèmes

de contrôle car capable d’intégrer différents types d’observations de qualité (Elmas, 2003; Icaga,

2007).
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Figure 3.10 – Comparaison de la classification des données du système ColiMinder avec la logique floue pour les
mesures réglementaires d’E.coli (Log10 NPP/100 mL) au niveau des 3 sites (2 : pont de Tolbiac rive droite, 3 : pont
de Tolbiac rive gauche, 11 : pont de l’Alma) en utilisant différents intervalles de temps (A) midi à midi (B) 8 h à 8
h (C) minuit à midi (D) 20 h à 8 h (E) 4 h à 8 h (F) 8 h à midi. La couleur représente la classe d’appartenance. Les
traits noirs épais représentent les seuils réglementaires de 1800 NPP/100 mL et de 100 NPP/100 mL et les traits
fins représentent l’incertitude associée à la mesure manuelle.
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La logique floue permet d’obtenir des informations plus précises en utilisant une forme

continue. Cela est particulièrement pertinent dans le contexte de l’évaluation de la pollution de

l’eau, où il est crucial de considérer la variabilité et la complexité des données (Icaga, 2007).

En effet, en fonction de la variabilité spatio-temporelle, des sources de contamination en amont

du site, des conditions environnementales et des caractéristiques du site, mais également de la

position du ColiMinder par rapport au site, l’intervalle de temps à prendre en compte peut être

variable (Quilliam et al., 2011; Rossi et al., 2020; Briciu-Burghina et al., 2019). L’avantage

de cette approche pour classer les futurs sites de baignade est qu’elle permet de lisser sur

plusieurs heures et de prendre en compte l’historique plutôt qu’une mesure ponctuelle, tout

en associant l’incertitude sur la mesure. Cette méthode permet aussi une prise de décision

objective pour des valeurs proches de la valeur seuil. Utiliser cette approche combinée avec des

mesures en temps (quasi) réel acquises par des appareils de surveillance de haute qualité, comme

ColiMinder, permet ainsi une classification rapide et fiable. Un système ColiMinder a été utilisé

pour surveiller des eaux récréatives à quatre emplacements le long de rivières (Makris et al.,

2023). Cette même étude a observé des relations spécifiques entre l’activité enzymatique et les

niveaux de contamination par E. coli, indiquant que la surveillance en ligne pourrait constituer

un complément aux méthodes de laboratoire traditionnelles, surtout en cas de contamination

élevée ou lors de déversements combinés (Makris et al., 2023). Cela ouvrirait la voie à une

évaluation encore plus complète et précise des problèmes de pollution, en renforçant la capacité

de la logique floue à modéliser des systèmes complexes et à gérer les incertitudes inhérentes aux

données environnementales.

2.4. Conclusion

Nos résultats présentent l’originalité de ne pas se limiter à l’analyse de l’incertitude de

la mesure des BIF et d’évaluer d’autres marqueurs bactériens spécifiques de sources ou en-

core des pathogènes, contrairement à de nombreux articles scientifiques traitant uniquement

de l’incertitude de la mesure des BIF. L’analyse de l’incertitude au niveau de la mesure de la

concentration en BIF et d’autres marqueurs bactériens montre globalement que les équipements

manuels étaient statistiquement similaires, confirmant la flexibilité des protocoles d’échantillon-

nage. Pour le protocole de nettoyage que ce soit pour le prélèvement automatique ou ponctuel, la

désinfection ne semblait pas nécessaire pour les eaux de surface avec des concentrations allant
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de 45 à 3800 NPP/100 mL, un simple rinçage à l’eau du site ou à l’eau stérile n’entrainant pas

de contamination croisée entre sites avec des écarts de concentration de 1 Log10. Par contre, en

ce qui concerne les eaux résiduaires, une désinfection était nécessaire, mais l’eau de Javel à 0,5

% n’était pas toujours suffisante. Toutefois, il est possible de la réaliser sur le terrain sans avoir à

démonter l’équipement et le ramener au laboratoire pour stériliser. Il serait nécessaire d’utiliser

une solution de Javel plus concentrée puis de veiller à bien rincer l’équipement. En ce qui

concerne le stockage et le transport des échantillons, une sous-estimation de la concentration en

BIF a été observée pour les échantillons transportés et stockés à température ambiante lorsque la

mesure était réalisée 24 h plus tard. Enfin, le temps d’incubation de l’ensemble des échantillons

avant lecture des microplaques dépend de la concentration de l’échantillon. Ce temps pouvant

être réduit à 24 h sur les eaux fortement contaminées. De plus, s’ajoute à cela une incertitude

liée à la méthode d’analyse qui doit être prise en compte.

L’ensemble des résultats pourrait aider à l’écriture d’un guide pratique d’échantillonnage

en complément des normes et réglementations sur le prélèvement. Un tel guide aurait pour but de

permettre une harmonisation du suivi de la qualité des eaux de surface par les différents acteurs.

Par ailleurs, il est aussi important de considérer l’intercalibration des méthodes de mesure entre

les laboratoires d’analyses lorsque des résultats acquis par différents acteurs sont agrégés pour

réaliser des études de séries temporelles longues où lorsque des études sont menées à l’échelle

du bassin versant, ou à l’échelle régionale, ou nationale. En effet, il a été montré que le coefficient

de variation entre des mesures d’E. coli réalisées par 49 laboratoires différents sur 2 aliquots

d’un même échantillon pouvait atteindre 119 à 128% (Bremser et al., 2011).

L’intégration de la logique floue dans l’évaluation de la qualité de l’eau, notamment à

travers la concentration en E. coli, s’est révélée être une approche efficace et objective pour

la prise de décision en matière de gestion des baignades. En combinant des méthodes de

défuzzification adaptées et des appareils de surveillance en temps réel comme le ColiMinder,

il est possible de classer rapidement et avec fiabilité les sites de baignade, en tenant compte

des incertitudes associées aux mesures. Les résultats montrent une forte concordance avec les

méthodes couramment utilisées par les gestionnaires tout en permettant une évaluation plus

nuancée des données et une prise de décision plus rapide. Il serait intéressant de tester cette

approche avec les entérocoques intestinaux qui constituent un indicateur pertinent dans les eaux

côtières (EPA, 2019). Cette approche offre une réponse proactive aux enjeux de pollution de

l’eau, améliorant ainsi la sécurité et la qualité des activités récréatives enmilieu aquatique urbain.
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En outre, l’utilisation de la logique floue pour l’évaluation de la pollution de l’eau pourrait non

seulement améliorer la précision des informations obtenues,mais également fournir uneméthode

robuste pour intégrer divers aspects de la qualité de l’eau, ce qui est essentiel pour des décisions

éclairées en matière de gestion environnementale.
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2.5. Annexe

Table S1 – Liste des amorces et des sondes utilisées lors de la qPCR pour la recherche de marqueurs fécaux
animaux et humains, des bactéries totales et des Campylobacter. La séquence et la concentration finale pour chaque
amorce sens (F) et antisens (R), et pour la sonde TaqMan (P) sont présentées dans le tableau.

Cible Séquence 5’—-3’ finale

(µM)

BacCan F GGA GCG CAG ACG GGT TTT 0,2

BacCan R CAA TCG GAG TTC TTC GTG ATA TCT A 0,2

BacCan P FAM-TGG TGT AGC GGT GAA A-TAMRA-MGB (life tech) 0,1

Gull2 F CTT GCA TCG ACC TAA AGT TTT GAG 0,1

gull2 R GGT TCT CTG TAT TAT GCG GTA TTA GCA 0,2

gull2 P FAM-ACA CCT GGG TAA CCT CAG A - BHQ1 0,2

CGOF1 F GTA GGC CCT GTT TTA AGT CAG C 0,2

CGOF1 R AGT TCC CGC TGC CTT GTC TA 0,2

CGOF1 P FAM - CCG TGC GGT CCT GAC ACA CTT GGA - BHQ1 0,2

β-actine F GCAAGAGGGAGGAGAAGGACAGAGT 0,05

β-actine R CAAAGAGGGAGGAGAAAGGAAGT 0,05

β-actine P HEX-CCCCCTCCTACTGCTCCACCCGAAAATG-BHQ1 0,05
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Figure S1 – Pourcentage d’incertitude pour l’estimation des différents marqueurs bactériens par rapport à l’échan-
tillon référence en fonction du temps (6 h ou 24 h) et de la température de stockage à 5°C (froid) ou à température
ambiante (ambiant).

Table S2 – Incertitude sur la collecte des échantillons pour les E. coli, les Entérocoques intestinaux, HF183 et les
bactéries totales (BacQuant).

Parameter EC EI BacQuant HF183

Temporelle 40 ± 40 74 ± 59 83 ± 12 99 ± 69

Type équipement (M) 57 ± 30 99 ± 70 84 ± 67 98 ± 45

Prélèvement successif (M) 30 ± 24 81 ± 90 8322 ± 16566 313 ± 503

Rinçage (M) 31 ± 11 34 ± 34 6107 ± 12112 222 ± 189

Stérilisation (M) 38 ± 28 90 ± 187 1232802 ± 2040662 95 ± 118

Rinçage + Stérilisation (M) 12 ± 15 31 ± 31 7002 ± 13922 74 ± 33

Prélèvement successif (A) 40 ± 46 986 ± 917 40352 ± 65554 54 ± 38

Rinçage + Stérilisation (A) 63 ± 32 848 ± 1474 15114 ± 41487 80 ± 26

Stockage 6 h froid 23 ± 23 15 ± 30 27 ± 7 37 ± 23

Stockage 6 h ambiant 22 ± 16 31 ± 12 40 ± 28 19 ± 17

Stockage 24 h froid 55 ± 26 31 ± 13 45 ± 35 29 ± 19

Stockage 24 h ambiant 67 ± 21 57 ± 22 65 ± 53 51 ± 14
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Table S3 – Incertitude dans la collecte des échantillons des marqueurs BacCan (Chien), CGOF1 (Oie), Gull2
(Mouette et Goéland) et le pathogène C. jejuni.

Parameter BacCan CGOF1 Gull2 C. jejuni

Temporelle 119 ± 96 125 ± 85 151 ± 66 173 ± 37

Type équipement (M) 174 ± 143 45 ± 90 128 ± 130 168 ± 118

Prélèvement successif (M) 428 ± 581 NA 137 ± 64 50

Rinçage (M) 71 ± 42 NA 164 ± 112 100

Stérilisation (M) 3314 ± 4825 NA 40 ± 51 NA

Rinçage + Stérilisation (M) 132 ± 19 NA 90 ± 17 100

Prélèvement successif (A) 78 ± 42 NA 81 ± 43 NA

Rinçage + Stérilisation (A) 85 ± 23 NA 120 ± 55 NA

Stockage 6 h froid 100 234 ± 261 44 ± 31 62

Stockage 6 h ambiant NA 602 ± 582 1339 ± 2109 75 ± 35

Stockage 24 h froid 92 44 ± 44 104 ± 18 100

Stockage 24 h ambiant NA 174 ± 135 151 ± 183 100
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Résumé : Dans le cadre de l’ouverture de sites de baignade en Marne et en Seine, il a

été observé que, par temps de pluie, les seuils réglementaires pour le classement des baignades

sont souvent dépassés dans ces deux rivières. Des modélisations exponentielles inverses ont

permis d’estimer un taux de disparition et trois indicateurs de résilience. L’analyse du taux de

disparition estimé à partir des mesures réglementaires pour E. coli a révélé des valeurs de 0,44 ±

0,35 jr−1 enMarne et de 0,47 ± 0,32 jr−1 en Seine. De plus, une analyse des mesures effectuées

avec le dispositif ColiMinder a été réalisée en Seine avec des intervalles de mesure variant de

2 à 24 heures, et a révélé une sous-estimation de la résilience et de la résistance à mesure que

l’intervalle augmente. Cette tendance est particulièrement marquée avec un intervalle de 24

heures, où une différence significative a été observée. Le taux de disparition ainsi que l’analyse

de la résilience estimés à partir des mesures réglementaires étaient similaires pour les différentes

stations étudiées sur la Seine et la Marne. Ce qui n’exclut pas la possibilité de généraliser à

l’ensemble des sites en région parisienne. De plus, la simulation d’un rejet en Marne a permis

d’estimer un taux de mortalité pour E. coli de 0,97 ± 0,48 jr−1. Ces paramètres pourront

alimenter des modèles hydrodynamiques pour la gestion des futurs sites de baignades en Marne.

Mots clés : baignades, riviére urbaine, sources, contaminations, fèces d’animaux,

pluies, E. coli, taux de décroissance, taux de disparition
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3.1. Introduction

Depuis quelques décennies, la reconquête des zones de baignade est devenue une priorité

dans de nombreuses régions d’Europe, en réponse aux aspirations croissantes des citoyens pour

des activités de loisir en plein air et unemeilleure qualité de vie (Kistemann et al., 2016; Schreiber

et al., 2015). Dans un contexte de prise de conscience environnementale, la qualité des eaux de

baignade a fait l’objet de mesures réglementaires strictes, encadrées par la directive européenne

2006/7/CE, qui vise à protéger la santé publique en garantissant la qualité microbiologique des

eaux destinées à la baignade.

Ainsi, en Île-de-France, une volonté marquée de réouvrir l’accès aux rivières urbaines est

observée, notamment pour la Marne et la Seine, afin de permettre à nouveau la baignade (Bou-

leau et al., 2024). Toutefois, l’urbanisation de ce territoire génère des risques sanitaires forts en

raison de contaminations d’origine domestique et industrielle, y compris les micro-organismes

pathogènes d’origine hydrique, émanant des diverses sources fécales. Les principales sources

de contamination fécale dans les rivières urbaines incluent les rejets des stations d’épuration,

les rejets des réseaux d’assainissement pluvial, les dysfonctionnements des réseaux d’assainis-

sement, les habitations mal raccordées, les rejets des embarcations, ainsi que les déjections

animales (Passerat et al., 2011; Droppo et al., 2009; Guérineau et al., 2014). Il y a également

les sources diffuses le long de la rivière, notamment celles issues du ruissellement lors des

précipitations, lessivant les surfaces urbaines et transportant divers contaminants chimiques et

microbiologiques. À cela s’ajoute les événements de remise en suspension des sédiments liés au

débit et au transport fluvial (Kay et al., 2008; Devane et al., 2020; Wuĳts et al., 2022b; Droppo

et al., 2011; Garcia-Armisen and Servais, 2009; Fries et al., 2008). Bien que l’application de

la réglementation en Europe ait permis une amélioration de la qualité des eaux de surface, les

sources diffuses restent problématiques, et les événements pluvieux exacerbent les risques de

déversement d’eaux usées non traitées (Whelan et al., 2022).

La directive européenne 2006/7/CE, concernant la gestion de la qualité des eaux de

baignade, vise à protéger, préserver et améliorer la qualité de l’environnement en continu ainsi

qu’à protéger la santé humaine. Du point de vue de cette directive, le suivi de la qualité micro-

biologique des eaux de baignade est actuellement quantifié à l’aide des bactéries indicatrices

fécales (BIF). La concentration en Escherichia coli, espèce membre du microbiote intestinal des

humains et animaux homéothermes, est couramment utilisée comme indicateur de la contami-
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nation fécale des eaux. Sa présence est associée aux risques de gastro-entérites liés à des agents

pathogènes d’origine hydrique, notamment dans les eaux de baignade (Lucas and Servais, 2016).

La distribution et le devenir des bactéries, présentes dans les fèces ou dans un rejet du

réseau d’assainissement, dans les eaux de surface dépend généralement de la dilution du rejet

par la rivière, de la dispersion des bactéries dans la colonne d’eau, de leur taux et vitesse de

sédimentation et de leur taux de mortalité (Davies et al., 1995; Cho et al., 2010). Des modèles

transport-dispersion sont utilisés pour mieux comprendre les mécanismes de transport et de

propagation des BIF en prenant en compte les processus d’advection, dispersion, sorption,

sédimentation, resuspension et de mortalité (Jalliffier-Verne et al., 2017). Les BIF peuvent soit

persister dans l’environnement, soit disparaître rapidement et leur survie dépendra de l’espèce

mais également de leur exposition à diverses influences environnementales (Devane et al., 2018;

Korajkic et al., 2019). La capacité de survie des BIF est due probablement à des facteurs qui

permettent, par exemple, à E. coli de survivre et/ou de croître à l’extérieur de l’hôte tels que

la température et la matière organique (Ishii and Sadowsky, 2008). Des études ont montré que

la disparition des BIF est causée par un certain nombre de facteurs environnementaux, dont la

température, la matière organique, la lumière du soleil et le microbiote aquatique (prédation

par les protozoaires et métazoaires, compétition bactérienne et lyse virale) (Davies et al., 1995;

Korajkic et al., 2019). De plus, il a également été démontré que l’association avec les sédiments

améliore la capacité de survie d’E. coli dans le milieu aquatique, dû à la présence de matière

organique et de nutriments (Zimmer-Faust et al., 2017; Korajkic et al., 2019). Les sédiments

servant potentiellement d’habitat secondaire (par rapport à l’intestin des espèces endothermes),

peuvent alors représenter une source de BIF de par leur remise en suspension (Devane et al.,

2018; Petersen and Hubbart, 2020). Toutefois, il existe peu d’études sur les facteurs impactant la

survie des BIF dans les habitats secondaires (eau, sédiments, sols) et les connaissances souvent

basées sur quelques expériences en laboratoire limitent la capacité à quantifier et prédire l’impact

de ces processus sur les variations de concentrations en BIF dans la colonne, sous différentes

conditions climatiques (Petersen and Hubbart, 2020).

La dynamique temporelle et spatiale des BIF pendant et après un événement polluant

reste encore mal comprise, notamment durant les pollutions de court terme affectant la qualité

de l’eau de la baignade pendant moins de 72 heures selon l’agence française de sécurité sanitaire

de l’environnement (Duboudin et al., 2007). Par exemple, lors d’un incident sur le réseau ou lors

d’un événement pluvieux, le pollutographe montre que la concentration en BIF s’élève après une
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phase de latence, atteint un pic, puis décroît pour revenir proche de la ligne de base antérieure

à l’événement de pollution (Stumpf et al., 2010; Tornevi et al., 2014; Oliver et al., 2015).

Habituellement, le terme utilisé pour évaluer la diminution des concentrations en BIF au sein

d’un événement polluant est le taux de décroissance (Gronewold et al., 2011; Nakhle et al., 2021;

Passerat et al., 2011; Beaudeau et al., 2001; Korajkic et al., 2014). Ce taux exprime généralement

la réduction des concentrations, influencée par les mécanismes de mortalité microbienne, liés à

la prédation par des bactériovores, la lyse virale, ainsi que par l’exposition à la lumière solaire et à

la température (Passerat et al., 2011; Nakhle et al., 2021; Servais et al., 2007a). D’autres termes,

comme le taux d’inactivation (Gronewold et al., 2011; Carneiro et al., 2018; Blaustein et al.,

2013; Noble et al., 2004), et le taux de survie (Ogorzaly et al., 2010; Carneiro et al., 2018) ont

été également employés au niveau de la littérature pour des expériences réalisées en laboratoire

ou in situ en rivière, généralement pour évaluer l’impact d’un ou de plusieurs paramètres.

Lors de l’estimation des taux de décroissance par expérimentation in situ, les microcosmes le

plus souvent utilisés sont des bouteilles ou des sacs à dialyse immergés dans l’eau de surface

(Ahmed et al., 2015; Maraccini et al., 2016). Par rapport aux bouteilles, les sacs à dialyse offrent

l’avantage de permettre l’échange d’eau et de nutriments entre l’intérieur du sac et la rivière,

tout en retenant les cibles microbiennes (Mattioli et al., 2017; Maraccini et al., 2016). Ces

expériences en microcosmes, si elles sont plus réalistes que les expériences en laboratoire, ne

permettent pas néanmoins d’évaluer les apports ni la dilution des contaminants en amont, ni

l’effet de la sédimentation.

Sur un site donné, la dynamique temporelle observée lors d’un événement polluant dans

les bases de données de suivi de la qualité de l’eau va résulter des caractéristiques hydrologiques

de la rivière, de phénomènes physiques de dilution, de dispersion, de sédimentation et de

transport, combinés au taux de décroissance des bactéries. Des termes comme le taux de

disparition (Servais et al., 2007a; Schultz-Fademrecht et al., 2008) ou taux de perte (Schultz-

Fademrecht et al., 2008) ou taux de dissipation (Xiao et al., 2024) sont le plus souvent employés

pour quantifier la perte observée de BIF au fil du temps sur un site donné et qui résulte de l’action

combinée de divers processus présentés au niveau de la figure 3.1 (Servais et al., 2007a; Devane

et al., 2007; Carneiro et al., 2018). Le taux de disparition peut être défini comme le taux auquel

les bactéries sont éliminées et disparaissent au cours du temps (Gronewold et al., 2011; Servais

et al., 2007a; Schultz-Fademrecht et al., 2008). Nous avons choisi pour la suite de notre étude,

d’utiliser les termes de taux de mortalité pour la décroissance mesurée lors des expériences en
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mésocosmes et de taux de disparition pour la décroissance observée dans les données de qualité

de l’eau collectées en rivière.

Les taux de mortalité et de disparition sont généralement estimés en ajustant une équation

exponentielle aux concentrations bactériennes mesurées au fil du temps dans les expérimenta-

tions ou lors d’un suivi temporel à un même site de la rivière. Cette équation est exprimée

comme une cinétique de décroissance de premier ordre (Nakhle et al., 2021; Geeraerd et al.,

2005; Gronewold et al., 2011). Ce modèle mathématique est privilégié, étant souvent appliqué

dans les études de décroissance des BIF. Il constitue une base solide pour suivre la diminution

de la concentration dans le temps. L’estimation des taux de décroissance des BIF est cruciale

pour nourrir les modèles hydrodynamiques utilisés pour la prédiction des concentrations en BIF

sur les zones de baignade. Par défaut, des valeurs issues de la littérature sont souvent utilisées

dans les modèles déterministes, car les paramètres de décroissance sont rarement évalués ex-

périmentalement. Or, ceci introduit une forte incertitude sur les concentrations prédites, car les

taux de décroissance utilisés peuvent fortement affecter la prédiction (Eregno et al., 2018).

Une mesure complémentaire à la décroissance de la contamination est le calcul de la

résilience et de la résistance du site face aux perturbations polluantes, ce qui permet d’évaluer la

vulnérabilité d’un site ou d’un écosystème (Imani et al., 2021; Xiao et al., 2024). La résistance

est la capacité d’un système à résister à une perturbation et la résilience est largement interprétée

comme la capacité d’un système à absorber et supporter, puis à se rétablir rapidement après

une perturbation (Mirauda et al., 2021). Il existe une diversité d’explications associées à la

notion de résilience, souvent définie de manière vague. Cependant, pour établir une théorie

utilisable dans différents domaines, il est crucial de partir de définitions précises et d’offrir

une comparaison mathématique des diverses mesures de résilience (Krakovská et al., 2024).

La résilience de la qualité de l’eau est définie comme la capacité des systèmes aquatiques à se

rétablir après une détérioration de la qualité de l’eau due à un évènement polluant (Xiao et al.,

2024). Pour une pollution fécale, cette capacité de résistance ou de résilience va dépendre de

l’intensité de la pollution, du taux de décroissance des BIF mais également des caractéristiques

hydromorphologiques du site et du bassin versant. L’estimation de la résilience offre une approche

robuste pour la prise de décision en matière de gestion de la qualité de l’eau mais reste encore

peu utilisée (Mirauda et al., 2021). Les indicateurs de résilience permettent d’évaluer l’impact

des pollutions pluviales, offrant ainsi des outils précieux pour l’évaluation de la qualité de l’eau

dans les zones étudiées (Noble et al., 2004). Plus le taux de décroissance ou de disparition est
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élevé, le temps de retour est court et l’amplitude de variation est faible, plus la résilience du

système aquatique est forte (Xiao et al., 2024; Krakovská et al., 2024).

Dans ce contexte, nous avons souhaité établir une approche qui englobe une estimation

de ces différents aspects de la dynamique temporelle des concentrations en BIF. Cette approche

combine de l’expérimentation in situ avec des sacs à dialyse pour déterminer le taux de mortalité

(Figure 3.1), avec l’utilisation des données de suivimicrobiologique réglementaire et des données

de suivi en temps quasi réel par le système ColiMinder pour estimer le taux de disparition

et le niveau de résistance et de résilience sur des sites contrastés (Figure 3.1). Les taux de

décroissance ont été quantifiés par modélisation de la diminution des concentrations en E. coli à

l’aide de courbes exponentielles inverses. La Marne et la Seine ont été investiguées pour savoir

si les mêmes taux pouvaient être appliqués sur les deux fleuves franciliens. En effet, il existe

encore peu de données disponibles pour ces deux rivières en région parisienne. Les modèles

actuellement utilisés (Prose, Telemac) pour prédire les concentrations en E. coli dans ces deux

rivières se basent généralement sur les données expérimentales de taux de décroissance en

présence et absence de broutage par les protozoaires qui sont disponibles pour la Seine et la

Marne (Servais et al., 2007b), et alternativement sur des taux de disparition qui ont été estimés

à partir de données issues d’une unique campagne d’échantillonnage sur la Marne (Van et al.,

2022). Notre étude vise à procurer des outils et des données pour la gestion des baignades qui

devraient s’ouvrir à l’horizon 2025 en Seine et en Marne, en se focalisant sur l’estimation des

taux de décroissance et de disparition et sur l’analyse de la résistance et de la résilience d’E.

coli, qui reste le critère le plus déclassant pour la gestion journalière de ces deux rivières en

Ile-de-France (Lucas et al., 2020; Mouchel et al., 2020).
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Figure 3.1 – Facteurs pouvant avoir un effet sur la dynamique des concentrations en BIF dans les bases de données
de suivi in situ (bleu), et sur la mortalité des BIF mesurées lors des l’expérimentations in situ (rouge) et en
laboratoire (vert).

3.2. Matériels et Méthodes

3.2.1. Sites d’étude en rivière

L’étude s’est focalisée sur 6 sites en région parisienne (France) : 3 sites enMarne (SMV1,

SMV10 et SMV14) et 3 sites en Seine (pont de l’Alma, pont de Tolbiac rive droite, Tolbiac rive

gauche) (Figure 3.2). Les sites en Marne ont été sélectionnés car ce sont des candidats pour

l’ouverture de baignade en 2025, vu leur qualité microbiologique et leur facilité d’aménagement

(Noury et al., 2018) et parce qu’ils représentent des situations contrastées. En ce qui concerne

la Seine, les sites ont été sélectionnés du fait de la présence d’un système ColiMinder en amont

et qu’il s’agissait de sites suivis par la Ville de Paris pour les épreuves des Jeux Olympiques et

Paralympiques 2024.
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Figure 3.2 – Schéma des sites étudiés.

3.2.2. Bases de données

La base de données du Syndicat Marne Vive regroupe les données des mesures bactério-

logiques et physico-chimiques réalisées de début juin à mi-septembre les années 2015, 2017 à

2022, une à deux fois par semaine sur la Marne. Les données ont été mesurées par Eurofins en

2015 et par le laboratoire départemental des eaux du Val de Marne de 2017 à 2022. Les échan-

tillons ont été prélevés selon la norme française FD T 90-523-1, les mesures microbiologiques

ont été réalisées selon les méthodes normalisées françaises NF EN ISO 9308-3 pour E. coli. Les

mesures physico-chimiques ont été réalisées selon les méthodes normalisées françaises, NF EN

27888 pour la conductivité électrique, NF EN 872 pour matières en suspension (MES). Pour la

pluviométrie, les données ont été fournies par les réseaux de pluviomètres des Conseils dépar-

tementaux du Val-de-Marne (stations CHAM23 et MAIS32), de la Seine-Saint-Denis (station

NE-17) et de la Ville de Paris (station PL14). Pour le site SMV14, les prélèvements ont été

réalisés en 2015 en rive gauche (Maisons-Alfort) puis en rive droite (Saint-Maurice) pour les

années suivantes. Le débit à la station de Gournay-sur-Marne a été obtenu à partir de la Station

hydrométrique - F664 0001 04 sur le siteHydroPortail (https ://hydro.eaufrance.fr/stationhydro/).

La base de données de la Ville de Paris regroupait les mesures effectuées de début-juin

à fin-septembre sur la période 2015-2023, de manière hebdomadaire ou bi-hebdomadaire sur

la Seine (France). En 2015 et de 2018 à 2023 les échantillonnages au pont de Tolbiac ont

été effectués en rive droite (RD), et de 2017 à 2023 en rive gauche (RG). Pour le pont de
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l’Alma, les échantillonnages ont été réalisés entre 2017 et 2023. Les mesures microbiologiques

et physico-chimiques ont été réalisées par le laboratoire d’Eau de Paris selon les méthodes

normalisées françaises NF EN ISO 9308-3 pour E. coli, NF EN ISO 7027-1 pour la turbidité,

et NF EN 27888 pour la conductivité électrique. Les données pluviométriques ont été obtenues

à partir du réseau de pluviomètres de la Ville de Paris (stations PL1 et PL5). Le débit au

pont d’Austerlitz a été obtenu à partir de la station hydrométrique F700 0001 03 sur le site

HydroPortail (https ://hydro.eaufrance.fr/stationhydro/).

Nous avons en plus utilisé les données du système automatisé ColiMinder (Vienna

Water Monitoring, VWM) au niveau de 2 sites en Seine en rive gauche (Pont de l’Alma entre

2020 et 2023 et Pont de Tolbiac RG entre 2021 et 2023 ; Paris, France). Les analyses ont été

réalisées toutes les 2 heures. Les données pluviométriques ont été obtenues à partir du réseau

de pluviomètres de la Ville de Paris (stations PL1 et PL5).

À partir de ces bases de données, une sélection des données a été réalisée sur deux

critères : i) uniquement les concentrations en E. coli mesurées a minima deux fois par semaine

entre juin et septembre pour les bases de données avec suivi réglementaire et ii) uniquement des

événements pluvieux isolés qui génèrent une pollution, suivis de 3 jours de temps sec (données

réglementaires etColiMinder). Pour les données réglementaires, les événements pluvieux retenus

devaient inclure une première analyse bactériologique le lendemain de la pluie ou le dernier jour

de pluie (concentration initiale), suivie par au moins 3 jours de temps sec incluant a minima

un prélèvement pendant cette période, ceci afin d’observer et de modéliser la diminution des

concentrations en E. coli.

À partir de ces événements sélectionnés dans les deux bases de données, la concentration

initiale correspond à la première mesure de concentration pour l’événement pluvial, tandis que

la concentration en temps sec est celle observée après trois jours de temps sec. Le taux de

disparition ainsi que les paramètres de résilience et de résistance ont ensuite été calculés.

3.2.3. Expérimentation in situ

La vitesse de mortalité d’E. coli a été étudiée à l’aide de sacs à dialyse. Cette expérience

simule un rejet de station d’épuration dans la Marne, afin de calculer le taux de mortalité des

E. coli. Cette expérience a été réalisée du 27 mai au 1er juin 2019 à quelques mètres en amont

du site SMV14. Les autorisations ont été obtenues auprès de Voies Navigables de France pour

l’accès au site et l’installation des systèmes expérimentaux dans la Marne. Un total de 18 L
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d’eau de la Marne au droit du rejet de l’usine de traitement des eaux usées Marne Aval (Syndicat

Intercommunal d’Aménagement de l’Agglomération Parisienne) a été collecté au seau, dont 10

L ont été autoclavés 20 min à 120°C afin d’être utilisés comme contrôle. Les sacs à dialyse

Spectra/Por®1 (seuil de coupure de 6 à 8 kD) ont été remplis avec environ 180 ml d’eau du

rejet autoclavé ou non. Les sacs ont ensuite été fermés à l’aide de pinces et attachés par du fil

de pêche à des cagettes en plastique de 32 cm x 28 cm. Les cagettes lestées ont été placées à

environ 10-20 cm sous la surface et arrimées à la berge à l’aide d’une corde. Deux traitements

ont été réalisés en cinq exemplaires pour 4 pas de temps (n=30) : (1) eau autoclavée, (2) eau du

rejet pure (non diluée). Les échantillons ont été collectés à quatre moments différents : après 24

h (T1), 48 h (T2) et 72 h (T3). Les sacs à dialyse ont été collectés le matin entre 10 et 11 h et

placés dans des sacs plastiques scellés, partiellement remplis d’eau de la Marne provenant du

site de prélèvements et placés dans une glacière pour le transport jusqu’au laboratoire.

3.2.4. Quantification des BIF

Pour les expériences in situ, les densités (NPP/100 mL) en E. coli dans l’eau du rejet

autoclavée et pure à T0 et l’eau contenue dans chaque sac à dialyse (T1 à T3) ont été ensemencées

sur les microplaques MUG/EC (BioRad) selon la méthode de référence NF EN ISO 9308-3 pour

E. coli. Le calcul du NPP/100 mL dans un intervalle de confiance de 95% a été réalisé à

l’aide d’une feuille de calcul Excel proposée par Jarvis et al. (2010). Elle fournit également

un indicateur de rareté qui permet de détecter des incohérences dans les comptages obtenus

pour l’ensemble des dilutions. La turbidité (Turbidimètre Hach),la conductivité et le pH (sonde

multiparamétrique Eutech) ont été mesurés dans les échantillons d’eau à T2 et T3.

3.2.5. Modélisation de la dynamique temporelle après une pluie

L’analyse de la décroissance bactérienne s’effectue par une estimation de la vitesse de

diminution des concentrations en E. coli à l’aide d’un modèle exponentiel inverse. À partir des

données mesurées expérimentalement, des suivis de qualité microbiologique réglementaire aux

6 sites, ou des suivis en Seine avec le système ColiMinder, la constante de cinétique des courbes

de décroissance des différents événements sélectionnés a été déterminée empiriquement avec

un modèle linéaire exponentiel. En utilisant ce paramètre cinétique déterminé, les courbes de

décroissance ont été modélisées pour générer des valeurs prédites par le modèle pour chaque

événement sélectionné. Ces valeurs servaient ensuite à déterminer avec un modèle log-linéaire
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les taux de mortalité à partir des expériences, et les taux de disparition à partir des données de

suivi en Marne et en Seine et des données du système ColiMinder. L’ensemble des étapes de

modélisation ont été effectuées sous R (R-Core-Team, 2018).

3.2.5.1. Modélisation exponentielle inverse

A partir des valeurs de la constante de cinétique, des tableaux contenant les valeurs

prédites de concentration pour chaque événement pour les 6 sites (issues de la base de données

réglementaires) et pour les 2 sites équipés du ColiMinder, ainsi que pour les expériences in situ

ont été générés en modélisant la courbe de décroissance à l’aide d’une équation exponentielle

inverse d’ordre 1 (Gronewold et al., 2011; Geeraerd et al., 2005).

C(t) = (C0 − Cres).e−K1t

(
eK1S

1 + e−K1t (eK1S − 1)

)
+ Cres (3.4)

Cette équation utilise la constante de cinétique (K1, en jr−1), l’épaulement (S, en jr),

la concentration initiale (C0, en NPP/100 mL), la densité de la population (Cres, en NPP/100

mL) et le temps (t, en jr) comme données d’entrée (Geeraerd et al. (2005), équation 1). K1

est une inconnue qui est estimée de manière empirique en utilisant les données mesurées des

concentrations en BIF au cours du temps. Dans la suite de notre étude, l’outil de modélisation

de la décroissance de Geeraerd et al. (2005) a été utilisé pour établir des modèles log linéaire en

prenant en compte la population résiduelle (Cres) et l’épaulement S. La plupart des études sur

la modélisation de la décroissance bactérienne n’incluent pas la période de latence (S) lors de

la modélisation. Or cette dernière peut exister, dû à l’état de la population microbienne ou à un

artéfact expérimental (Mattioli et al., 2017; Brooks and Field, 2016).

Pour chaque site, une courbe moyenne des courbes modèles a été réalisée. Pour cela,

les données des courbes modèles et les valeurs mesurées ont été exprimées en pourcentage

(de manière à avoir à t0 un pourcentage de 100% puis une décroissance au cours du temps).

Les courbes moyennes ont été réalisées avec un intervalle de confiance de 95% (R-Core-Team,

2018). Par la suite, les données prédites pour chaque événement ont servi à estimer les valeurs

de taux de disparition ou de taux de mortalité (K2 - pente des modèles).

3.2.5.2. Estimation des taux de mortalité et de disparition

Le taux de mortalité/disparition (K2) a été calculé en utilisant un modèle linéaire expo-

nentiel. K2 représente un taux de décroissance qui peut correspondre au taux de mortalité d’une

même population de BIF dont les concentrations évoluent dans le temps, et qui est déterminé
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dans les expériences (Korajkic et al., 2014; Carneiro et al., 2018; Passerat et al., 2011). K2 peut

aussi représenter un taux de disparition dans le cas de la modélisation d’une série temporelle

d’un suivi de qualité réalisé sur un site de baignade. Le taux K2 est exprimé en unités de temps,

généralement en jr−1.

3.2.6. Indicateurs de résilience et de résistance

La résilience et la résistance désignent la capacité des systèmes aquatiques à se transfor-

mer, s’adapter et se maintenir face à des perturbations, telles que des épisodes de pollution de

courte durée (Xiao et al., 2024; Krakovská et al., 2024). En ce qui concerne la qualité de l’eau

d’une rivière, la résilience ou la résistance peut être quantifiée en comparant les concentrations

observées lors d’un événement de pollution à celles enregistrées dans des conditions normales

(Xiao et al., 2024). Dans le cas de notre étude, les temps secs (minimum 3 jours après une

pluie) ont été considérés comme des conditions normales, et les événements pluvieux comme

des perturbations.

Au niveau de notre étude, nous avons utilisé 3 paramètres :

- Le temps de retour (T90) est l’un des indicateurs les plus couramment utilisés pour

l’analyse de la résilience (Nakhle et al., 2021; Ogorzaly et al., 2010; Carneiro et al., 2018;

Xiao et al., 2024; Schultz-Fademrecht et al., 2008; Noble et al., 2004). Il représente le temps

nécessaire pour atteindre une réduction de 90% des concentrations initiales en E.coli, indiquant

le retour à un état proche de l’équilibre, soit les concentrations par temps sec.

- L’amplitude de récupération (AVaprès) représente l’amplitude de changement entre la

concentration initiale au pic de pollution et celle mesurée en période de temps sec après la

perturbation. Elle est également exprimée en pourcentage de différence. Ce paramètre permet

de mesurer l’ampleur de la récupération après une pollution (Krakovská et al., 2024).

- L’amplitude de variation de la pollution (AVavant) quantifie l’écart des concentrations en

E. coli entre le pic de pollution (concentration dite initiale pour la mesure de décroissance) et le

temps sec précédent chaque événement pluvial analysé. Exprimée en pourcentage de différence,

ce paramètre permet de mesurer la capacité d’un système à résister et l’ampleur des changements

subis par la qualité de l’eau suite à une pollution (Krakovská et al., 2024; Mirauda et al., 2021).
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3.2.7. Traitements statistiques

Toutes les analyses statistiques ont été réalisées à l’aide du logiciel R (V3.5.1, (R-Core-

Team, 2018). Les tests de Kruskal-Wallis ou de Friedman (appariés) étaient suivis de tests

post-hoc (tests de Wilcoxon multiples par paire). Les p-valeurs des comparaisons par paires ont

été ajustées avec une correction de Bonferroni. Pour l’analyse de variance, le test post-hoc HSD

de Tukey a été utilisé. Afin de déterminer les paramètres qui peuvent influencer les valeurs K2

et les 3 paramètres de résilience ou de résistance obtenues pour chaque événement à partir des

données réglementaires mesurées en Seine et en Marne et des données du système ColiMinder,

des modèles linéaires ont été réalisés en utilisant des paramètres physico-chimiques, hydro-

métérologiques et bactériologiques (turbidité, conductivité, température, pluviométrie cumulée

sur l’événement avant prélèvement (48 h), débit, concentration initiale en E. coli), station de

mesure). Les données de pluviométrie ont été testées sous forme quantitative (mm cumulés),

mais ont également été discrétisées en deux catégories : pluie faible (<10 mm cumulés) (Islam

et al., 2017) et pluie élevée (>10 mm cumulés) (Gebremichael et al., 2014).

Les variables colinéaires ont d’abord été éliminées après calcul du facteur d’inflation de

la variance pour tester la multicolinéarité (librairies usdm, MASS et leaps). La température et la

conductivité, en raison de leur colinéarité, n’ont pas été retenues. La turbidité a été testée pour

chaque modèle, mais n’a pas été identifiée comme un paramètre significatif du modèle. Elle a

été écartée lors du processus de validation du modèle linéaire final.

Sur les variables retenues, une vérification de la distribution des données quantitatives

a été effectuée à l’aide des diagrammes quantiles-quantiles (librairies fitdistrplus et car). Nous

avons appliqué différentes méthodes de modélisation, notamment les modèles linéaires simples

(lm), les modèles linéaires généralisés (glm), ainsi que les modèles linéaires mixtes (lmm) et les

modèles linéaires généralisés mixtes (glmm), afin de prendre en compte à la fois les effets fixes

et aléatoires entre les sites. Une sélection du modèle le plus significatif a été réalisée en utilisant

la méthode descendante et en se basant sur le critère d’information d’Akaike (AIC, librairies

lme et car) suivie par une validation du modèle en vérifiant la distribution et l’indépendance des

résidus (Zuur et al., 2009). Pour l’ensemble des analyses statistiques, le seuil de significativité a

été fixé à 5%.
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3.3. Résultats

3.3.1. Détermination du taux de mortalité

Pour l’expérience in situ proche du site SMV14 en Marne, les modèles linéaires ex-

ponentiels utilisés pour le calcul de la constante de cinétique sur chaque réplicat séparément

(1,17 ± 0,58 jr−1, n=5) étaient non significatifs (p > 0,06) avec un r2 moyen de 0,98 ± 0,01.

Cependant, en regroupant l’ensemble des réplicats, le modèle s’ajustait de manière significative

aux données (n=5, p < 0,001). Le modèle de décroissance présenté en figure 3.3 a ensuite permis

l’estimation du taux de mortalité (K2) d’E. coli, avec une valeur moyenne de 0,97 ± 0,48 jr−1,

soit une décroissance après plus d’un jour.

Figure 3.3 – Courbe modélisant la décroissance (ligne noire) avec les valeurs obtenues par expérimentation en sac
à dialyse pour le dénombrement des E. coli avec l’eau du rejet. Les valeurs mesurées lors de l’expérimentation sont
représentées par des carrés rouges.

Lors de l’analyse de la mortalité d’E. coli en Marne à proximité du site de baignade

potentielle SMV14, les contrôles (eau de rejet autoclavée) étaient restés stériles, montrant ainsi

que les sacs à dialyse étaient étanches. De plus, les mesures de pH et de conductivité étaient

similaires entre l’eau de la Marne et l’intérieur des sacs à dialyse, montrant que le système était

bien semi-ouvert (Tableau 3.1).
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Table 3.1 – Valeurs des paramètres physico-chimiques de l’eau de la Marne et de l’eau contenue dans les sacs à
dialyse mesurés lors du 2ème et 3ème jours de l’expérimentation in situ.

Date de

prélève-

ment

Eau / Traitement pH Conductivité

(S/cm)

Turbidité

(FTU)

Concentration

initiale

(NPP/100

mL)

2ème jour

Marne 8,19 558 30,24 412

Rejet 8,06 560 5,11 120000

Rejet autoclavé 8,19 568 13,13 0

3ème jour

Marne 8,07 550 5,71

Rejet 8,01 556 6,96

Rejet autoclavé 8,15 552 7,75

3.3.2. Dynamique de disparition d’E. coli en rivière

Une variabilité interannuelle a été observée sur la saison de baignade de juin à septembre

en ce qui concerne la pluviométrie (Tableau 3.2). De même, il existait une hétérogénéité spatiale

sur la Seine à Paris et l’aval de la Marne depuis Gournay-sur-Marne à la confluence avec la

Seine. Globalement, les étés les plus pluvieux étaient 2017 (188 à 303 mm cumulés, et 42 à 66

jours de pluie), 2021 (288 à 382 mm soit 42 à 63 jours de pluie), et 2023 (204 à 299 mm de

pluie, et 32 à 44 jours de pluie) (Tableau 3.2).

Table 3.2 – Nombre de jours de pluie et pluviométrie (mm) cumulée durant la période estivale (1er juin - 30
septembre) chaque année à Paris et sur l’aval de la Marne, en fonction des pluviomètres les plus proches de chaque
station de prélèvement.

Année SMV 1 SMV 10 SMV 14 Alma Tolbiac
Nb de jours Cumul Nb de jours Cumul Nb de jours Cumul Nb de jours Cumul Nb de jours Cumul

2015 40 186 20 111 20 140 29 160 37 177
2016 46 171 42 188 58 127 38 112 39 131
2017 66 303 42 193 40 188 57 226 58 389
2018 33 244 32 192 42 175 20 130 26 139
2019 31 210 29 168 28 168 22 82 23 119
2020 38 181 38 197 44 171 35 136 37 145
2021 54 382 51 363 63 303 42 288 43 310
2022 42 197 41 217 38 184 35 158 40 242
2023 42 299 35 225 37 204 36 250 34 240

Cette variabilité a permis de pouvoir sélectionner un ensemble d’événements pluvieux

entre 2 et 42 mm de pluie cumulée, suivis au minimum par 3 jours de temps sec, associant

une décroissance en E. coli. Pour la base de données réglementaires, ont été sélectionnés 33

187



Chapitre 3

événements en Marne (12 au site SMV1, 11 au site SMV10 et 10 au site SMV14) et 13 en Seine

dont 5 au pont de l’Alma, 5 au pont de Tolbiac en RD et 3 en RG. Pour la base de données du

dispositif ColiMinder, ont été retenus 13 événements pluvieux au pont de l’Alma et 21 au pont

de Tolbiac. L’ensemble des pluies sélectionnées se caractérise d’une part par 54% de pluie <10

mm et 46% de pluie ≥10 mm pour les mesures réglementaires, et d’autre part par 62% de pluie

<10 mm et 38% de pluie ≥10 mm pour les analyses avec le système ColiMinder.

3.3.2.1. Caractéristiques des événements sélectionnées

3.3.2.1.1. Caractéristiques des données réglementaires

Une variabilité interannuelle a été observée au niveau de chaque site (SMV1, SMV10,

SMV14 et pont de Tolbiac RD et RG) (Test de Kruskal-Wallis, p<0,001, p<0,001, p<0,001,

p<0,023, p<0,002, n=293, n= 274, n=286, n=208, n=187), à l’exception du pont de l’Alma qui

ne présentait pas de différence significative entre les années (Test de Kruskal-Wallis, p=0,058,

n=180). Ces données montraient que les années 2018 et 2021 se démarquaient par des concen-

trations E. coli élevées en Marne, et les concentrations de l’année 2020 étaient particulièrement

plus basses (Tableau 3.3). Ainsi, en Seine, cette différence entre années était la plus marquée

au pont de Tolbiac RG entre 2018 et 2020, avec un niveau de contamination le plus faible en

2020 (Test post-hoc, p=0,003, n=187, Tableau 3.4). En Marne, une plus grande variabilité in-

terannuelle était observée entre les différentes années (Tableau 3.3). Les concentrations en 2021

étaient significativement plus élevées que les autres années pour les 3 sites (Test de Kruskal-

Wallis suivi de tests post-hoc, p<0,002 pour tous les sites et les années, n=853) à l’exception

du SMV1 pour lequel les concentrations ne différaient pas entre 2021 et 2023 (Test post-hoc,

p=1,000, n=78). Ces concentrations élevées en 2021 correspondaient au fait que les cumuls de

pluviométrie en 2021 étaient les plus élevés (Tableau 3.2). En 2018, des concentrations nette-

ment élevées ont été constatées de Gournay-sur-Marne à la confluence avec la Seine, atteignant

une moyenne de 8708 ± 4416 NPP/100 mL à SMV1 (Tableau 3.4) en raison d’un incident sur le

réseau d’assainissement à l’amont de SMV1 (Tests post-hoc, p<0,001, n=293).

Pour l’ensemble des événements sélectionnés dans les bases de données réglementaires

de la Seine et la Marne, la concentration en E. coli augmentait après la pluie et dépassait le

seuil de qualité suffisante de 1800 NPP/100 mL (instruction N°DGS/EA4/2020/111 du 2 juillet

2020) dans 69% des pluies sélectionnées. Au niveau de la Marne, 63% des pluies sélectionnées

ont dépassé le seuil de 1800 NPP/100 mL alors qu’au niveau de la Seine, 84% des pluies ont

dépassé ce seuil.
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Table 3.3 – Concentrations en E. coli en NPP/100 mL durant la période estivale par année et par site en Marne
selon le suivi réglementaire.

Année SMV 1 SMV 10 SMV 14
2015 950 ± 1759 1512 ± 2825 637 ± 833
2017 1119 ± 2080 2599 ± 2444 580 ± 1227
2018 8708 ± 4416 3927 ± 6046 2182 ± 3531
2019 1316 ± 2362 1222 ± 1533 421 ± 419
2020 786 ± 1246 1493 ± 835 434 ± 373
2021 1813 ± 1962 5903 ± 4371 3462 ± 1900
2022 779 ± 802 2566 ± 2192 586 ± 667
2023 1595 ± 2317 1843 ± 2156 881 ± 1568

Table 3.4 – Concentrations en E. coli en NPP/100 mL durant la période estivale par année et par site en Seine
selon le suivi réglementaire.

Année Alma Tolbiac RD Tolbiac RG
2015 — 4380 ± 3622 –
2017 1750 ± 2276 — 14224 ± 18055
2018 3079 ± 8862 4965 ± 8619 6690 ± 9836
2019 1825 ± 4016 4568 ± 7123 4476 ± 7858
2020 710 ± 954 1910 ± 3105 2210 ± 4478
2021 5733 ± 11218 5436 ± 8083 7737 ± 10665
2022 4190 ± 8546 6778 ± 12096 6096 ± 11340
2023 1292 ± 1914 2275 ± 3274 4140 ± 8408

Les concentrations moyennes de temps sec avant les événements pluvieux étaient statis-

tiquement similaires entre les différents sites, à l’exception entre les sites SMV10 et SMV14,

la concentration moyenne étant la plus faible à SMV14 (Test de Kruskal-Wallis, suivi des tests

post-hoc, p=0,041, n=22, Tableau 3.5). Chaque pluie était associée à une augmentation signi-

ficative de la concentration par rapport au temps sec précédant (Test de Wilcoxon apparié,

p<0,001, n=46, Tableau 3.5). Les pics de contamination étaient statistiquement similaires entre

les différents sites pour chaque épisode de pluie (Test de Kruskal-Wallis, p=0,196, n=46, Tableau

3.5). Une diminution significative de la concentration en E. coli était ensuite constatée durant les

3 jours de temps sec suivant chaque pluie (Test de Wilcoxon apparié, p<0,001, n=46, Tableau

3.5). En ce qui concerne les concentrations à partir du 3ème jour de temps sec après la pluie, une

différence significative a été constatée également uniquement entre SMV10 et SMV14 (Test de

Kruskal-Wallis suivi de tests post-hoc, p=0,031, n=22).
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Table 3.5 – Concentrations en E. coli en NPP/100 mL par site pour les événements sélectionnés (temps sec avant
la pluie (avant), concentration initiale au pic de pollution (pic) et temps sec après la pluie (après).

Site Avant Pic Aprés

Alma 643 ± 268 5366 ± 3895 1121 ± 164

Tolbiac RG 1502 ± 742 18910 ± 14053 1883 ± 586

Tolbiac RD 1543 ± 1967 15619 ± 17577 1793 ± 3336

SMV1 1080 ± 1679 6334 ± 6918 360 ± 2507

SMV10 1192 ± 850 7278 ± 10214 1511 ± 756

SMV14 488 ± 437 3990 ± 5698 260 ± 341

3.3.2.1.2. Caractéristiques des données de l’analyseur ColiMinder

L’analyse des mesures en E. coli par le système ColiMinder durant toute la période

estivale (de juin à septembre entre 2020-2023), montre une contamination significativement

plus élevée en 2022 comparé aux autres années, que ce soit au pont de l’Alma ou au pont de

Tolbiac (Tableau 3.6), à l’exception de 2021 et 2022 au pont de Tolbiac dont les concentrations

en E. coli ne sont pas significativement différentes (Test de Kruskal-Wallis, p<0,001, n=6625 et

4681 respectivement pour les deux sites, suivi de tests post-hoc, p>0,340).

Table 3.6 – Concentrations en E. coli en NPP/100 mL estimées par l’analyseur ColiMinder durant toute la période
estivale par année et par site

Année Alma Tolbiac
2020 560 ± 104 —
2021 4897 ± 2580 5036 ± 4156
2022 9285 ± 10402 18497 ± 18436
2023 3836 ± 4080 7543 ± 5047

Pour l’ensemble des événements pluvieux sélectionnés dans la base de données du

système ColiMinder, la concentration en E. coli augmente après la pluie et dépasse le seuil de

qualité suffisante de 1800 NPP/100 mL (selon l’instruction N°DGS/EA4/2020/111 du 2 juillet

2020 pour la gestion en cours de saison) dans 79% des pluies sélectionnées. Un total de 69% des

pluies sélectionnées dépassait ce seuil au niveau du pont de l’Alma et 85% au niveau du pont de

Tolbiac.

Avant la pluie par temps sec, la concentration en E. coli était en moyenne de 525 ± 288

NPP/100 mL au pont de l’Alma et de 937 ± 960 NPP/100 mL au pont de Tolbiac, et les deux sites

ne différaient pas significativement (Test de Wilcoxon, p=0,456, n=34). L’événement pluvieux

190



Chapitre 3

entraînait une augmentation significative de la concentration en E. coli quel que soit le site (Test

de Wilcoxon apparié, p<0,001, n=34). Le pic de concentration au niveau des 2 sites présentait

des concentrations moyennes statistiquement similaires (39769 ± 71990 NPP/100 mL au pont de

l’Alma et 35334 ± 38322 NPP/100 mL au pont de Tolbiac) (Test de Wilcoxon, p=0,178, n=34).

Une diminution significative de la concentration était observée ensuite pendant les 3 jours de

temps sec suivant la pluie (Test deWilcoxon apparié, p<0,001, n=34). La concentration moyenne

en E. coli le 3ème et le 4ème jour après l’événement pluvieux était de 1226 ± 2067 NPP/100 mL

au pont de l’Alma et 1275 ± 1466 NPP/100 mL au pont de Tolbiac.

3.3.2.2. Estimation du taux de disparition

3.3.2.2.1. Taux de disparition estimés avec les bases de données réglemen-

taires

Quelque soit le site en Seine ou en Marne, les modèles exponentiels permettant une esti-

mation du taux de disparition n’étaient significatifs que pour 24% des événements sélectionnés

(Tableau 3.7). En effet, il y avait généralement 2 à 5 mesures par événement et les modèles

les plus significatifs ont été observés pour des événements avec des mesures successives avec

au minimum un intervalle de 24 h. La constante de cinétique (K1) a été calculée pour chaque

événement pluvial sélectionné et chaque site. Les résultats ont montré que les valeurs de la

constante de cinétique étaient comprises entre 0,18 et 1,55 jr−1 (Tableau 3.7).

Table 3.7 – Constante de cinétique (K1, jr−1) obtenues par le modèle linéaire exponentiel (p-valeur et R2), le taux
de disparition (K2, jr−1). Moyenne ± écart type ou [Min : Max]. p-valeur significative (S), non significative (NS)
au seuil 0,05. NA non applicable.

Site K1 p-valeur R2 K2

SMV1 (n=12) 0,60 ± 0,31 S(2) NS(7) NA(3) [0,027 : 0,401] 0,89 ± 0,13 0,36 ± 0,32
SMV10 (n=11) 0,76 ± 0,51 NA(3) NS(8) [0,054 : 0,256] 0,87 ± 0,15 0,46 ± 0,49
SMV14 (n=10) 0,78 ± 0,22 S(2) NS(7) NA(1) [0,010 : 0,388] 0,82 ± 0,18 0,49 ± 0,22
Alma (n=5) 0,82 ± 0,46 S(3) NS(2) [0,002 : 0,498] 0,81 ± 0,21 0,52 ± 0,50
Tolbiac RD (n=5) 0,73 ± 0,31 S(2) NS(3) [0,001 : 0,245] 0,77 ± 0,23 0,44 ± 0,23
Tolbiac RG (n=3) 0,60 ± 0,19 S(2) NS(1) [0,004 : 0,059] 0,88 ± 0,12 0,43 ± 0,12

Les courbes modèles ont ainsi pu être obtenues pour chaque événement observé et ont

permis d’affiner la valeur du taux de disparition. Un intervalle de confiance à 95% a été estimé

pour chaque courbe moyenne (Figure 3.4).
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Figure 3.4 – Courbe modèle moyenne (ligne rouge) ajustée aux concentrations relatives en E. coli pour chaque
site. (A) site SMV1, (B) site SMV10, (C) site SMV14, (D) pont de l’Alma, (E) pont de Tolbiac RD et (F) pont de
Tolbiac RG. Les valeurs mesurées relatives exprimées en pourcentage de la concentration initiale sont représentées
en bleu, les intervalles de confiance à 95% des courbes sont représentés en gris.

Figure 3.5 – Comparaison des taux de disparition (jr−1) entre les 6 sites.

Pour l’ensemble des événements, le taux de disparition ne variait pas significativement

d’un site à l’autre (Test de Kruskal-Wallis, n= 46, p=0,69, Figure 3.5). En effet, le taux était très

proche entre les différents sites, il était le plus faible à SMV1 (0,36 ± 0,32 jr−1) et le plus élevé

au pont de l’Alma (0,52 ± 0,50 jr−1). Cela indiquerait une vitesse de disparition relativement
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similaire au niveau des 6 sites analysés que ce soit en Seine (0,47 ± 0,32 jr−1) ou en Marne

(0,44 ± 0,35 jr−1).

3.3.2.2.2. Taux de disparition estimés avec les données du ColiMinder

La constante de cinétique (K1) a été calculée pour chaque événement pluvial sélectionné

en utilisant les données mesurées toutes les 2 h. Les modèles étaient validés avec une p-valeur

<0,05, sauf pour 2/13 modèles au pont de l’Alma et 4/21 modèles au pont de Tolbiac. Les valeurs

K1 étaient estimées entre 0,26 et 37,72 jr−1 (Tableau 3.8). Les taux de disparition estimés étaient

en moyenne de 5,50 ± 9,50 jr−1(entre 0,12 et 30,53 jr−1) pour le pont de l’Alma et de 5,39 ±

7,94 jr−1 (entre 0,09 et 34,82 jr−1) pour le pont de Tolbiac.

Table 3.8 – Constante de cinétique (K1, jr−1) dérivées dumodèle linéaire exponentiel (p-valeur et R2) et estimation
du taux de disparition (K2, jr−1). Moyenne ± écart type ou [Min : Max]. p-valeur significative (S), non significative
(NS) au seuil 0,05.

Site et intervalle K1 p-valeur R2 K2

Alma 2 h (n=13) 6,25 ± 9,81 S(11) NS(2) [<0,001 : 0,250] 0,71 ± 0,25 5,50 ± 9,50

Tolbiac 2 h (n=21) 6,05 ± 8,44 S(17) NS(4) [<0,001 : 0,280] 0,79 ± 0,22 5,39 ± 7,94

3.3.2.2.3. Intervalle de temps minimum entre chaque mesure

Afin de savoir quel est l’effet du nombre de mesures sur la capacité du modèle à estimer

correctement les taux de disparition, différents intervalles de temps entre deux mesures (2 h, 4

h, 6 h, 8 h, 12 h et 24 h) ont été testés. Il est attendu que le modèle sera moins significatif au fur

et à mesure que l’intervalle de temps entre les mesures augmente, mais s’agit-il d’une relation

continue ou existe-t-il un seuil ? L’objectif était de déterminer si une mesure réglementaire par

jour est suffisante pour suivre et modéliser la décroissance bactérienne après un événement

pluvieux. La constante de cinétique (K1) a été calculée pour chaque pluie sélectionnée et chaque

intervalle de temps analysé. Les résultats ont montré que le pourcentage de modèles significatifs

diminue fortement de 81% et 85% (pour les ponts de Tolbiac et de l’Alma respectivement) à 2

h d’intervalle, pour atteindre seulement 5 et 15% lorsque l’intervalle était de 24 h (Tableau S1).

Ceci indique que plus l’intervalle entre les mesures est réduit, meilleure est l’estimation de la

constante de cinétique. Le nombre d’heures entre chaque mesure avait un impact significatif sur

les constantes de cinétique K1 (Test de Friedman, p<0,010, n=204, Tableau S1).
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Figure 3.6 – Comparaison des taux de disparition (jr−1) selon l’interval de temps entre 2 mesures (de 2 h à 24
h) pour E. coli pour les ponts de l’Alma et de Tolbiac. Les barres horizontales et les lettres (a, b, c) regroupent les
intervalles sans différence significative.

À la suite desmodélisations effectuées pour chaque événement, le taux de disparition a été

calculé pour chaque intervalle de temps analysé. L’intervalle de temps impactait significativement

le calcul du taux de disparition (Test de Friedman, p<0,010, n=204, Figure 3.6). Toutefois, aucune

différence significative n’a été détectée pour les intervalles allant de 2 h à 8 h (Test post-hoc,

p=0,182, n=68). Pour l’intervalle de 12 h, les taux de disparition étaient significativement plus

faibles que ceux estimés pour les intervalles de 2 h à 6 h (Test post-hoc, p=0,004, n=68). Enfin,

pour l’intervalle de 24 h, les taux de disparition étaient significativement plus faibles que ceux

estimés avec tous les autres intervalles (Test post-hoc, p<0,001, n=68). Les taux de disparition

estimés avec une mesure par jour (24 h) étaient en moyenne de 1,04 ± 1,00 jr−1 (entre 0,13 et

3,22 jr−1) pour le pont de l’Alma et de 1,44 ± 0,98 jr−1 (entre 0,10 et 3,15 jr−1) pour le pont

de Tolbiac (Tableau S1). Ces résultats suggèrent une diminution significative de l’estimation du

taux de disparition à partir d’un intervalle de 12 h. Une ou deux mesures par jour sembleraient

donc insuffisantes pour estimer correctement le taux de disparition.

De plus, lorsque les données du dispositif Coliminder étaient analysées avec un intervalle

de 24 h, le taux de disparition moyen de 1,29 ± 0,99 jr−1 estimé en Seine était significativement

supérieur à celui estimé avec les mesures réglementaires de 0,47 ± 0,32 jr−1 (Test de Wilcoxon,

n=47, p<0,01).
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3.3.2.3. Impact des conditions environmentales sur les taux de disparition

Différents modèles ont été testés afin de déterminer les paramètres influençant les taux

de disparition, que ce soit avec la base de données réglementaires ou les données estimées par le

système ColiMinder pour un intervalle de 2 h. Le tableau 3.9 présente les résultats du meilleur

modèle sélectionné.

Table 3.9 – Relation entre les facteurs environnementaux (site, concentration enE. coli initiale au pic de conta-
mination en NPP/100 mL, pluviométrie cumulée de l’événement en mm et taux de disparition d’E. coli) en jr−1.
Les p-valeurs (p) sont indiquées pour chaque paramètre, les interactions significatives et le modèle global. NA : les
paramètres non retenus, lm : modèle linéaire, lmm : modèle linéaire mixte.

Base de données ColiMinder Reglementaire
Effectif 28 46

r2 0,51 -0,60
p-valeur globale 0,001 0,008

p Intercept 0,001 <0,001
p Pluviométrie 0,009 NA

p Concentration initiale 0,005 0,005
p Site 0,042 NA

p Interaction Pluviométrie-Concentration 0,018 NA
Modèle lm lmm

Pour la base de données réglementaires, le modèle linéaire mixte incluant les sites en

effet aléatoire (r2=-0,60, p=0,008, n=46), montre que les taux de disparition sont significative-

ment influencés par la concentration au pic de pollution (p= 0,005). Cela indique que plus la

contamination est élevée pendant la pluie, plus la vitesse de disparition des E. coli est ensuite

lente.

Pour la base de données ColiMinder, le modèle linéaire significatif (r2= 0,51, p=0,001,

n=28) incluait la pluviométrie (discrétisées en pluies< ou≥ à 10mm), la concentration initiale au

pic de pollution et le site (respectivement, p=0,009, p=0,005, et p=0,042). De plus, l’interaction

entre la pluviométrie et la concentration initiale enE. coli était également significative (p <0,018).

Que ce soit avec les données réglementaires ou les données ColiMinder, les résultats soulignent

l’importance de tenir compte des caractéristiques spécifiques à chaque site dans l’analyse, de

même que la concentration en E. coli au pic de pollution.
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Figure 3.7 – Courbes modèles moyennes (ligne rouge) de la variation temporelle des concentrations relatives en
E. coli pour les pluies≥10 mm, selon le site. (A) Alma 2 h, (B) Alma 24 h, (C) Tolbiac 2 h et (D) Tolbiac 24 h. Les
concentrations en E. coli relatives exprimées en pourcentage de la concentration au pic de pollution sont en bleu,
les intervalles de confiance à 95% sont représentés en gris.

Afin d’identifier si l’intensité de la pluie influe fortement sur le taux de disparition

pour les données obtenues par le système ColiMinder, les pluies ont été subdivisées en deux

catégories : faibles (<10 mm cumulés) et les pluies élevées (≥10 mm cumulés). Les courbes

modèles, ajustées aux suivis au cours du temps des E. coli (concentrations relatives par rapport

au pic de pollution, exprimées en %) après une pluie, ont été tracées pour chaque épisode pluvial

sélectionné (Figure 3.7 et 3.8).
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Figure 3.8 – Courbes modèles moyennes (ligne rouge) de la variation temporelle des concentrations relatives en
E. coli pour les pluies <10 mm pour chaque site.(A) Alma 2 h, (B) Alma 24 h, (C) Tolbiac 2 h et (D) Tolbiac 24
h.Les concentrations en E. coli relatives exprimées en pourcentage de la concentration au pic de pollution sont en
bleu, les intervalles de confiance à 95% sont représentés en gris.

3.3.3. Résilience et résistance

Une analyse de la résilience et de la résistance des sites a été effectuée en estimant 3

paramètres : le T90, et les amplitudes de variation de la pollution et de la récupération après le

pic de pollution.

3.3.3.1. Estimation de la résilience et de la résistance avec les mesures régle-

mentaires

Aucune différence significative n’a été observée entre les sites de la Marne et de la

Seine au niveau du T90 et des amplitudes de variation de la pollution et de la récupération

(Anova, p=0,660 pour le T90, p=0,465 pour l’amplitude de pollution, p=0,355 pour l’amplitude

de récupération, n=46). La résilience était donc similaire entre les deux rivières, avec un T90 de

3,50 ± 1,43 jr en Seine et de 3,68 ± 1,18 jr en Marne, avec amplitude moyenne de récupération

respectivement de 77 ± 19% et 73 ± 18% (Anova, n=46, respectivement p=0,102, p=0,444,

Tableau 3.10). La résistance était également similaire avec une amplitude moyenne de pollution

de 75 ± 18% en Seine et de 83 ± 12% en Marne (Anova, n=46, p=0,662, Tableau 3.10).
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Table 3.10 – Valeurs moyennes du temps de retour (T90, jr) et des amplitudes de variation de la pollution (AVavant,
%) et de récupération (AVaprés, %) lors des campagnes réglementaires en Seine et en Marne.

Site T90 (jr) AVavant (%) AVaprés (%)
SMV1 4,11 ± 1,54 75 ± 20 68 ± 22
SMV10 3,73 ± 1,68 70 ± 21 69 ± 19
SMV14 3,12 ± 0,78 81 ± 12 82 ± 11
Alma 3,32 ± 1,45 79 ± 16 70 ± 25
Tolbiac RD 3,46 ± 1,22 82 ± 12 78 ± 14
Tolbiac RG 3,87 ± 0,94 90 ± 4,18 87 ± 7

3.3.3.2. Intervalle de temps minimum entre chaque mesure

Un effet significatif de l’intervalle de temps entre deuxmesures par le systèmeColiMinder

(2 h, 4 h, 6 h, 8 h, 12 h et 24 h) a été observé, que ce soit pour le T90, l’amplitude de variation

de la pollution ou l’amplitude de récupération après la pluie (Kruskal-Wallis, p<0,001, p<0,001,

p<0,001, n=204) (Tableau 3.11). La différence était significative entre l’intervalle de 24 h et les

intervalles de 2 h à 8 h pour le T90 (Test post-hoc, p<0,011, n=68, Tableau 3.11). Cela indique

qu’une mesure par jour est insuffisante pour bien évaluer la résilience et la résistance des sites.

En effet, le T90 moyen variait de 1,58 ± 1,29 jr à 1,18 ± 1,04 jr (respectivement pour les ponts

de l’Alma et de Tolbiac) lorsque l’intervalle était de 2 h. Il augmentait à 1,96 ± 0,79 jr et 1,56 ±

0,62 jr (respectivement pour les ponts de l’Alma et de Tolbiac) lorsque l’intervalle est de 24 h

(Tableau 3.11). De plus, le temps de retour pour un intervalle de 24 h toutes stations confondues

(1,71 ± 0,71 jr), était significativement plus faible lorsqu’il était estimé avec les données du

système ColiMinder comparé aux estimations avec les mesures réglementaires (3,50 ± 1,43 jr)

(Test de Student, n=47, p<0,01).

Pour l’amplitude de variation de la pollution, une différence significative a été observée

entre l’intervalle de 2 h avec les intervalles de 8 h à 24 h et aussi entre l’intervalle de 4 h et les

intervalles de 12 h et de 24 h (Test de Kruskall-Wallis suivi de tests post-hoc, p<0,027, n=68,

Tableau 3.11). Avec un intervalle de 2 h, le pourcentage moyen de variation entre le temps sec

avant la pluie et le pic de contamination était 75 ± 23% et 86 ± 19% (respectivement pour les

ponts de l’Alma et de Tolbiac) et avec un intervalle de 24 h il présentait des valeurs moyennes de

70 ± 28% et 84 ± 20% (respectivement pour les ponts de l’Alma et de Tolbiac) (Tableau 3.11).

L’intervalle de 24 h sous-estimait significativement l’amplitude de récupération après

la pluie, (test de Kruskall-Wallis suivi de tests post-hoc, p<0,045, n=68). Le pourcentage de

récupération était en moyenne de 77 ± 22% (Pont de l’Alma) et de 86 ± 20% (pont de Tolbiac)
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avec l’intervalle de 2 h, alors qu’il était de 74 ± 22% (pont de l’Alma) et 84 ± 22% (pont de

Tolbiac) avec un intervalle de 24 h (Tableau 3.11).

Table 3.11 – Valeurs moyennes du temps de retour (T90) et des amplitudes de variation de la pollution (AVavant) et
de récupération (AVaprés) en fonction de l’intervalle de temps entre chaque mesure lors des campagnes ColiMinder
en Seine.

Intervalle T90 (jr) AVavant (%) AVaprés (%)
Alma Tolbiac Alma Tolbiac Alma Tolbiac

2 h 1,58 ± 1,29 1,18 ± 1,04 75 ± 23 86 ± 19 77 ± 22 86 ± 20
4 h 1,52 ± 1,18 1,07 ± 0,93 74 ± 24 86 ± 19 76 ± 24 87 ± 18
6 h 1,39 ± 0,85 0,92 ± 0,66 73 ± 26 85 ± 20 77 ± 21 87 ± 18
8 h 1,52 ± 1,08 1,17 ± 0,82 72 ± 26 84 ± 22 76 ± 23 86 ± 19
12 h 1,80 ± 0,97 1,28 ± 0,81 73 ± 26 83 ± 22 75 ± 24 85 ± 22
24 h 1,96 ± 0,79 1,56 ± 0,62 70 ± 28 84 ± 20 74 ± 22 84 ± 22

Nous allons nous focaliser par la suite sur l’intervalle de 2 h pour les données obtenues

avec le système ColiMinder car il permettait une estimation plus précise des métriques. Globa-

lement, ces résultats indiquent une résilience en moyenne plus faible au pont de Tolbiac ainsi

qu’une amplitude de récupération légèrement plus élevée, avec un temps de retour moyen plus

lent. Cependant, aucune différence significative n’a été observée entre les deux sites pour les

3 métriques analysées (Test de Wilcoxon, p=0,320 pour le T90, p=0,256 pour l’amplitude de

pollution, p=0,246 pour l’amplitude de récupération, n=34, Tableau 3.11).

3.3.3.3. Impact des conditions environnementales sur la résilience et la ré-

sistance des sites en Seine et en Marne

Différents modèles linéaires ont été testés, afin de déterminer les paramètres environne-

mentaux influençant les 3 métriques de résilience et de résistance que ce soit avec la base de

données réglementaires ou les données du système ColiMinder avec une acquisition toutes les

2 h. Le tableau 3.12 présente les résultats du meilleur modèle sélectionné pour chaque base de

données.

Pour la base de données réglementaires, lesmodèles expliquent faiblement la variation des

métriques, avec des r2 compris entre 0,10 et 0,23. Le modèle significatif expliquant les variations

du temps de retour (T90) (n=46, p=0,029) comportait la pluviométrie (catégories < et ≥ à 10

mm) (p=0,030). Pour l’amplitude de variation de la pollution, le modèle était significatif (n=46,

p<0,001). L’effet du débit était une tendance (p=0,058), avec une interaction significative entre le

débit et la concentration initiale au pic de pollution (p<0,001). Pour l’amplitude de récupération

après la pluie, le modèle le plus significatif (n=46, p=<0,001) comportait la concentration initiale
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Table 3.12 – Relation entre les facteurs environnementaux (débit en m3/s), site, concentration en E. coli initiale
au pic de contamination en NPP/100 mL, pluviométrie et taux de disparition d’E. coli en jr−1). Les p-valeurs
sont indiquées pour chaque paramètre, les interactions significatives et le modèle global. NA : les paramètres non
retenus, lm : modèle linéaire, glm : modèle linéaire généralisé, a : pluviométrie en catégories, b : pluviométrie
cumulée de l’événement en mm.

Base de données Réglementaire ColiMinder
T90 AVavant AVaprés T90 AVavant AVapres

Effectif 46 46 46 34 34 34
r2 0,10 0,23 0,17 0,56 0,42 0,45
p globale 0,029 <0,001 <0,001 0,002 <0,001 <0,001
p intercept <0,001 0,072 0,322 0,108 0,274 0,158
p débit NA 0,058 NA 0,894 NA NA
p pluviométrie 0,030a NA 0,146b 0,061a 0,005a 0,006b

p concentration initiale NA <0,001 0,038 0,001 <0,001 <0,001
Site NA NA NA 0,121 NA NA
p Interaction débit-site NA NA NA 0,360 NA NA
p Interaction débit-
concentration

NA 0,032 NA 0,002 NA NA

p Interaction concentration-
site

NA NA NA 0,046 NA NA

p Interaction pluviométrie-
concentration

NA NA NA NA 0,001 0,001

Modèle lm glm glm glm glm glm

au pic de pollution (p= 0,038), contrôlée par la pluviométrie en cumul (non significatif, p=0,140).

Pour les données ColiMinder mesurées toutes les 2 h, les modèles montraient un meilleur

ajustement pour les 3 métriques (r2 variant de 0,42 à 0,56) par comparaison aux données

réglementaires. Pour les 3 paramètres analysés, les modèles globaux étaient significatifs (n=34,

p=0,002 pour le T90, p<0,001 pour l’amplitude de pollution, p<0,001 pour l’amplitude de

récupération). Le T90 était significativement influencé par la concentration initiale au pic de

pollution (p=0,001) et tendait à être influencé par la pluviométrie (p=0,061), les interactions

entre le débit et la concentration initiale au pic de pollution (p=0,002) et entre la concentration

initiale et le site (p=0,046) étant significatives. Concernant les amplitudes de récupération, le

modèle final montrait des contributions significatives de la concentration initiale (p<0,001)

et de la pluviométrie (p=0,006), avec une interaction significative entre ces deux paramètres

(p=0,001).

Ces résultats soulignent l’importance de la pluviométrie (parfois en cumul et parfois en

catégories) et de la concentration initiale comme facteurs clés dans la dynamique de résilience

et de résistance d’E. coli, renforcée par les interactions avec d’autres variables. Ces résultats

200



Chapitre 3

sont confirmés avec les deux bases de données.

3.4. Discussion

Ces dernières décennies, des efforts importants ont été déployés pour améliorer la qua-

lité des cours d’eau (Kistemann et al., 2016) et l’Île-de-France n’y fait pas exception avec la

construction d’infrastructures (bassins de rétention, stations de dépollution des eaux pluviales),

l’amélioration des réseaux, la résolution de mauvais branchements, le raccordement des bateaux

et la désimperméabilisation (Bouleau et al., 2024). Ces efforts ont bénéficié de la volonté poli-

tique d’organiser à Paris les Jeux Olympiques et Paralympiques (JOP) en 2024 et de l’ouverture

envisagée de plusieurs baignades urbaines sur les bords de la Seine et de la Marne à l’hori-

zon 2025 en héritage des JOP (Noury et al., 2018). Selon la directive baignade 2006/7/CE, le

classement d’un site de baignade nécessite un suivi de 4 ans de la qualité microbiologique et

d’établir un profil de baignade. Notre étude vient en complément en déterminant la dynamique

de décroissance d’E. coli en Seine et en Marne lors d’événements polluants en vue d’aider

à mieux comprendre la dynamique temporelle des pollutions microbiologiques sur des sites

emblématiques (JOP, futures baignades) et de fournir des paramètres pour la modélisation des

pollutions. Il existe encore peu d’études sur la décroissance d’E. coli en Île-de-France dans la

Seine et la Marne (Passerat et al., 2011; Menon et al., 2003; Servais et al., 1999; Van et al.,

2022). Notre étude élargit cette analyse en incluant des données provenant de différents sites en

Seine et en Marne et en comparant la dynamique mesurée à l’aide du dispositif ColiMinder à

celle obtenue avec les suivis réglementaires par culture. Par ailleurs, grâce à la fréquence élevée

des mesures du système ColiMinder, nous avons pu analyser l’effet du nombre de mesures sur

l’estimation des taux de disparition.

3.4.1. Taux de disparition et temps de retour

La disparition d’E. coli dans les milieux aquatiques résulte de l’action combinée de

divers paramètres environnementaux liés d’une part à l’hydrologie et l’hydromorphologie de

la rivière (dilution et diffusion des effluents, sédimentation et resuspension des bactéries dans

le sédiment) et d’autre part liés à la capacité de survivre et de croître des bactéries dans cet

habitat secondaire (prédation, compétition, stress physiologique, épuisement ou disponibilité de

nutriments et des sources de carbone, rayonnement solaire, température) (Barcina et al., 1997;
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Dick et al., 2010; Carneiro et al., 2018; Korajkic et al., 2014; Mattioli et al., 2017; Brooks

and Field, 2016). Les bactéries d’origine fécale dont l’habitat primaire est le tube digestif

des organismes homéothermes, une fois rejetées dans la rivière vont y subir des conditions

environnementales favorables ou défavorables qui peuvent entraîner une mortalité ou une perte

de capacité à croître, toutefois certaines populations peuvent éventuellement s’acclimater et

survivre voire croître dans les sédiments, les végétaux et les biofilms (Liu et al., 2006; Passerat

et al., 2011; Gonzales-Siles and Sjöling, 2016). Nos résultats quant aux taux de mortalité et de

disparition sont dans la gamme des taux rapportés dans la littérature. Ainsi un taux d’inactivation

de 0,672 ± 0,11 jr−1 a été mesuré pour E. coli avec une eau de rivière subissant des rejets d’eaux

usées (Blaustein et al., 2013). Une autre étude a identifié un taux de mortalité en laboratoire

de 0,72 jr−1 (Servais et al., 2007b). Ces taux sont proches du taux de mortalité de 0,97 ±

0,48 jr−1 estimé par les expériences dans les sacs à dialyse disposés au site SMV14 (Marne).

La comparaison avec la littérature peut toutefois être un exercice difficile car les conditions

expérimentales diffèrent. Les taux de disparition mesurés sur le même site SMV14 avec les

données de suivi réglementaire étaient relativement plus rapides (0,49 ± 0,22 jr−1). Ceci est

cohérent car d’autres facteurs que la mortalité entrent en jeu dans la disparition, incluant la

dilution du rejet, la dispersion, l’advection et la sédimentation des bactéries (Jalliffier-Verne

et al., 2017). En effet, quand une certaine quantité d’un contaminant est rejetée dans une rivière,

il est transporté en aval par le mouvement de l’eau et continuellement mélangé et redistribué

dans l’eau. Ce processus dépend des caractéristiques hydrologiques et hydrodynamiques du bief

de la rivière, et donc de la géométrie et de la morphométrie de la rivière qui vont déterminer

la vitesse et la turbulence du courant (Rowiński et al., 2022). Ainsi, notre analyse statistique a

montré que la rivière et la pluviométrie impactaient significativement les taux de disparition.

Passerat et al. (2011) ont constaté qu’une estimation prenant en compte la "dilution + mortalité

+ sédimentation" permettait de mieux modéliser les concentrations en E. coli dans les eaux de

la Seine. Cette approche suggère que la sédimentation joue un rôle notable dans le sort des BIF

attachées dans les eaux affectées par le déversement d’eaux pluviales. Nos résultats suggèrent

également un taux de disparition et un temps de retour similaires en Seine (respectivement de

0,47 ± 0,32 jr−1 et de 3,50 ± 1,43 jr) et en Marne (respectivement de 0,44 ± 0,35 jr−1 et de

3,68 ± 1,18 jr) avec l’analyse des données réglementaires. Une étude menée sur les coliformes

fécaux a estimé un taux de disparition moyen de 0,428 jr−1 dans les eaux de rivière (Chigbu

et al., 2005). Il convient cependant de noter que ces deux paramètres ne sont pas directement
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comparables, étant donné que E. coli est une bactérie qui fait partie des coliformes fécaux. Il a

également été montré que des eaux de mêmes catégories présentaient une inactivation d’E. coli

similaire (Blaustein et al., 2013). L’ensemble de ces résultats n’exclut donc pas la possibilité de

généraliser la valeur moyenne du taux de disparition obtenue à l’ensemble des sites de baignades

potentielles avec des profils de baignade similaires permettant de fournir un paramètre utile pour

les modèles hydrodynamiques.

3.4.2. Comparaison des bases de données

On ce qui concerne le dispositif ColiMinder, nous avons pu constater qu’à partir d’un

intervalle de 24 heures (soit une mesure par jour) qu’il y avait un biais significatif dans l’esti-

mation du taux de disparition, du temps de retour et des amplitudes de variation de pollution et

de récupération. En effet, le temps de retour minimal était de 1,92 h pour un intervalle de 2 h,

celui-ci augmente à 18 h avec un intervalle de 24 h. Cela indique que pour les sites en Seine, il

faudrait au minimum deuxmesures par jour pour pouvoir bien suivre la disparition d’E. coli dans

la rivière afin de pouvoir bien évaluer la résilience d’un site. Une étude antérieure sur la Seine

a mesuré une décroissance des BIF par mortalité et sédimentation de 66% après un rejet urbain

de temps de pluie intense (39 mm) qui a entraîné le déversement du déversoir d’orage de Clichy

(Passerat et al., 2011). Nos propres résultats indiquent une forte capacité de résilience avec un

retour rapide voire très rapide à des concentrations de temps sec pour certains des événements

analysés. Nos résultats montrent bien que pour 91% des événements sélectionnés, les pollutions

étaient de court terme, c’est à dire affectant la qualité de l’eau moins de 3 jours selon la définition

de l’agence française de sécurité sanitaire de l’environnement (Duboudin et al., 2007).

Les résultats obtenus avec les deux bases de données n’étaient pas totalement en accord,

mais ceci peut s’expliquer d’une part par le fait que la régularité et la quantité des données

différaient entre les données du systèmeColiMinder toutes les 24 h, et les données réglementaires

pas systématiquementmesurées tous les jours. De plus, le dispositif ColiMindermesure l’activité

de la β-D-glucuronidase, donnant une estimation indirecte mais rapide des concentrations en E.

coli. Cette méthode vise toutes les bactéries cibles, qu’elles soient cultivables, non cultivables

ou mortes, ainsi que les enzymes libres (Cazals et al., 2020; Garcia-Armisen and Servais, 2009).

Par contre, la méthode ISO 9308-3 de culture en microplaques quantifie les bactéries cultivables

et viables qui sont thermotolérantes et possèdent la β-D-glucuronidase, avec une estimation

statistique basée sur la loi de Poisson (Cazals et al., 2020; Garcia-Armisen and Servais, 2009).
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Ces différences méthodologiques peuvent conduire à des écarts dans les résultats. Les méthodes

de culture sous-estiment souvent le nombre de bactéries dans des environnements fortement

contaminés en raison de la diminution de la quantité d’enzyme par bactérie cultivable. De ce

fait, dans ce type d’échantillon, il existe une fraction plus importante des BIF à l’état viable

mais non cultivable (Carneiro et al., 2018). En effet, il a été constaté une diminution du ratio

enzyme/E. coli lorsque la contamination devenait plus importante (Garcia-Armisen and Servais,

2009; Cazals et al., 2020).

Avec suffisamment de données (3 à 4 points de mesure par événement pluvial), nos

modèles exponentiels étaient significatifs, donc l’estimation des taux de disparition et des taux

de mortalité faite peut être considérée comme valide dans ce cas. Toutefois, l’utilisation des

données acquises en temps quasi réel montre que l’évaluation des taux de disparition en utilisant

les données réglementaires peut être biaisée. En effet, il est nécessaire d’avoir a minima 2 à 3

mesures par jour durant un événement pluvial et les jours qui suivent pour estimer les taux de

disparition de manière précise. Un plan d’échantillonnage de 1 prélèvement par jour entraîne

donc un biais, avec des valeurs de taux de disparition jusqu’à 3 fois plus faibles comparées à

une mesure toutes les 2 à 8 h. Le dispositif ColiMinder est donc particulièrement adapté pour le

suivi en quasi temps réel, et permet une observation fine des dynamiques rapides comme celles

observées en temps de pluie lors des orages d’été.

3.4.3. Pics de pollution

Les valeurs seuil européennes pour le classement des baignades et les valeurs guides pour

la gestion quotidienne, sont souvent dépassées dans les rivières fortement urbanisées comme la

Marne et la Seine, en particulier lors des fortes précipitations (Kistemann et al., 2016; Bouleau

et al., 2024). Durant ces événements pluvieux, les rejets de microorganismes provenant des

sources de pollution fécale ponctuelles ou diffuses augmentent considérablement (Ahmed et al.,

2018). En effet, les précipitations entraînent le transfert de la contamination fécale du sol aux

cours d’eau (Jardé et al., 2018). De plus, par temps de pluie, les réseaux d’assainissement

peuvent déborder et apporter des eaux usées non-traitées (Passerat et al., 2011), entrainant une

augmentation des concentrations en BIF dans les eaux de surface pouvant dépasser jusqu’à

100 à 1000 fois les concentrations de temps sec (Salmore et al., 2006; Krometis et al., 2007).

Ainsi, les mesures bactériologiques réalisées en Seine et en Marne au niveau des 6 sites ont

montré qu’après une pluie, une augmentation de la concentration en E. coli était constatée
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par rapport au temps sec pouvant aller jusqu’à 22 fois en Seine et 32 fois en Marne et même

plus de 100 fois avec le dispositif ColiMinder. Ainsi le rejet d’eau usée non traitée durant les

temps de pluie (déversoirs d’orage, by-pass des stations d’épuration, mauvais branchements dans

les réseaux séparatifs) contribue fortement à la dégradation de la qualité des eaux de surface

(Cyterski et al., 2022). La remise en suspension des sédiments dans les rejets pluviaux et les

eaux de ruissellement lors d’événements pluviaux peut également contribuer à l’augmentation

des concentrations en BIF au niveau des eaux de surface urbaines (Lee et al., 2006; Wu et al.,

2009). Cette augmentation rapide était suivie d’une diminution dans les 2 à 3 jours après la

pluie. Au niveau de notre étude, au bout de 3 jours, une diminution de la concentration de 34 à

95% en Seine et de 33 à 96% en Marne a été constatée avec les mesures réglementaires, et pour

les mesures avec le dispositif ColiMinder de 29 à 99% (mesures toutes les 2 h) et de 27 à 99%

(mesures toutes les 24 h). L’impact de la pluie sur la qualité microbiologique de la rivière peut

être variable, ce qui se traduit par une large variabilité parmi les pics de concentration mesurés.

En effet, nous avons observé des amplitudes de variation de la pollution allant de 24 à 97% des

valeurs de temps sec précédant la pluie pour différents événements sélectionnés dans la base

de données réglementaires. Les données du dispositif ColiMinder donnaient des amplitudes de

pollution de 31 à 100% pour les mesures toutes les 2 h et de 26 à 100% pour les mesures

toutes les 24 h. Cette variabilité de l’amplitude de pollution était partiellement expliquée par

la pluviométrie, avec une forte significativité pour les estimations avec les données du système

ColiMinder.

3.4.4. Temps et niveau de récupération après la pollution

La résilience de la qualité de l’eau d’une rivière est liée à sa capacité à absorber l’apport

en polluants (perturbation) et à rapidement restaurer ou améliorer la qualité de l’eau au cours

du temps (Park et al., 2025). Il existe encore peu d’études qui s’intéressent à la résilience de la

qualité de l’eau dans les rivières, et celles-ci se focalisent la plupart du temps sur des polluants

chimiques, les pollutions microbiologiques étant rarement prises en compte (Hoque et al., 2012;

Li et al., 2016; Mirauda et al., 2021; Park et al., 2025). Nous avons abordé la résistance et

la résilience des sites potentiels de baignade ou d’organisation d’événements sportifs dans les

rivières franciliennes sous l’angle de la réponse "écologique" des systèmes aux perturbations

(Mirauda et al., 2021), à l’aide de 4 métriques : le taux de disparition qui mesure une facette de

la résilience du système face à la pollution, l’amplitude de pollution qui mesure la robustesse du
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système, le temps de retour qui mesure la rapidité de récupération, et l’amplitude de récupération

qui mesure la capacité à revenir à l’équilibre antérieur. Dans la littérature, il est rare que différents

aspects de la résilience soient mesurés concernant la qualité de l’eau (Park et al., 2025). Nous

avons aussi testé l’impact de plusieurs facteurs hydrométéorologiques et physico-chimiques

sur les métriques de la résilience. Ainsi, les temps de retour et l’amplitude de récupération

étaient expliqués partiellement par les hauteurs de pluie (en particulier avec les données du

système ColiMinder), tout comme les taux de disparition. En effet, les rivières sont des systèmes

dynamiques dont la qualité dépend de relations complexes entre les caractéristiques du bassin

versant et la variabilité du climat. De plus, le niveau de pollution atteint (concentration initiale au

pic de pluie) avait aussi un impact sur le temps de retourT90 et sur l’amplitude de récupération (en

particulier pour les métriques estimées avec les données du systèmeColiMinder). Il est donc clair

que le niveau de dégradation de la qualité conditionnait la capacité de retour au niveau de base

avant la pollution. Des interactions avec le débit ou la concentration au pic de pollution étaient

significatives. Ces interactions doivent être prises en compte pour mieux comprendre et prédire

la dynamique des contaminants dans les systèmes aquatiques impactés par les rejets d’effluents

(Carneiro et al., 2018). Il serait également intéressant d’inclure des caractéristiques du bassin

versant telles que l’usage des sols, la densité de population, le taux d’imperméabilisation, le

nombre de rejets et leurs volumes déversés, car ces variables influencent les apports en pollution

fécale (Paule-Mercado et al., 2016).

Pour les données réglementaires, le temps de retour T90 était en moyenne de 87 ± 32 h

tous sites confondus, et pour les données issues du système ColiMinder l’estimation du T90 était

en moyenne de 31 ± 22 h en Seine pour les mesures toutes les 2 h. Ces temps de retour étaient

situés le plus souvent dans la limite de 72 h ce qui est spécifié par la directive 2006/7/EC pour la

gestion des pollutions temporaires. Toutefois, il est noté que certaines pollutions (notamment sur

les stations SMV1 et SMV10), pouvaient durer plus de 72 h. Il est donc recommandé de vérifier

le niveau des E. coli avant la réouverture. Les mesures rapides basées sur la PCR quantitative,

ou sur les mesures enzymatiques peuvent compléter les mesures réglementaires effectuées sur

des échantillons collectés après la pluie. De plus, la modélisation et les systèmes de suivi en

temps quasi réel ou réel (comme le ColiMinder, ou les capteurs de fluorescence 3D) peuvent

alors aider à avoir une gestion réactive en cas de pluie ou d’incident sur le réseau (Burnet et al.,

2019; Offenbaume et al., 2020; Angelotti de Ponte Rodrigues et al., 2024).

Cette approche de la résilience permet de mieux prendre en compte les contaminations
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microbiennes dans une rivière face à des perturbations aléatoires comme les rejets de temps

de pluie, en focalisant sur la dynamique et la variabilité des changements de concentration en

BIF. Cette approche sur l’adaptabilité du site de baignade offre un cadre conceptuel pour le

gestionnaire qui peut ainsi prendre en compte la vulnérabilité du site de baignade face aux

événements polluants. Ces résultats pourront également alimenter les modèles déterministes qui

sont développés enMarne et en Seine pour prédire la contamination des eaux de surface, comme

le modèle ProSe (Poulin et al., 2013) ou le modèle Telemac (Van et al., 2022) pour la gestion

active des futurs sites de baignade.

3.5. Conclusion

L’ouverture de sites de baignade en Marne et en Seine nécessite une mise en place et une

gestion des futurs sites. Une fois l’ouverture des sites, il faudra une gestion active de la pollution

par un suivi in situ automatisé ou semi-automatisé, couplé à des modèles prédictifs. L’analyse

des jeux de données de la Ville de Paris et du Syndicat Marne Vive (suivi réglementaire et

système ColiMinder) a permis de développer une évaluation de la résistance et de la résilience

de plusieurs futurs sites de baignade ou de sites ayant servi pour les JOP 2024. Cette approche

dynamique a démontré la robustesse et l’adaptabilité de ces sites face aux événements polluants

temporaires liés au temps de pluie. Les résultats des campagnes de mesure ont montré que

le site SMV14 était très réactif avec un temps de retour relativement court, permettant une

réouverture au bout de 75 h en moyenne (entre 56 et 94 h selon l’événement pluvial), ce qui est

quasi conforme avec la directive 2006/7/CE (fermeture des baignades 72 h après une pollution

ponctuelle) suivi par le pont de l’Alma avec un temps de retour moyen de 80 h (entre 36 et

117 h selon l’événement pluvial). Par contre, pour SMV10, des apports importants en amont

(rejet de l’usine de traitement des eaux usées Marne Aval qui n’était pas encore équipée de

la désinfection, nombreux rejets pluviaux polluants en amont) semblent contribuer à dégrader

la qualité de ce site en temps sec comme en temps de pluie, ce qui explique les amplitudes

moyennes de variation de la pollution légèrement plus faibles (Petrucci and Vaury, 2018). En

Seine, le temps de retour calculé avec les données du système Coliminder est beaucoup plus

faible (2 à 80 h). Cet équipement permet un suivi toutes les 2 h et donc avec une détermination

plus précise du temps nécessaire pour un retour à une qualité de temps sec. Le suivi en temps

réel permettrait au gestionnaire d’adapter ses fermetures et réouvertures à chaque pluie et ainsi
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de maximiser les ouvertures sur la saison. En effet, une étude a montré que pour les plages du

lac Michigan, 12% du temps, les fermetures des plages n’étaient pas nécessaires, ce qui pouvait

potentiellement représenter une perte de 1274 à 37030 dollars par jour (Rabinovici et al., 2004).

Avoir un suivi avec des résultats dans la journée permettrait d’éviter ce problème.

Cette étude a permis d’apporter une analyse de la mortalité et de la disparition d’E.

coli dans les rivières franciliennes. D’autres analyses complémentaires pourraient enrichir ces

résultats. En effet, l’analyse de la dynamique de différents indicateurs comme les entérocoques

intestinaux et des indicateurs de sources de contamination (humaine et animales) pourrait repré-

senter une approche complémentaire intéressante afin de comparer la résistance et la résilience

des sites avec différents marqueurs. En effet, une diminution plus élevée des entérocoques in-

testinaux dans la Seine après un rejet du déversoir d’orage de Clichy dans la Seine (région

parisienne) a été constatée dans une étude antérieure (Passerat et al., 2011). Une étude qui a

comparé le taux de décroissance d’E. coli à celui du marqueur humain HF183 a montré que

le temps de retour du marqueur humain était plus élevé qu’E. coli, sans que cette différence

soit significative (Dick et al., 2010). Il serait aussi intéressant de calculer la résilience des sites

pour quelques pathogènes ou marqueurs humains viraux, car ils n’ont sûrement pas la même

dynamique temporelle en Seine que les BIF. Un indicateur de résilience multimétrique pourrait

être proposé, intégrant plusieurs microorganismes à l’instar des index de résilience développés

pour la pollution chimique.
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3.6. Annexe

Table S1 – Valeurs moyennes de la constante de cinétique (K1, jr−1) obtenues par le modèle linéaire exponentiel
(p-valeur et R2) et le taux de disparition K2 en jr−1. Moyenne ± écart type ou [Min : Max]. p-valeur significative
(S), non significative (NS) au seuil 0,05.

Station et intervalle K1 p-valeur R2 K2

Alma 2 h (n=13) 6,25 ± 9,81 S(11) NS(2) [<0,001 : 0,250] 0,71 ± 0,25 5,50 ± 9,50

Alma 4 h (n=13) 4,24 ± 5,28 S(11) NS(2) [<0,001 : 0,370] 0,75 ± 0,26 3,51 ± 4,84

Alma 6 h (n=13) 4,09 ± 5,48 S(9) NS(4) [<0,001 : 0,280] 0,78 ± 0,23 3,39 ± 5,44

Alma 8 h(n=13) 3,48 ± 4,39 S(6) NS(7) [<0,001 : 0,330] 0,64 ± 0,29 2,90 ± 4,39

Alma 12 h (n=13) 2,27 ± 2,82 S(2) NS(11) [<0,001 : 0,500] 0,79 ± 0,19 1,88 ± 2,85

Alma 24 h (n=13) 1,39 ± 0,89 S(2) NS(11) [<0,001 : 0,440] 0,86 ± 0,16 1,04 ± 1,00

Tolbiac 2 h (n=21) 6,05 ± 8,43 S(17) NS(4) [<0,001 : 0,280] 0,79 ± 0,22 5,39 ± 7,94

Tolbiac 4 h (n=21) 5,52 ± 5,70 S(13) NS(8) [<0,001 : 0,550] 0,75 ± 0,23 4,61 ± 5,40

Tolbiac 6 h (n=21) 4,88 ± 4,39 S(12) NS(9) [<0,001 : 0,740] 0,69 ± 0,30 4,30 ± 4,47

Tolbiac 8 h(n=21) 3,35 ± 2,58 S(10) NS(11) [<0,001 : 0,790] 0,82 ± 0,15 2,89 ± 2,57

Tolbiac 12 h (n=21) 2,71 ± 2,06 S(0) NS(21) [0,060 : 0,770] 0,73 ± 0,29 2,42 ± 2,08

Tolbiac 24 h (n=21) 1,76 ± 0,82 S(1) NS(20) [0,020 : 0,710] 0,79 ± 0,24 1,44 ± 0,98
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4. Conclusion
La gestion de la qualité des eaux de surface dans des régions fortement urbanisées,

comme l’Île-de-France, pose des défis complexes liés à la variabilité temporelle et spatiale de

la contamination microbiologique et aux incertitudes associées aux méthodes de mesure. La

directive 2006/7/CE a établi des normes spécifiques pour les eaux de baignade, mais leur appli-

cation nécessite de mieux comprendre la dynamique des bactéries indicatrices fécales, comme

E. coli, et les facteurs environnementaux influençant leur décroissance. Une approche plus pré-

cise, tenant compte de cette variabilité, permettrait non seulement de renforcer la robustesse

des décisions de gestion (ouverture/fermeture des sites de baignade) mais aussi de soutenir les

efforts de reconquête des rivières pour des usages récréatifs.

Notre étude offre une analyse intégrée de la dynamique spatiale et temporelle des indi-

cateurs de qualité microbiologique des eaux de rivière, en explorant à la fois les incertitudes

liées à la méthodologie dans des contextes variés et en fournissant des outils pour l’intégration

de cette incertitude dans la prise de décision mais également par l’analyse du processus de

décroissance et de disparition d’E. coli. Une harmonisation des pratiques d’échantillonnage et

d’analyse permettrait de réduire les incertitudes et d’améliorer la comparabilité des données,

notamment grâce à l’intégration de la logique floue et de dispositifs de suivi en quasi temps

réel comme le système ColiMinder. Ces outils facilitent une prise de décision plus réactive et

nuancée afin de savoir le jour même s’il faut ouvrir ou fermer la baignade.

Nous avonsmis en évidence la pertinence des taux de disparition pour une compréhension

plus approfondie de la dynamique d’E. coli dans la Seine et la Marne. Les résultats montrent

des variations significatives des temps de retour selon les sites, soulignant l’impact des apports

en amont et des rejets ponctuels, mais également de l’interaction entre différents paramètres sur

cette évolution temporelle suite à un événement pluvial impactant la qualité microbiologique.

L’approche expérimentale, couplée à des suivis en temps réel ou quasi-réel sur le terrain, offre

des perspectives intéressantes pour optimiser la gestion des baignades, en particulier dans des

conditions de pollution après une pluie.

L’analyse de marqueurs bactériens ou viraux supplémentaires, incluant des indicateurs

fécaux spécifiques de sources de contaminations humaines ou animales et des pathogènes,

pourrait enrichir la compréhension des dynamiques des différents marqueurs microbiens et de

la résilience des sites de baignade face à une pollution microbienne ponctuelle. Ces données
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contribueraient à une évaluation plus globale et à une gestion renforcée de la qualité des eaux

en milieu urbain.

En tenant compte des taux de disparition d’E. coli et de la position du système de mesure

en continu (Coliminder) par rapport au site de baignade et du débit de la rivière, il est possible de

définir des intervalles temporels de prise de décision adaptés à chaque site. Par exemple, sur un

site avec un temps de retour rapide et un débit élevé, un intervalle de mesure d’E.coli de quelques

heures peut être pertinent pour capturer une dynamique représentative de la qualité de l’eau.

Cet intervalle tient compte du temps nécessaire pour que l’eau atteigne la zone de baignade par

rapport à la position du ColiMinder. En combinant ces informations dans un modèle de logique

floue, les décisions de gestion peuvent être ajustées en fonction des caractéristiques spécifiques

de chaque site, garantissant ainsi une meilleure précision dans l’évaluation des risques et la

protection de la santé publique.
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Ce travail a permis de mettre en lumière les défis liés à la gestion de la qualité des

eaux de surface, en particulier dans des environnements fortement urbanisés. Les efforts se sont

concentrés sur la mise en place d’approches innovantes, combinant des outils technologiques

avancés, des modèles prédictifs robustes et le développement de guides méthodologiques, pour

répondre aux exigences croissantes de surveillance et de gestion de la qualité des eaux de surface

et développer des réseaux de surveillance intelligents (smart water). La figure 4.1 propose un

cadre synthétique et structurant des différents aspects liés à la gestion des baignades en ville qui

ont été abordés au cours de cette thèse. Les paragraphes suivants commentent la figure 4.1.

La gestion des baignades dans les rivières nécessite une approche intégrée pour optimiser

la surveillance et réduire les incertitudes. Le processus débute avec la surveillance des sites de

baignade pour mesurer le risque sanitaire lié à la présence potentielle de pathogènes dans

les eaux de surface (Avila et al., 2018; Visser et al., 2022). Pour ce faire, des paramètres

physico-chimiques et microbiologiques sont habituellement suivis, utilisant des outils comme

desmesures réglementaires et des systèmes demesure en (quasi) temps réel comme les capteurs à

haute résolution (Cazals et al., 2020), les capteurs à bas coût (Farouk et al., 2022) et les dispositifs

de mesure enzymatique ou microbiologiques automatisés (comme le système ColiMinder).

Positionnés demanière stratégique, ces systèmes permettent un suivi en temps réel de paramètres

physico-chimiques ou microbiologiques clés. Cependant, la quantité et la fiabilité des données

envoyées sont cruciales (de Camargo et al., 2023). De ce fait, avant l’installation de ces systèmes

automatisés in situ, différentes actions doivent être menées pour réduire l’incertitude sur la

mesure (calibration, vérification de la stabilité du signal, correction du signal en fonction de

variables influentes comme la température ou la luminosité). L’envoi des données doit être aussi

optimisé, afin de s’assurer qu’il n’y aura pas de perte ou de dégradation de la qualité des données

(Wang et al., 2019a). Nous avons ainsi développé un guide pour l’installation et la validation

des capteurs physico-chimiques, tout en réduisant les coûts via l’utilisation de technologies IdO.

Cependant, la quantité importante de données produites et les maintenances nécessaires sur

les capteurs déployés in situ, posent la question de l’optimisation de leur installation, de leur

entretien sur le long terme et du traitement des données. L’étape suivante serait de réduire la
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dépendance à la supervision humaine. Pour ce faire, la semi-automatisation des tâches pourrait

être facilitée par l’utilisation d’algorithmes permettant de détecter lorsqu’un capteur appartenant

à un réseau devient défectueux, dérive ou cesse d’émettre (Chen andHan, 2018). Ainsi, la théorie

des jeux peut offrir un cadre théorique à la création d’algorithmes de détection d’anomalies, ce

qui peut aider à diminuer les coûts et le temps de gestion (Casado-Vara et al., 2018). Cependant,

ce type d’approche pour gérer les réseaux de capteurs repose sur les données des capteurs voisins

pour corriger les anomalies, rendant les résultats potentiellement biaisés en cas de défaillance

généralisée ou dans des environnements dynamiques ou imprévisibles.

Les rivières sont justement des systèmes complexes très dynamiques et les pollutions mi-

crobiologiques présentent un aspect aléatoire qui les rend difficiles à prédire. En effet, la qualité

des eaux de surface est influencée par des facteurs complexes, incluant l’hydromorphologie et

l’hydrodynamique de la rivière, les caractéristiques du bassin versant, les événements météoro-

logiques, les flux de rejets urbains et les caractéristiques propres à chaque espèce microbienne

suivie (Zhu et al., 2022; Jia et al., 2021). L’approche que nous avons utilisée, basée sur l’analyse

de la résistance et la résilience des sites de baignade, permet une caractérisation dynamique des

contaminations microbiennes affectant ces sites. Afin d’affiner l’analyse du risque microbiolo-

gique associé à l’ouverture d’un site de baignade, un profilage des sources de contamination

en amont du site est requis par la directive 2006/7/CE. Ces informations, combinées au suivi

en temps réel, permettraient une gestion plus effective des plages urbaines pendant la saison de

baignade et une meilleure sélection des stratégies pour améliorer la qualité des eaux. Il existe

désormais un ensemble d’outils permettant de détecter l’origine des contaminations, tels que la

recherche de bactéries ou de virus intestinaux spécifiques de leur hôte et la comparaison des com-

munautés bactériennes (Ahmed et al., 2019b). Une meilleure compréhension de la dynamique

de ces marqueurs spécifiques lors des événements polluants serait essentielle pour renforcer

la précision des décisions de gestion mais fait encore largement défaut. Nous avons réalisé

une évaluation de l’incertitude des méthodes d’échantillonnage et de mesure microbiologique

des indicateurs bactériens de contamination fécale (indicateurs réglementaires et indicateurs

spécifiques de sources). Diminuer l’incertitude sur la mesure des indicateurs permettrait de ren-

forcer la robustesse des décisions de gestion tout en s’alignant sur les exigences de la directive

2006/7/CE. Ainsi, nous avons estimé l’incertitude de l’étape d’échantillonnage jusqu’à la me-

sure des BIF, ainsi que l’incertitude d’échantillonnage et de stockage de 3 indicateurs de sources

animales (marqueurs moléculaires Gull2 pour les mouettes et goélands, BacCan pour les chiens
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et CGOF1 pour les oies bernaches), d’un indicateur de sources humaines (marqueur moléculaire

HF183) et de 2 pathogènes du genre Campylobacter (C. jejuni et C. lari). Cette incertitude sur

la mesure et l’échantillonnage pourrait être intégrée au processus de prise de décision quant

à la classe de qualité d’un échantillon d’eau en cours de saison de baignade pour savoir si la

baignade peut être autorisée. En effet, étant données les incertitudes analysées, lorsque la valeur

mesurée, ajoutée à son incertitude, est proche de la valeur seuil, la classification devient plus

complexe (Brandão et al., 2022). Classer correctement la qualité microbiologique pour fermer

une baignade peut permettre de prévenir 42% des maladies liées à la baignade dans des eaux de

surface urbaines (Rabinovici et al., 2004; Ross, 2005). À l’aide d’un processus de logique floue

intégrant l’incertitude de la mesure, nous avons démontré qu’il est possible d’utiliser les données

acquises toutes les 2 h par un système ColiMinder pour classer correctement les échantillons et

aider à la décision de fermeture d’une baignade le matin en s’appuyant sur les 4 à 24 heures de

suivi précédentes.

Les données acquises en temps réel ou quasi-réel par les systèmes de mesure automatisée

et les capteurs pourraient alimenter une base de données structurée permettant d’évaluer les

dynamiques spatiales et temporelles des contaminations microbiologiques et chimiques, facili-

tant ainsi une surveillance via la prédiction intégrant une combinaison de modèles (les modèles

hydrodynamiques et les modèles de machine learning) (Eregno et al., 2018; Qiu et al., 2017). Ce

dernier peut être optimisé via des approches comme l’apprentissage par transfert et l’apprentis-

sage fédéré permettant le transfert et le partage des connaissances des modèles, tout en assurant

la confidentialité des données. L’association de ces modèles gouvernés par un méta-modèle

pourrait permettre une amélioration de la prédiction en sélectionnant, pour chaque événement

polluant sur chaque site surveillé, le modèle qui donne la prédiction la plus juste. Cette ar-

chitecture peut augmenter l’adaptabilité de la modélisation à de nouveaux sites, de nouvelles

conditions météorologiques ou des modifications du bassin versant, tout en prenant en compte

les spécificités de chaque site de baignade. Les concentrations en BIF prédites permettraient

d’alimenter un système d’alerte jouant un rôle clé, en intégrant une surveillance en temps réel

de l’état actuel en utilisant des modèles comme le Random Forest qui se basent sur les données

historiques de la base de données (nowcasting) et une planification en anticipant les tendances

sur des périodes plus longues pour produire des prévisions (forecasting). Le forecasting comme

par exemple avec les modèles LSTM, présente plusieurs avantages, notamment sa capacité à

établir des relations non linéaires entre les variables de qualité de l’eau et à fournir des prévisions
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fiables avec des structures simples (Liu et al., 2019; Shinde and Shah, 2018). Cependant, ses

performances dépendent fortement de la qualité et de la quantité des données disponibles. Il

est généralement recommandé d’avoir des données à intervalles réguliers afin de capturer les

dépendances temporelles et les relations entre les observations passées et futures de manière

plus précise (Liang et al., 2020). L’ensemble de ces informations sont essentielles pour prendre

des décisions éclairées, telles que la planification des ouvertures ou la fermeture des sites de

baignade en cas de pollution. Ce système offrirais également un mécanisme d’alerte pour guider

les prélèvements manuels lorsque des incertitudes persistent dans la base de données lors des

prédictions et cela par des approches d’apprentissage actif. Cela permettrait d’augmenter la

base de données efficacement tout en minimisant les coûts et en réduisant les incertitudes des

modèles de prédiction (Bouneffouf, 2016). Nous avons proposé une stratégie pour utiliser les

modèles comme le Random Forest pour identifier les classes de données minoritaires parmi les

paramètres predictifs du modèle. À l’aide de cet outil, il est possible d’augmenter la base de

données soit par échantillonnage ciblé des classes minoritaires, soit par génération de données

synthétiques lorsqu’il n’est pas possible d’obtenir les données manquantes qui déséquilibrent la

distribution des données dans la base de données pour certains paramètres.

Les résultats de ce travail de thèse offrent des perspectives prometteuses pour la gestion

durable des ressources en eau dans des environnements urbains. Ils mettent en avant l’intérêt

de combiner des outils technologiques avancés avec des pratiques opérationnelles adaptées pour

répondre aux défis environnementaux et réglementaires que pose l’ouverture de sites de baignade

dans les rivières urbaines en période post-industrielle. En tenant compte de l’ensemble de ces

outils et des connaissances disponibles, une décision plus avisée peut être prise. À long terme,

l’intégration de ces dispositifs dans des réseaux intelligents de surveillance à l’échelle régionale

pourrait non seulement améliorer la sécurité des usagers des rivières mais également renforcer

les efforts de préservation des écosystèmes aquatiques urbains en permettant une gestion ciblée

du site.

En conclusion, ce travail illustre la nécessité d’une approche transversale et interdisci-

plinaire pour relever les défis complexes liés à la gestion de la qualité de l’eau de surface dans

les environnements urbains. L’amélioration de la surveillance des eaux de surface et la prise

de décision d’ouverture ou fermeture des sites de baignade peut bénéficier de la combinaison

des connaissances scientifiques, de l’innovation technologique, et de la validation sur le ter-

rain. Améliorer la qualité des eaux de surface en vue de permettre la baignade et les activités
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récréatives et sportives dans les rivières et canaux urbains, est un levier politique et sociétal

puissant qui contribuera en même temps à l’amélioration de la qualité écologique de ces milieux

aquatiques fortement impactés par l’urbanisation et l’activité humaine.
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Figure 4.1 – Cadre général pour la gestion de la qualité des rivières et la prise de décision en matière de baignade. * : (ML : machine learning ; BD : base de donnée ;
TL : transfert learning, FL : federate learning ; AL : active learning), ¤ : Couplage, rapport coût/bénéfice, en violet : les avantages des méthodes, en gras : les futures
perspectives.
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Résumé

Ce travail a permis de mettre en lumière les défis liés à la gestion de la qualité microbiologique des
eaux de surface, en particulier dans des environnements fortement urbanisés. Les efforts se sont concentrés sur
la mise en place d’approches innovantes, combinant des outils technologiques avancés, des modèles prédictifs
robustes, et le développement de guides pratiquesméthodologiques, pour répondre aux exigences croissantes de
surveillance et de gestion de la qualité des eaux de surface. Nous avons développé une méthodologie intégrant
des outils d’apprentissage automatique et des dispositifs de mesure en quasi temps réel pour la surveillance
et la prédiction de la qualité de l’eau. Cette approche souligne le potentiel des réseaux de capteurs continus
combinant des capteurs à bas coût et des capteurs de haute précision pour améliorer les prises de décision. Les
tests et validations sur le terrain ont démontré la faisabilité et l’efficacité de ces dispositifs pour une gestion
durable et précise. De plus, l’évaluation de l’incertitude, de l’échantillonnage à la mesure s’est révélée cruciale
pour garantir la robustesse des données collectées. L’intégration de l’incertitude sur la mesure d’E. coli dans le
processus de classement des échantillons à l’aide de la logique floue s’est également révélée être une approche
intéressante pour améliorer la prise de décision pour l’ouverture ou la fermeture des sites de baignade. En
complément une meilleure compréhension de la dynamique temporelle des pollutions microbiologiques est
essentielle pour renforcer la surveillance et pour étudier la résistance ainsi que la résilience des sites de baignade
face aux événements polluants liés au temps de pluie ou aux accidents sur le réseau d’assainissement. Ces
approches ont pour objectif de diminuer le risque sanitaire lié à la baignade dans des eaux soumises à une forte
pression anthropique.

Mots-clés : baignades, rivière urbaine, qualité microbiologique, contamination, E. coli, prédiction,
incertitude, dynamique Abstract

This work has highlighted the challenges associated with managing the microbiological quality
of surface waters, particularly in highly urbanized environments. Efforts have focused on implementing
innovative approaches that combine advanced technological tools, robust predictive models, and the
development of practical methodological guidelines to meet the growing demands for surface water quality
monitoring and management. We developed a methodology integrating machine learning tools and near
real-time measurement devices for water quality monitoring and prediction. This approach underscores the
potential of continuous sensor networks combining low-cost sensors with high-precision ones to enhance
decision-making processes. Field tests and validations demonstrated the feasibility and effectiveness of these
devices for sustainable and accurate management. Furthermore, evaluating the uncertainty from sampling to
measurement proved crucial in ensuring the robustness of collected data. The integration of E. coli uncertainty
into the sample classification process using fuzzy logic also emerged as a promising approach to improve
decision-making regarding the opening or closing of bathing sites. Additionally, a better understanding of the
temporal dynamics of microbiological pollution is essential for strengthening monitoring efforts and studying
the resistance and resilience of bathing sites to pollution events caused by rainfall or accidents in the sanitation
network. hese approaches aim to reduce the health risks associated with swimming in waters subjected to high
anthropogenic pressure.

Keywords : bathing, urban river, microbiological quality, contamination, E. coli, prediction, uncer-
tainty, dynamics
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