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Introduction génerale

Depuis quelques années, 1’attention des municipalités s’oriente vers les fleuves, les ri-
vieres, les canaux, les bras morts, et les plans d’eau, avec une volonté de reconquéte de la
baignade en ville. En effet, de nombreuses villes d’Europe favorisent I’ouverture de zones de
baignade et organisent des compétitions de natation en eau libre dans leurs rivieres (Kistemann
et al., 2016; Mouchel et al., 2020). Dans le monde entier, les épisodes de canicule ont récem-
ment intensifié le développement des activités récréatives aquatiques dans les mégapoles. Cette
situation contribue a augmenter la fréquentation des zones de baignade en milieu urbain (Jang,
2016; Houtman, 2010).

Cette reconquéte des espaces bleus s’accompagne d’une amélioration générale de la
qualité des eaux de surface, grace a des réglementations plus strictes et a des améliorations des
infrastructures (Schreiber et al., 2015). Ainsi, en Ile-de-France (France), malgré I’interdiction
historique de la baignade dans la Seine et la Marne, se développe une forte volonté politique
et sociale de réhabiliter les rivieres urbaines pour la baignade, avec également un engagement
renouvelé en faveur de la restauration écologique des cours d’eau (Noury et al., 2018). En
héritage des Jeux Olympiques et Paralympiques (JOP) de Paris en 2024, les municipalités de
la région parisienne se sont fortement engagées a améliorer la qualité de I’eau de la Seine et
de la Marne afin de permettre la baignade d’ici 2025 (Bouleau et al., 2024), avec pour objectif
principal I’amélioration continue de la qualité de 1’eau des rivieres a des fins récréatives.

Cependant sur les territoires fortement urbanisés, ces différentes activités posent un
risque sanitaire dii a 1’exposition a des pollutions incluant les microorganismes pathogenes
d’origine hydrique. Ces contaminations peuvent générer un risque sanitaire pour les nageurs,
d’autant plus qu’il est a prévoir une intensification des usages récréatifs dans les cours d’eau
urbains dans les prochaines années (Schijven and de Roda Husman, 2005; Islam et al., 2018).
Différentes sources de contamination peuvent apporter un flux de pathogeénes au niveau des sites
de baignade (Guérineau et al., 2014). Lorsque le milieu regoit des rejets d’origine animale ou
humaine, les bactéries présentes peuvent rendre 1’eau inappropriée pour différentes activités.
Le groupe des entérocoques intestinaux qui appartient aux streptocoques fécaux, de méme que

les coliformes thermotolérants (dits fécaux), en particulier I’espece Escherichia coli, sont des
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microorganismes appartenant au microbiote du tube digestif des animaux a sang chaud et des
humains (Paruch and M&hlum, 2012; Boehm and Sassoubre, 2014). Ils sont excrétés dans les
feces et de ce fait ils servent d’indicateurs de la présence potentielle d’eaux usées (Hébert and
Légaré, 2000). Les deux bactéries indicatrices fécales (BIF), sont relativement bien corrélées
avec le risque de gastroentérite. Elles servent donc de proxy pour évaluer le risque sanitaire et
donc la présence éventuelle de pathogenes (Payment and Locas, 2011). La directive européenne
2006/7/CE, concernant la gestion de la qualité des eaux de baignade et qui vise a améliorer la
qualité de I’environnement et a protéger la santé humaine s’ appuie donc sur ces deux BIF pour le
suivi de la qualité microbiologique des eaux de baignade (Wade et al., 2003; Borja et al., 2020).
Ce suivi implique un échantillonnage de terrain et des analyses de laboratoire dont la logistique
peut étre lourde et le cofit élevé (Manjakkal et al., 2021). De plus, le rendu des résultats se fera
au mieux dans les 24 h suivant le prélevement.

Pour permettre une gestion quotidienne des ouvertures/fermetures des sites de baignade
suite a des événements polluants temporaires, une surveillance de la qualité microbiologique en
temps réel des eaux de surface est nécessaire. Afin de disposer d’outils de gestion des pollutions
plus rapides et de mettre en place des systemes d’alerte efficaces, I’Organisation Mondiale pour
la Santé (OMS) préconise la modélisation dans le but de prédire les indicateurs de contamination
dans I’eau (OMS, 2018). Il existe une variété de modeles qui sont proposés pour prédire la qualité
de I'eau (Milzer et al., 2016; Chen et al., 2020). Toutefois, la performance de ces diftérents
modeles varie selon le jeu de données et le contexte (Milzer et al., 2016; Chen et al., 2020).

La grande variabilité spatio-temporelle qui caractérise les concentrations en microor-
ganismes d’origine fécale et la complexité des relations entre les caractéristiques du bassin
versant d’apport et le comportement des différents indicateurs microbiens de contamination
fécale et pathogenes rendent difficile la prédiction précise et fiable des niveaux de contamination
microbiologiques des eaux de surface (Cha et al., 2016). Or la dynamique spatio-temporelle
des pathogenes hydriques lors d’événements pluvieux qui vont dégrader fortement la qualité
microbiologique des eaux de surface reste encore peu connue (Curriero et al., 2001).

Par conséquent, le sujet de theése a pour but de caractériser la variabilité des niveaux
de contaminations d’origine fécale dans les rejets pluviaux et leur impact sur la qualité micro-
biologique des eaux de surface en milieu urbain. Ceci permettra d’améliorer la compréhension
des sources et flux de contaminations microbiologiques des eaux urbaines en vue de prédire la

qualité microbiologique lors des événements polluants. Ce travail fournira un cadre conceptuel
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et des outils seront proposé€s pour la surveillance de la qualité de I’eau dans les rivieres urbaines
et la gestion quotidienne des sites de baignade. Le manuscrit est divisé en 3 chapitres.

Le premier chapitre est un état de 1’art de 1a connaissance scientifique sur la surveillance
de la qualité des eaux de surface en milieu continental. Le deuxieme chapitre a pour objectif
d’optimiser la prédiction des concentrations en BIF a I’aide de modeles d’apprentissage auto-
matique. Il y a en effet encore peu d’études publiées qui explorent ces modeles pour prédire
la qualité microbiologique dans les rivieres urbaines. Le chapitre comprend un guide pour la
sélection d’un modele d’apprentissage automatique (machine learning, ML) permettant une
estimation précise et immédiate (nowcast) des concentrations d’E. coli a partir de données
historiques. Nous formulons 1’hypotheése qu’une sélection des parametres météorologiques et
physico-chimiques les plus couramment suivis par les collectivités permet une modélisation
fiable des concentrations en BIF dans les eaux de surface. Ainsi, nous avons étudié la capacité
de prédiction des modeles sélectionnés afin d’évaluer leur valeur individuelle en tant qu’outil de
prédiction. Les deux rivieres Seine et Marne en région parisienne (France) ont été considérées
comme un cas d’utilisation afin de prédire la concentration en E. coli qui est le critere le plus
déclassant pour la gestion journaliere (Mouchel et al., 2020). Afin d’améliorer la performance et
la précision du modele sélectionné, nous avons ensuite exploré plusieurs pistes pour augmenter
la quantité et la qualité des jeux de données utilisés pour entrainer les modeles ML : i) I’appren-
tissage par transfert, ii) I’optimisation de la collecte des données réglementaires, iii) la mesure
en continu des parametres physico-chimiques servant de prédicteurs au modele. L’approche de
I’apprentissage par transfert se base sur I’hypothese que les données réglementaires issues d’un
autre bassin versant similaire permettent d’augmenter le jeu de données d’entrainement et de le
diversifier. Pour ce faire, nous avons testé si les données de la Seine a Paris et celles de 1’aval de
Marne (qui appartiennent au bassin versant de la Seine) pouvaient étre utilisées alternativement
pour pré-entrainer les modeles de ces deux rivieres et ainsi améliorer leurs performances res-
pectives. Ensuite, nous avons émis I’hypotheése que les modeles ML sélectionnés pour prédire
les concentrations en E. coli peuvent également €tre utilisés comme outils pour optimiser des
stratégies d’échantillonnage réglementaire, en vue d’obtenir des données en quantité et qualité
suffisante pour I’entrainement des modeles ML. Pour ce faire, nous proposons de mettre en place
un systeme d’alerte sur les performances du modele afin d’optimiser la collecte des données
réglementaires en identifiant dans quelles conditions le modele ne parvient pas a prédire. Enfin,

un contrdle plus efficace de la qualité de 1’eau devrait également reposer sur des méthodes ra-
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pides, peu cofliteuses, nécessitant un minimum d’échantillonnage et fournissant des résultats en
temps réel en complément du suivi réglementaire. De ce fait, a terme, le systeme d’alerte devrait
étre relié a un réseau de capteurs a faible colit permettant un suivi en continu des différents
parametres physico-chimiques (Whelan et al., 2020; Yaroshenko et al., 2020). Une stratégie de
surveillance continue en s’appuyant sur quelques parametres sélectionnés avec des capteurs peu
coliteux pourrait permettre le suivi d’indicateurs de la qualité de I’eau et aider les gestionnaires
a détecter la contamination possible (Farouk et al., 2022; McGrane, 2016; Yaroshenko et al.,
2020). Ainsi, ce chapitre aborde également la stratégie développée afin de vérifier la fiabilité et la
stabilité des capteurs a faible coft et optimiser leur maintenance. Nous avons concu comme cas
d’usage un prototype a faible coft, en testant 6 sondes physico-chimiques utilisant la plateforme
open-source Arduino, afin de surveiller la qualité des eaux de surface en utilisant la technologie
IdO (internet des objets, Internet of Things ou IoT, en anglais). Ce prototype a été calibré, testé et
une analyse de stabilité a long terme a été réalisée en laboratoire et sur le terrain au Bassin de la
Villette. Afin de fournir une résolution spatiale et temporelle suffisante et de réduire le cofit des
surveillances. Combiner les capteurs in situ a I’apprentissage automatique pourrait contribuer
a optimiser I’effort d’échantillonnage et serait ainsi utilis€é comme outil de gestion quotidienne,
qui vient en appui a la surveillance réglementaire selon la directive 2006/7/CE (Carvalho et al.,
2019).

En complément, une surveillance optimale de la qualité microbiologique ne peut étre
atteinte que si I’incertitude au niveau de la mesure est identifiée et qu’un moyen pour la réduire
est considéré lors de 1’échantillonnage et de la mesure. Le troisieme chapitre porte donc sur la
définition de I’incertitude associée a la surveillance réglementaire des BIF et a celle des mar-
queurs de contamination fécale humaine et animale. Des approches expérimentales ont permis
de mieux quantifier cette incertitude liée a I’échantillonnage et au stockage des échantillons avant
I’analyse. Ceci permettra une amélioration des bases scientifiques des normes et des réglemen-
tations en vigueur, ainsi que des nouveaux outils de suivis des sources de contamination, pour la
mise en ceuvre d’un plan de gestion des eaux de surface via un guide d’échantillonnage précis.
De plus, une gestion efficace de la qualité de 1’eau exige une connaissance approfondie de la
dynamique et du devenir des bactéries présentes dans les eaux de surface. Ces bactéries peuvent
soit persister dans I’environnement, soit disparaitre et leur survie dépendra de leur exposition a
diverses influences environnementales (Devane et al., 2018).

Une gestion efficace de la qualité de I’eau exige une connaissance approfondie de la
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dynamique spatiale et temporelle des BIF dans les habitats aquatiques, ainsi que des facteurs qui
I’influencent. Si les taux de décroissance des BIF apres un pic de pollution temporaire montrent
une faible variabilité d’un événement polluant a un autre, cela pourrait permettre d’avoir une
utilisation par les gestionnaires comme parametre pour prédire le devenir des contaminations
(Dick et al., 2010). Par ailleurs, 1’analyse de la dynamique des BIF suite a une pollution de court
terme peut aider a estimer la capacité d’un site de baignade a résister et a récupérer de cette
perturbation. Ces informations sont cruciales pour 1’implantation, la gestion et I’amélioration
des futurs sites de baignade. Ce troisieme chapitre présente donc une analyse de la dynamique
temporelle d’E. coli lors des événements pluvieux, en exploitant les données d’échantillonnage
réglementaire en Marne et en Seine avec 2 a 3 prélevements par semaine, ainsi que les données
du systéme de mesure automatisé ColiMinder en Seine avec une analyse toutes les 2 heures.
Tout d’abord, les taux de mortalité in situ des E. coli dans la Marne ont été déterminés expéri-
mentalement a I’aide de sacs a dialyse remplis d’eau d’un rejet de station d’épuration. Dans un
deuxieéme temps, les taux de disparition des E. coli ont été estimés sur plusieurs futurs sites de
baignade et des sites des JOP 2024. Les amplitudes des pics de pollution traduisent une partie de
la résistance des sites de baignade et d’activité sportive aux perturbations temporaires générées
par les événements pluvieux, et les taux de disparition témoignent d’un aspect du processus de
récupération apres le pic de pollution. Pour estimer les taux de mortalité et les taux de dispa-
rition, il s’agissait de modéliser et de quantifier la diminution des concentrations en E. coli au
cours du temps. A partir des données extraites des deux bases de données, la résistance et la
résilience des sites aux événements polluants (pluie) ont été estimées avec 3 métriques : le temps
de retour, I’amplitude de la pollution et I’amplitude de la récupération du site a des niveaux
en BIF typiques de temps sec. Ces métriques permettront d’aider a la gestion quotidienne et
I’amélioration de la résistance et la résilience des sites des baignades face aux perturbations de

court terme.



Chapitre 1: Etude de la qualité microbio-

logique des eaux de surfaces : état de ’art

1. Introduction

Au début du XXIe siecle, tant en Europe qu’en Amérique du Nord, les municipalités
se tournent progressivement vers leurs espaces bleus (rivieres et plans d’eau), les considérant
comme des composantes essentielles des projets urbains (Moutiez, 2021). Des efforts importants
ont été consentis pour améliorer la qualité des eaux des rivieres a des fins récréatives (Kistemann
et al., 2016). Durant ces dernieres décennies, la qualité des eaux de surface s’est généralement
améliorée en Europe, grice a I’application de la réglementation, a I’amélioration des stations de
traitement des eaux usées (STEU) et des réseaux d’assainissement (Houtman, 2010). L’ amélio-
ration de la qualité de I’eau a de plus en plus mis I’accent sur la qualité microbiologique, celle-ci
étant régulée par la directive 2006/7/CE pour les eaux de baignade (Schreiber et al., 2015).

De ce fait, de nombreuses villes comme Paris, Londres, ou Berlin promeuvent I’ouverture
de baignades et I’organisation de compétitions de nage en eau libre dans leurs rivieres (Rouillé-
Kielo and Bouleau, 2021; Dominguez). Le développement de ces activités augmente le risque
d’exposition des baigneurs aux agents pathogenes présents dans 1’eau, ce qui peut entrainer des
maladies gastro-intestinales, des infections oculaires ou des irritations cutanées (Soller et al.,
2010; Mallin et al., 2000).

La France est le deuxieme pays européen avec le plus de zones de baignade en eau douce
controlées par I’Agence européenne pour I’environnement comptant 1286 sites en 2023. Selon
I’Agence européenne pour 1’environnement (AEE), le classement des eaux de baignade en 2023
en Europe montre que la France est classée en 19° position en prenant en compte la proportion
des eaux classées en qualité excellente (AEE, 2024). Sur les 1286 sites en eau douce suivis en
France en 2023, 86,6% des zones ont été classées en qualité excellente ou bonne et en plus 3,4%
en qualité suffisante, avec une légere dégradation de la qualité sanitaire des eaux depuis 2019
et une amélioration depuis 2023 (Gourmelon, 2023). Parmi ces sites, la région Tle-de-France

compte 6 baignades en plan d’eau et 3 baignades sur riviere ou canaux (Guide Iles de loisirs,
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2024). A I’occasion des JOP 2024, un plan "Qualité de 1’eau et baignade" a été lancé en 2016 par
le ministere de la transition écologique frangais, afin de rendre la Seine et la Marne baignables
a I’horizon 2024 (Préfecture de la région Ile-de-France). Ce plan devrait se traduire par une
ouverture de baignades a I’ét€ 2025 sur la Seine et la Marne en région Parisienne (Noury et al.,

2018).

2. Historique de la baignade en ville en Ile-de-France

La baignade en Seine et en Marne, aujourd’hui au cceur des débats de santé publique,
a connu une évolution marquée par des réglementations variées. Initialement, les interdictions
se concentraient davantage sur des questions de décence et de préservation du transport fluvial,
comme I’illustre le fascicule de baignade du Piren Seine (Bouleau et al., 2024; Moutiez, 2021).

A partir du XVIle siecle, 1’acces aux rives parisiennes pour la baignade était strictement
limité par des autorit€s soucieuses de garantir ’ordre public et la sireté, et les dérogations
n’étaient accordées que dans des établissements spécifiques, souvent situés sur des bateaux
aménagés pour la toilette. Au XVlIle siecle, la baignade dans le fleuve en région parisienne
connait un tel succes que les premieres installations apparaissent afin de protéger les baigneurs
et de garantir leur sécurité (Moutiez, 2021). Au XIXe siecle, le bassin de la Villette est mis
en eau et devient vite un lieu de loisirs aux portes de Paris (Moutiez, 2021). En dehors de la
capitale, avec le développement de la banlieue et la croissance des transports ferroviaires, des
plages et bains fixes s’installent en bord de Seine et de Marne, souvent associés a des guinguettes
et divers services annexes sur la rive (Bouleau et al., 2024).

A partir du milieu du XIXéme siécle, de nombreuses piscines municipales ont été instal-
1ées le long des berges. Les Parisiens ont commencé a profiter des rives de la Seine et de la Marne
pour se détendre et se baigner (Kistemann et al., 2016; Passerat et al., 2011). L’industrialisation,
I’expansion concomitante de la population vivant dans les villes et I’augmentation de la densité
de population au XIXe siecle ont changé cette situation (Houtman, 2010). La pratique de la
baignade urbaine, autrefois répandue au début du XXe siecle, a graduellement décliné a mesure
que les échanges par voie fluviale se sont accrus et que la qualité de 1’eau s’est détériorée. A
partir de ’ordonnance préfectorale du 17 avril 1923, la baignade dans la Seine a Paris a été
interdite, bien que cette pratique ait perduré jusqu’aux années 1960, avant I’aménagement des
voies automobiles le long des berges de la Seine (Guillot-Le Goff et al., 2023).

La baignade a été interdite par la suite en Marne dans le Val-de-Marne en 1970 par un
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arrété préfectoral (Qin et al., 2011). Cette interdiction, motivée par des niveaux de pollution
alarmants, entraine des fermetures massives et marque un tournant vers la prise en compte de la
qualité microbiologique de I’eau (Bouleau et al., 2024).

Ces dernieres décennies, un regain d’intérét pour la réintroduction de la baignade urbaine
s’est manifesté, reflétant I’engagement renouvelé de la zone métropolitaine en faveur de la res-
tauration écologique des cours d’eau. L’évolution des concentrations en BIF, particulicrement
visible dans les données de suivi historique a Ivry-sur-Seine, révele qu’apres des pics de pol-
lution dans les années 1980, des efforts en maticre d’assainissement ont permis une réduction
significative des contaminants bactériens dans les années 1990 et 2000 (Bouleau et al., 2024).

Le désir politique et sociétal de reconquéte des rivieres urbaines pour la baignade est de
plus en plus pressant en Ile-de-France, que ce soit pour la Seine ou pour la Marne. En prévision
des Jeux Olympiques et Paralympiques de Paris en 2024, la municipalité s’est fortement engagée
a inclure la Seine dans les épreuves de triathlon et de natation en eau libre (Moutiez, 2021). Cet
engagement a donné un élan décisif a un "Plan d’action pour la qualité de I’eau et la baignade"
lancé en 2016, visant a améliorer la qualité des eaux de la Seine et de la Marne pour permettre
la baignade d’ici 2024, tout en préservant la biodiversité de ces cours d’eau (Guillot-Le Goff
et al., 2023; Moutiez, 2021). En plus des événements sportifs, différentes communes prévoient
I’ouverture de sites de baignade en héritage des Jeux Olympiques. L’objectif est d’améliorer la
qualité de la riviere et d’accompagner les acteurs de bassin versant pour retrouver un jour une
eau de baignade conforme.

Ainsi, le contexte réglementaire s’est transformé, passant d’une interdiction motivée par
des enjeux de pudeur a une véritable politique sanitaire. Ce retour progressif des baignades
surveillées marque une reconquéte symbolique et politique de la Seine et de la Marne, nourrie
par des aspirations modernes a restaurer des écosystemes et des lieux de loisirs naturels. Ainsi
pour 1’établissement d’une nouvelle baignade, la réglementation exige la mise en place d’un
profil de baignade qui liste toutes les sources de contamination impactant le futur site en vue

d’en faciliter la gestion (Commission européenne, 2006).

3. Sources de contamination

Cependant, les activités sportives et récréatives dans les eaux de surface d’un territoire
fortement urbanisé posent des risques sanitaires (Davies-Colley et al., 2018). En effet, la qualité

microbiologique des eaux de surface urbaines est fortement dégradée par des rejets d’eaux usées
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insuffisamment traitées, comme cela a été précédemment montré pour la Seine (Moulin et al.,
2010; Passerat et al., 2011; Lucas et al., 2014; Prevost et al., 2015). Différentes sources de
contamination peuvent apporter des flux élevés de pathogenes d’origine fécale au niveau des
sites de baignade (Lucas et al., 2019; Mouchel et al., 2020). Les contaminations fécales peuvent
étre d’origine humaine ou animale (animaux sauvages et domestiques) et provenir de sources
ponctuelles telles que les effluents de STEU et de bateaux, les rejets de déversoirs d’orage et
d’ouvrages cadres (Passerat et al., 2011; Guérineau et al., 2014; O’Mullan et al., 2017). A cela
s’ajoutent des sources diffuses liées au ruissellement sur les surfaces urbaines et agricoles, a
la re-suspension des sédiments et aux déjections directes des animaux (Droppo et al., 2011;
Ahmed et al., 2019b).

Une estimation des flux moyens estivaux de bactéries fécales dans le bassin versant de
I’agglomération parisienne, en amont du pont d’Iéna, détaillée dans le fascicule de baignade
du Piren Seine, a révélé les principales sources de contamination bactérienne (Bouleau et al.,
2024). Les STEU constituaient environ 38% des apports, suivies par les déversoirs d’orage
(19%), les bateaux-logements non raccordés aux réseaux d’assainissement (6%), ainsi que les
flux provenant des affluents amont de la Seine-et-Marne (3%), des rivieres urbaines en amont
(4%) et enfin le ruissellement urbain qui représente moins de 1%. L’analyse indiquait que
de faibles rejets non traités suffisaient & compromettre localement la qualité de 1’eau, rendant
essentielle une vigilance accrue sur ces petites sources de contamination. L’ajout d’installations
de désinfection en sortie des STEU Marne Aval et Seine Amont en 2023 a permis de réduire
les apports bactériens d’environ 25%, aboutissant a une réduction globale proche de 50% des
apports urbains (Bouleau et al., 2024).

Le caractere diffus de nombreuses sources rend difficile la quantification de I’influence
relative de chaque source dans un bassin versant donné (Meays et al., 2004). Les rejets de
temps de pluie sont souvent décrits comme €tant a 1’origine de fortes dégradations de la qualité
des eaux de surface (Islam et al., 2017). Les événements météorologiques, tels que de fortes
pluies, peuvent influencer les risques de contamination en perturbant le sol et en entrainant
des débordements (Delamare et al., 2024). De plus, les facteurs météorologiques affectent les
concentrations en microorganismes d’origine fécale dans les eaux de surface, notamment la
température de I’eau et les caractéristiques des événements pluvieux (intensité, durée, période
seche précédant la pluie). De méme, la qualité des eaux usées rejetées dans les rivieres, peut

varier d’'une STEU a I’autre et méme au sein d’une STEU en fonction du jour et de la saison



Chapitre 1

(Kadoya et al., 2019). De plus, I’accumulation et le lessivage de ces microorganismes dans un
bassin versant sont influencés par I’usage des sols (Cha et al., 2016; Passerat et al., 2011; Dueker
et al., 2017; Droppo et al., 2009; Garcia-Armisen and Servais, 2009).

L’ensemble de ces sources, multiples et variées, rend difficile une estimation précise
des flux de contamination. Ceci pose probleme car I’exposition a ces contaminants présente un

risque pour la santé humaine.

4. Risque sanitaire

Une exposition a I’eau contaminée, pouvant contenir divers types de micro-organismes
pathogenes, présente donc un risque accru de contracter des maladies infectieuses (DeNizio and
Hewitt, 2019; Mouchel et al., 2020). Les personnes pratiquant des activités en eau douce peuvent
présenter des niveaux de vulnérabilité différents en fonction de leur age, de leur état de santé et
de leur connaissance des risques associés a cette activité. Comparés aux individus jeunes et en
bonne santé qui ont un systéme immunitaire plus performant, les personnes agées, les enfants,
les personnes immunodéprimées ou celles mal informées des risques encourus peuvent étre plus
exposées aux dangers sanitaires (Delamare et al., 2024).

En fonction de divers facteurs tels que la localisation géographique, 1’environnement
(type de sol, eaux stagnantes, boue, présence d’animaux sauvages ou de bétail) et les conditions
météorologiques avant et pendant I’exposition (inondations, fortes pluies), les risques pour la
santé liés a I’activité de baignade sont variés. Ils incluent des risques physiques, tels que les
noyades, chutes, déshydratation, coups de soleil, qui sont les plus fréquents et graves, mais
non liés a la qualité de I’eau (Martinez and Hooper, 2014; Pakasi, 2018). De plus, des micro-
organismes tels que les bactéries, les virus et les parasites sont présents dans les milieux
aquatiques (eaux cotieres, rivieres, lacs...), en quantité et diversité variables. Certains de ces
micro-organismes peuvent étre pathogenes pour I’Homme (Gourmelon, 2023). La présence de
germes pathogenes dans 1’eau peut entrainer des pathologies affectant, I’appareil digestif, les
yeux, les oreilles ou la peau (OMS, 2018). Les pathogenes détectés dans les eaux des sites de
récréation européens cotiers et continentaux sont principalement les virus entériques (Bouleau
etal., 2024). Aux Pays-Bas, les épidémies associées aux baignades entre 1991 et 2007, étaient a
48% des infections de la peau et a 31% des gastro-entérites (Schets et al., 2011). Selon I’étude
de Craun et al. (2005) portant sur la période 1971-2000, les épidémies associ€es aux eaux

de récréation aux Etat-Unis étaient le plus souvent causées par les shigelles (21% des cas),

10



Chapitre 1

Naegleria fowleri (17%), Pseudomonas aeruginosa (14%), E. coli O157 (9%), les norovirus
(6%), les leptospires (5%) et les Giardia (4%). 11 faut toutefois noter que les agents éthiologiques
principaux vont varier en fonction du pays, du climat. Par exemple Vibrio cholerae, 1’agent du
cholera, est fréquent dans les eaux de surface de pays Européens (Farrell et al., 2021), mais pas
en France. De méme, le virus de I’hépatite A et E n’a pas été détecté dans les eaux de la Seine
(Prevost et al., 2015). Les bactéries gastro-intestinales transmises par des maticres fécales dans
I’environnement, telles que les genres Campylobacter, Shigella, la souche pathogénique d’E.
coli O157, les salmonelles, sont des sources de gastro-entérite aigu€ pouvant étre associées aux
activités récréatives dans les eaux de surface (Delamare et al., 2024). D’autres maladies comme
la leptospirose, causée par la bactérie Leptospira, peuvent se transmettre par contact de la peau
abimée ou coupée, des muqueuses ou la conjonctive via I’exposition a de 1’eau contaminée
(via I’'urine d’animaux infectés). Les manifestations cliniques sont comparables aux symptomes
pseudo-grippaux, avec une fievre simple dans la majorité des cas (Delamare et al., 2024). Les
Campylobacter qui sont tres présents dans les rejets de temps de pluie peuvent causer jusqu’a 5%
des cas de maladies liée aux activités récréatives en Nouvelle-Zélande (Kistemann et al., 2016).
Par contre, les salmonelles et les leptospires sont moins souvent rapportées comme présentes dans
les eaux de récréation (Kistemann et al., 2016). De plus, la présence de cyanobactéries et de leurs
toxines dans les eaux de baignade peut provoquer des éruptions cutanées, des démangeaisons,
des gastro-entérites et atteintes neurologiques, par contact cutané ou ingestion de toxines. Le
développement des cyanobactéries est favorisé par 1’eutrophisation des eaux, les températures
élevées et une faible agitation du milieu (Stewart et al., 2006). Comme mentionné dans le guide
de recommandations sanitaires li€s aux activités nautiques en eau douce, d’autres infections
bactériennes peuvent survenir a la suite d’'une exposition a I’eau douce (Agence Régionale
de Santé Bretagne, 2017). Les personnes exposées a une forte concentration de Pseudomonas
aeruginosa sont susceptibles de développer des infections cutanées, des otites, des conjonctivites
ou des infections urinaires. Par exposition a de I’eau contaminée dans les environnements d’eau
douce, ces infections peuvent entrainer divers problemes de santé (Agence Régionale de Santé
Bretagne, 2017; Delamare et al., 2024). Des pathogénes opportunistes autochtones du milieu
aquatique comme les légionelles, les mycobactéries, et les Aeromonas peuvent provoquer des
infections respiratoires (de Roda Husman and Schets, 2010).

Des gastro-entérites aigues liées aux eaux récréatives sont souvent dues a des virus

entériques (Mouchel et al., 2020). Leur transmission se fait par voie oro-fécale, soit par conta-
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mination de contact, soit par la consommation d’eau contaminée, et leurs doses infectieuses
sont tres faibles, ce qui génere un risque important de gastro-entérite virale chez les nageurs
(Bouleau et al., 2024). Les adénovirus et les norovirus sont treés fréquents dans les eaux de
surface et peuvent atteindre des concentrations relativement élevées méme en dehors des pé-
riodes épidémiques (Prevost et al., 2015; Korajkic et al., 2018). Les épidémies de norovirus
peuvent avoir un impact significatif sur le systeme de santé local et entrainer des épidémies
secondaires avec transmission entre les malades et leurs proches (Delamare et al., 2024). Ces
virus peuvent provoquer divers symptomes tels que des troubles intestinaux et respiratoires, des
hépatites et des conjonctivites (Mouchel et al., 2020). Les norovirus sont la principale cause
d’infection gastro-intestinale non bactérienne dans le monde. Les symptomes apparaissent apres
une période d’incubation moyenne de 24 a 48 h et durent généralement entre 12 et 72 h. Ce-
pendant, les formes séveres sont plus rares chez les patients adultes en bonne santé, comparés
aux enfants (Delamare et al., 2024). D’autres virus entériques pouvant €tre impliqués dans les
gastro-entérites humaines ont été identifiés au niveau de la Seine et de la Marne (aichivirus,
rotavirus, entérovirus) (Prevost et al., 2015). La composition complexe des eaux et la sensi-
bilité différente des especes de virus rendent difficile la prévision du comportement des virus
entériques (Kadoya et al., 2019). Les virus sont souvent tres persistants dans 1’environnement
aquatique, et les variations de température, surtout les températures basses, favorisent leur survie
(Ibrahim et al., 2019; Dean and Mitchell, 2022).

Parmi la large gamme de maladies infectieuses, il y a également les infections parasitaires
qui peuvent étre contractées dans les eaux de surface. Les contaminations par des parasites d’ori-
gine animale ou humaine (comme Giardia et Cryptosporidium) ou environnementale comme
(Naegleria floweri) sont également les agents de maladies d’origine hydrique (Pakasi, 2018;
Delamare et al., 2024). Les infections par les cryptosporidies sont toutefois intermittentes, es-
sentiellement en lien avec un bassin versant agricole (Kistemann et al., 2016). L’amibe Naegleria
floweri prolifere plutot dans les eaux chaudes, et aucun cas n’a été rapporté en France dans les

eaux de surface non polluées thermiquement (De Jonckheere, 2011).

5. Notion d’indicateur de contamination fécale

Pour s’assurer que le risque lié aux eaux récréatives est réduit au minimum pour le
public, de nombreux gouvernements et autorités ont mis en place des mesures de qualité de

I’eau (Avila et al., 2018; Visser et al., 2022). 11 est difficilement faisable de mesurer I’ensemble
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des pathogenes en routine, surtout qu’ils sont souvent en concentration faible dans les eaux de
surface et que leur quantification demande des techniques de biologie moléculaire. La stratégie
adoptée est de mesurer des microorganismes non-pathogenes, autochtones du tube digestif, qui
sont soit présents en plus grand nombre que les pathogenes, soit présents en méme temps que les
pathogenes, et dont la mesure est peu coliteuse et facile a mettre en oeuvre. Ainsi, les parametres
recommandés par la directive 2006/7/EC pour évaluer la qualité de I’eau de baignade sont les
BIF (E. coli et les entérocoques intestinaux). La qualité microbiologique des eaux récréatives est
généralement évaluée par la présence de bactéries indicatrices de contamination fécale (Avila
etal., 2018). E. coli et les entérocoques intestinaux sont des éléments du microbiote intestinal des
mammiferes et des oiseaux, de certains reptiles et des humains (Gordon, 2013; Byappanahalli
etal., 2012; Staley et al., 2014; Silva et al., 2012). Escherichia coli est un bacille a Gram-négatif,
appartenant au groupe des coliformes fécaux, classés dans le phylum des gamma-Protéobactéries
et la famille des Enterobacteriaceae. Son habitat primaire est le bas intestin des animaux a sang
chaud, incluant les humains (Ishii and Sadowsky, 2008). En général, on dénombre plus de 1
million de d’E. coli par g sec de feces humaines (Ishii and Sadowsky, 2008). Les Enterococcus
sont des coques Gram-positives, catalase-négatives, non sporulantes et anaérobies facultatives
(Fisher and Phillips, 2009). Elles habitent généralement le tractus intestinal des humains, mais
peuvent aussi €tre isolées de diverses sources environnementales et animales. Capables de
résister a des conditions extrémes, elles survivent a des températures allant de 5 a 65°C, a
des pH entre 4,5 et 10,0, ainsi qu’a des concentrations élevées de NaCl, ce qui leur permet de
coloniser divers milieux (Fisher and Phillips, 2009). Typiquement, elles représentent moins de
0,1% de la flore intestinale humaine (Schloissnig et al., 2013). Parmi les plus de 50 especes du
genre Enterococcus identifiées, E. faecium et E. faecalis sont les plus fréquentes dans le tractus
gastro-intestinal humain et animal, avec des concentrations de I’ordre de 10000 a 1 million de
cellules par g de feces humaines (Boehm and Sassoubre, 2014).

Les niveaux de ces deux BIF sont indicatifs de la pollution fécale (Commission euro-
péenne, 2006). En effet, des études épidémiologiques ont montré la capacité des concentrations
en BIF a prédire les risques de gastroentérites dans les eaux de surface et ont ainsi permis d’éta-
blir des seuils réglementaires (Priiss, 1998; Pond, 2005; Shuval, 2003). Priiss (1998) a passé en
revue 37 études épidémiologiques sur les effets sur la santé de I’exposition aux eaux récréatives
et a constaté pour la majorité des études une association positive, statistiquement significative,

entre le nombre de BIF présentes et le risque de contracter une gastroentérite pour les nageurs.
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Une méta-analyse réalisée par Wade et al. (2003) de plus de 900 études a révélé qu’au niveau des
eaux douces E. coli était un prédicteur de maladie gastro-intestinale plus cohérent que les entéro-
coques et d’autres indicateurs bactériens. Ils ont constaté qu’une augmentation du nombre d’E.
coli était associée a une augmentation non significative moyenne du risque relatif. Ces valeurs
sont a mettre en regard des risques calculés par les études rétrospectives qui ont servi a fixer les
seuils de qualité des eaux de baignade dans les réglementations de tous les pays. En Europe, les
taux d’incidence de gastro-entérites considérés acceptables sont fixés a 3% (eau continentale de
qualité "excellente") et 5% (eau continentale de qualité "bonne") pour le classement des sites
de baignade dans la directive européenne 2006/7/EC (Fleisher et al., 1996). L’étude relative a
la prévention des maladies gastro-intestinales par les agences de protection de 1’environnement
dans les eaux récréatives recommande que des études futures se concentrent sur la capacité de
nouvelles méthodes microbiennes, plus rapides et plus spécifiques, a prédire les effets sur la
santé et a estimer les risques d’exposition aux eaux chez les personnes sensibles (Wade et al.,

2003).
6. Evaluation de la qualité microbiologique de I’eau de bai-

gnade

Actuellement, la qualité de 1’eau de surface est principalement évaluée a I’aide d’échan-
tillons d’eau collectés pour une analyse microbiologique et chimique en laboratoire et/ou a I’aide
de capteurs spécifiques a haute précision placés a des endroits fixes. La surveillance réglemen-
taire des eaux de baignade en Europe est basée sur la culture des E. coli et des entérocoques
intestinaux (EI) (Commission européenne, 2006). L’ abondance de ces bactéries indique le niveau
de contamination fécale et donc la présence éventuelle de pathogenes pouvant étre a I’origine
de maladies gastro-intestinales (Commission européenne, 2006; OMS, 2018). Selon la directive
2006/7/CE, une eau de baignade continentale est jugée comme étant de qualité suffisante si la
valeur du percentile 90 sur 16 mesures pendant 4 années est en dessous de 900 NPP/100 mL
pour E. coli, et en dessous de 330 NPP/100 mL pour les EI (Tableau 1.1). En France, ces seuils
spécifiques aux eaux continentales permettent aux Agences Régionales de la Santé (ARS) de
classer chaque année les sites de baignade d’eau douce.

En cours de saison de baignade, la qualité microbiologique est évaluée en fonction

des seuils définis pour les BIF, comme indiqué dans le tableau 1.2 et selon I’instruction n°
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TABLE 1.1 — Seuils de qualité microbiologique pour le classement des sites de baignade selon la directive 2006/7/EC.
Basé sur I’évaluation du percentile 95 (*) et 90 (**).

| Parametre | Excellente | Bonne | Suffisante |

Escherichia coli (NPP/100 mL) 500 (*) 1000 (*) | 900 (**)
Entérocoques intestinaux (NPP/100 mL) 200 (%) 400 (*) 330 (**)

DGS/EA4/2022/168 du 17 juin 2022 relative aux modalités de recensement, gestion et classe-
ment des eaux de baignade. Les prélevements dont les résultats sont classés comme "bon" ou
"moyen" sont considérés conformes, tandis que les résultats qualifiés de "mauvais" sont jugés
non conformes. Ces seuils ont été établis en lien avec les risques sanitaires observés, notamment
un risque accru de gastro-entérite pour les concentrations comprises entre 900 et 1800 NPP/100
mL, avec un risque supérieur a 5% (Duboudin et al., 2007). Ces seuils servent pour la gestion
active des baignades classées : prélevements supplémentaires, ouverture et fermeture des zones

de baignade (Bouleau et al., 2024).

TABLE 1.2 — Valeurs limites de qualité microbiologique des eaux intérieures d’un site de baignade classé, pour la
gestion active en cours de saison, proposées par ’Agence frangaise de sécurité sanitaire de I’environnement et du
travail (Duboudin et al., 2007).

| Parametre | Bonne | Moyenne | Mauvaise

Escherichia coli (NPP/100 mL) < 100 | < 1800 > 1800
Entérocoques intestinaux (NPP/100 mL) | < 100 < 660 > 660

La gestion quotidienne des sites de baignade implique un suivi précis de la qualité
microbiologique impactée par les pollutions de courte durée. Une pollution a court terme,
définie a I’article D.1332-15 du code de la santé publique comme étant une contamination
microbiologique affectant la qualité de 1’eau de la baignade pendant moins de 72 h et dont les
causes sont aisément identifiables, peut étre déterminée par un dépassement de 1’une des valeurs
seuils proposées par 1’agence francaise de sécurité sanitaire de 1’environnement et du travail
(AFSSET) pour les BIF (Duboudin et al., 2007). En cas de pollution de court terme, souvent
provoquée par des précipitations importantes difficiles a prévoir, qui génerent des rejets urbains,
du ruissellement sur des surfaces contaminées et des rejets accidentels non maitrisés, devrait
donc entrainer des fermetures préventives (Penna et al., 2021; Bouleau et al., 2024).

Une gestion effective des fermetures doit a la fois permettre de préserver la santé publique
et aussi I’économie locale liée aux activités de baignade (Penna et al., 2021). Depuis I’adoption

de la directive sur les eaux de baignade en 2006, la proportion de sites classés comme "excellent"

a augmenté, puis s’est stabilisée ces dernieres années. En 2023, cette proportion représentait
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85% de I’ensemble des eaux de baignade dans I’UE (22000 sites cotiers et continentaux) mais
ce taux €était seulement de 79% pour les sites continentaux (European Commission, 2023). Cela
souligne la nécessité de mettre en place des systemes d’alerte précoce fiables pour les eaux de
baignade. ’OMS préconise d’utiliser la modélisation en complément du suivi réglementaire
pour estimer ou prédire les contaminations et ainsi aider a la gestion quotidienne des sites de
baignade (OMS, 2018). La modélisation pourrait étre utilisée comme systeme d’alerte précoce
en cas de pollution a court terme, en offrant une aide précieuse dans la gestion des fermetures
temporaires des sites de baignade (OMS, 2018). Bien que I’ouverture reste soumise a une
confirmation par une mesure réglementaire, la modélisation permettrait d’optimiser les efforts
d’échantillonnage et de suivi (Seis et al., 2018). Cette approche contribuirait non seulement a
raccourcir les périodes de fermeture mais aussi a anticiper les risques de contamination fécale

et ainsi améliorer la gestion de la qualité des eaux de surface (Bouleau et al., 2024).

7. Variabilité spatiale et temporelle de la qualité microbiolo-

gique

Concernant le suivi de la qualité microbiologique, des questions subsistent quant a la
stratégie d’échantillonnage nécessaire pour obtenir des mesures représentatives (Harmel et al.,
2016; McCarthy et al., 2008). I1 est essentiel de prendre en compte 1’hétérogénéité spatiale et
temporelle des sources de contamination, qui peut affecter significativement la précision des
évaluations de la qualité de I’eau (Harmel et al., 2016). La variabilité spatiale des concentrations
en BIF dans les milieux aquatiques peut s’observer a différentes échelles : d’une petite distance
au sein d’un méme site d’échantillonnage, a une grande distance le long d’un bassin versant
ou a I’échelle de la région (Murphy et al., 2023). Cependant, les sites de baignade d’eau douce
sont encore peu étudiés de ce point de vue comparés aux plages cotieres. Cela est en particulier
vrai pour les baignades en rivieres. Plusieurs études (Quilliam et al., 2011; Weller et al., 2020)
ont montré que le niveau en FIB variait significativement au sein d’'un méme site, par exemple
d’une berge a I’autre pour une riviere (Quilliam et al., 2011). La distribution horizontale des
BIF en riviere est influencée par les conditions d’écoulement du cours d’eau, qui modifient le
degré de mélange et, par conséquent, la cohérence des concentrations bactériennes. Les débits
plus faibles en bordure, par exemple, favorisent un dépdt bactérien plus élevé (Harmel et al.,

2016; Salam et al., 2021). De plus, une incertitude spatiale peut &tre observée verticalement, en
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raison de la remise en suspension des sédiments et de I'influence des UV qui pénetrent dans la
colonne d’eau (McCarthy et al., 2008; Quilliam et al., 2011; Harmel et al., 2016). Ainsi, il a été
montré sur une plage cotiere que les concentrations en EI étaient 10 fois plus élevées dans les
échantillons collectés a hauteur des genoux comparés a ceux prélevés a hauteur de la taille (Enns
et al., 2012). A une échelle plus large, les sites échantillonnés au sein d’un méme étang cessent
de montrer une autocorrélation dans les mesures de BIF s’ils sont espacés de plus de 100 m. De
ce fait, un seul échantillon par étang ou lac ne peut pas refléter toute la variabilité spatiale qui y
est présente (Murphy et al., 2023).

A cette variabilité spatiale se superpose une incertitude temporelle des indicateurs fécaux
a différentes échelles de temps : entre les heures du jour, entre les jours, entre les saisons, inter-
annuelle. Ainsi, il a ét€ montré que sur les plages de Chicago (USA), la profondeur de I’eau et
I’heure du jour influencgaient significativement la variation des concentrations en BIF, expliquant
respectivement 7 et 13% de la variabilité (Whitman and Nevers, 2008). Une variation au cours
d’une journée de baignade, avec des fluctuations de concentration peut €tre observée sur des
intervalles de quelques minutes a quelques heures seulement (Wyer et al., 2018; Wymer et al.,
2007; Boehm et al., 2002). Des études montrent ainsi des variations journalieres significatives,
avec des écarts pouvant atteindre 1 a 2 [og;o dans une seule journée d’échantillonnage, et ce,
méme en 1’absence de conditions météorologiques défavorables (Wyer et al., 2018). En effet,
les prélevements effectués le matin sont généralement plus représentatifs, car la qualité de I’eau
tend a étre meilleure I’apres-midi, probablement en raison des rejets d’eaux usées du matin et
des habitudes de vie (Jozi¢ et al., 2024; Jovanovic et al., 2019). Toutefois, il est montré que
le jour de I’échantillonnage a plus d’importance dans 1’explication de la variation des concen-
trations en BIF des plages lacustres que 1’heure du jour (Whitman and Nevers, 2008). A plus
large échelle temporelle (inter-annuelle), I’analyse des variations des concentrations en BIF peut
permettre de mieux comprendre les facteurs et les mesures de gestion qui influencent la qualité
microbiologique de I’eau des plages d’eau douce (Weiskerger and Whitman, 2018). De ce fait,
les variations de facteurs physiques, chimiques, biologiques de la riviere et le climat local et
régional influencent directement les stratégies de surveillance (fréquence et positionnement des
échantillonnages), I’interprétation des résultats de qualité de I’eau et leur modélisation (Quilliam
et al., 2011). Différents parametres tels que les sources de contamination proches, les événe-
ments en amont comme les rejets et les conditions météorologiques, ajoutent une couche de

complexité temporelle et spatiale (Devane et al., 2020). Les facteurs environnementaux tels que
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la température, les rayons UV, la sédimentation et le niveau d’étiage influencent la concentration
et la dispersion des BIF en modifiant leur persistance et leur répartition dans I’eau (Ishii and
Sadowsky, 2008). La remise en suspension des sédiments, qui peuvent représenter un réservoir
important de BIF, ajoute une source importante de contamination, complexifiant ainsi les pré-
visions de qualité de 1’eau (Piorkowski et al., 2014). Cependant, malgré la variabilité spatiale et
temporelle intra-journaliere et inter-saisonniere, les stratégies d’échantillonnage actuelles per-
sistent a considérer qu’un seul prélevement par semaine a un point situé a 2 m de la berge est
représentatif de la qualité de 1’eau pour I’ensemble du site et pour toute la journée de baignade
(Wyer et al., 2018; Boehm, 2007). Or, cette approche ne reflete pas les fluctuations réelles de la
journée, ni la variabilité spatiale du site de baignade, ni le délai de 24 h pour obtenir les résultats
en réduit 1’utilité opérationnelle, la qualité de I’eau pouvant changer considérablement entre le
prélevement et la disponibilité des données. Cette complexité a des implications cruciales pour
les stratégies de suivi, car elle exige une prise en compte des dynamiques locales et globales
pour une évaluation fiable de la qualité des eaux de baignade. La fréquence d’échantillonnage
et la taille de 1’échantillon déterminent la représentativité de la variabilité de la qualité de I’eau
et peuvent ainsi avoir un effet crucial sur le calcul des percentiles 90 et 95, influencant ainsi la
classification des sites de baignade (Ldpez et al., 2012). Ce point est particulierement critique
pour les sites dont la qualité est proche du niveau "suffisant". Ces connaissances sont essen-
tielles pour adapter les modeles de prévision, qui peuvent servir de complément aux méthodes
de surveillance directe, en particulier dans les collectivités de taille modeste ol les ressources

sont limitées.

8. Décroissance des indicateurs de contamination fécale

Le tube digestif des humains et animaux homéothermes offre aux BIF et aux pathogenes
entériques des conditions favorables a leur croissance. Les proportions de BIF par gramme de
feces varient en fonction des especes hotes (Dean and Mitchell, 2022). Apres le rejet d’eaux
usées dans le milieu, la concentration des BIF et des agents pathogenes peut étre modifiée par
la dilution, le débit de 1’eau et la capacité de persister de chaque espece microbienne dans
I’environnement (Devane et al., 2020). La proximité du site de baignade avec une source de
pollution augmente la densité des BIF, qui diminue avec I’éloignement en raison de la dilution
et de la dispersion des contaminants dans la masse d’eau (Jozi€ et al., 2024; Carneiro et al.,

2018). Une fois excrétées et déversées dans 1’environnement, les bactéries du tube digestif sont
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exposées a divers facteurs, tels que la disponibilité en nutriments et en sources de carbone
organique, les fluctuations de température, la salinité et la prédation, dont I'influence dépend
des caractéristiques physiques et chimiques propres a chaque milieu (Sampson et al., 2006;
Schloissnig et al., 2013; Solo-Gabriele et al., 2000; Nakhle et al., 2021). Dans cet habitat
secondaire plus ou moins hostile, en théorie, les BIF vont soit mourir, soit entrer en dormance
dans un état viable non cultivable. Cependant, il a été montré que dans certains compartiments
du milieu aquatique tels que les sédiments, les litieres ou les biofilms, des souches de ces
BIF peuvent survivre, voire s’acclimater et croitre (Korajkic et al., 2019). Par exemple, des
températures €levées et la présence de matiere organique peuvent favoriser la survie d’E. coli
hors de son hote, tandis que I’exposition a la lumiere et la prédation contribuent a réduire
leur présence. Etant donné la complexité des systemes aquatiques, il est difficile de prédire
I’'influence de chaque facteur sur la survie et la croissance des bactéries dans des contextes
variés (Solo-Gabriele et al., 2000; Sampson et al., 2006). La prédation a notamment démontré
un role important dans la survie d’E. coli au sein des systemes naturels (Solo-Gabriele et al.,
2000).

Une gestion efficace de la qualité de 1’eau exige une connaissance approfondie de la
dynamique de décroissance des BIF dans les habitats aquatiques, ainsi que des facteurs qui
I’influencent. Si la décroissance d’E. coli est relativement constante d’un événement polluant a
un autre au sein d’un méme site ou bien d’un site a un autre, cela pourrait permettre d’avoir une
future utilisation de ce parametre par les gestionnaires pour prédire le devenir des contaminations
(Dick et al., 2010).

La plupart des études sur la décroissance des bactéries ont été menées dans des condi-
tions contrdlées en laboratoire ou in situ pour déterminer le taux de mortalité (Dick et al.,
2010; Korajkic et al., 2014; Tijdens et al., 2008). La majorité de ces études in situ utilise des
microcosmes fermés (bouteilles) ou semi-ouverts composés de sacs a dialyse immergés dans
I’eau de surface. Ces systemes permettent de simuler la décroissance bactérienne suite a un rejet
accidentel d’eaux usées tout en manipulant des facteurs tels que les UV ou la prédation. Par
contre, ces expériences en laboratoire ou sur le terrain ne permettent pas de prendre en compte
la dynamique liée aux flux d’apports amont, a la dilution et a la dispersion, ni a I’effet de la
sédimentation et de la resuspension des sédiments (Maraccini et al., 2016; Ahmed et al., 2015;
Korajkic et al., 2014; Nakhle et al., 2021).

L’étude de Jin et al. (2004) illustre la dynamique de décroissance aprés un événement
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TABLE 1.3 — Valeurs du taux de décroissance dans différents types d’eau, le terme utilisé dans la littérature et les
facteurs pris en compte pour la mesure du taux. ¢ : sans remise en suspension, ” : avec remise en suspension, © :
(Noble et al., 2004), d. (Servais et al., 2007a), ¢ : (Chigbu et al., 2005), £ (Jozié et al., 2014), 9 : (Nakhle et al.,
2021), h. (Dick et al., 2010), * : (Blaustein et al., 2013).

Milieux Terme Taux (Jr—!) Facteurs pris en compte
utilisé

Mésocosme (Ri- | Inactivation 3.12 et 1.12 (E. coli)* Forte et faible irradiation

viere) solaire

Mésocosme (Ri- | Inactivation 6.48 et 5.76 (EI) ¢ Forte et faible irradiation

viere) solaire

Laboratoire (Seine) | Mortalité 0.72 (E. coli) ¢ Prédation et stress physio-
logique

Laboratoire (Seine) | Mortalité 1.08 (Coliformes fé- | Mortalité et perte de cultu-

caux) ¢ rabilité (lumiére)
Riviere Disparition de 0.21 a 0.74 (Coli- | Prédation, nutriment, sé-
formes fécaux) © dimentation et lumiere

Laboratoire Inactivation de 0.01 27.91 (E. coli) 7 | Irradiation solaire et obs-
curité

Mésocosme (Bassin | Décroissance | 1.43 +0.15 (E. coli) ¢ Sédimentation et lumiére

versant) ¢ apparente

Mésocosme (Bassin | Décroissance | 0.50 + 0.15 (E. coli) ¢ Sédimentation et lumiére

versant) apparente

Laboratoire (Riviére | Décroissance | 0.28 " Réduction de la prédation

et eau usée)

Laboratoire (riviere) | Inactivation 0.72 + 0.07 (E. coli) * Obscurité et température
20°C

Laboratoire (Eau | Inactivation 0.67 +0.11 (E. coli) * Obscurité et température

usée) 20°C

pluvieux et montre une diminution relativement rapide de ces indicateurs en deux a trois jours
(Tableau 1.3). Cette décroissance rapide est attribuée a plusieurs facteurs, dont I’effet de dilu-
tion, la mortalité des microorganismes due a des conditions environnementales telles que les
toxines algales, le pH, la prédation, la température, la salinité et la lumiere solaire, ainsi qu’a la
sédimentation des particules auxquelles les microorganismes peuvent étre associés (Pendergrass
et al., 2015; Gronewold et al., 2011). De plus, ce taux peut varier en fonction des saisons. Ainsi,
des taux plus €levés étaient observés au centre-nord du golfe du Mexique en hiver avec des
taux estimés en novembre/décembre de 0,64 + 0,06 jr—!, en janvier de 0,45 + 0,03 jr! et en
février/mars de 0,35 + 0,03 jr—!, probablement en raison des faibles températures de I’eau et de
la baisse d’intensité du rayonnement solaire (Chigbu et al., 2005).

De méme, la concentration initiale en BIF peut avoir un impact sur le taux d’inactivation

(Gronewold et al., 2011). L’étude de Nakhle et al. (2021) a identifié un taux de décroissance plus
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élevé avec une remise en suspension des sédiments. La sédimentation expliquait en moyenne
92% de la réduction de la concentration d’E. coli, tandis que le rayonnement solaire représentait

environ 2% (Tableau 1.3).

9. Incertitudes sur la mesure des indicateurs bactériens

La variabilité spatiale et temporelle ajoute une part d’incertitude sur 1’échantillonnage
et donc sur les concentrations en BIF rapportées. Celle-ci est dépendante de 1’effort d’échan-
tillonnage (fréquence des dates d’échantillonnage et choix des points d’échantillonnage). A cela
s’ajoute une part d’incertitude qui est liée a la méthodologie et aux équipements employés pour
effectuer 1’échantillonnage et I’analyse des échantillons, ainsi qu’une part d’incertitude liée a
I’expertise des personnels du laboratoire. L’incertitude caractérise la dispersion des valeurs qui
pourraient €tre raisonnablement attribuées a un ensemble de facteurs. L’incertitude associée
a une mesure est un parametre important a prendre en compte car elle nous renseigne sur la
fiabilité des résultats et donc ensuite sur la confiance dans la prise de décision (Cazals et al.,

2020).

9.1. Sources d’incertitudes

Les stratégies afin de diminuer I’incertitude sur la mesure et I’échantillonnage comportent
la formation et la certification des personnels, 1’accréditation du laboratoire, I’utilisation de pro-
tocoles normés, I’ utilisation de standards et de contrdles, I’ inter-comparaison entre laboratoires.
Notons que les méthodes et normes de prélevements et d’analyses peuvent différer d’un pays
a I’autre (Europe, Asie, Pacifique) (Cazals et al., 2020). En Europe et plus particulierement
en France, les normes de prélevements et de mesures sont celles figurant dans la figure 1.1.

Cependant, ces normes laissent une marge d’interprétation qui peut étre source d’incertitude.
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GCestion de |la qualité des eaux de baignade

Directive baignade 2006/7/EC

Norme qualité d'eau Norme denombrement des BIF
NF EN ISO 19458 : échantillonnage ISO 9308-3 : Escherichia coli
FD T 90-521: piscine et baignade ISO 7899-1: Entérocoques intestinaux

FD T 90-523-1: riviéres et canaux

FIGURE 1.1 — Normes, directives et guide pour le prélevement d’eau de baignade.

Globalement les différentes incertitudes vont se cumuler. La variabilité spatiale et tempo-
relle constitue une premiere source majeure d’incertitude qui influence les ensembles de données.
S’ajoute a cela une incertitude liée au processus de la collecte d’échantillons a 1’analyse en la-
boratoire (Harmel et al., 2016). Une incertitude globale de £33% (15-67%) a été calculée lors
des prélevements de temps de pluie a I’aide de préleveurs automatiques, en prenant en compte
I’échantillonnage, le stockage et I’analyse (McCarthy et al., 2008). Cependant, en raison des
variations d’incertitude selon la méthode, des recherches supplémentaires sont nécessaires pour

chaque nouveau systeme de surveillance (McCarthy et al., 2008).

9.2. Incertitude liée a la variabilité spatio-temporelle

Lors du prélevement d’un échantillon a un instant précis, de I’incertitude est introduite
par le moment et le lieu de la collecte (Harmel et al., 2016). Une différence significative
dans les concentrations en E. coli prélevées a des intervalles de deux heures dans un bassin
hydrographique urbain de Houston (Texas) a été constatée (Desai and Rifai, 2013). En revanche,
aucune corrélation significative entre les concentrations d’E. coli et I’heure de I’échantillonnage
n’a été constatée dans des rivieres échantillonnées par Pendergrass et al. (2015) et Sejkora et al.
(2011). Une incertitude de +(23 £+ 16%) a été identifiée avec un échantillonnage répété espacé
d’une minute (Pendergrass et al., 2015). A cela s’ajoute une incertitude spatiale verticale : les
échantillons prélevés dans le haut et le bas de la colonne d’eau d’un rejet pluvial présentaient
une incertitude moyenne de 1 £ 27% (McCarthy et al., 2008). Cette incertitude spatiale peut
également étre horizontale, des différences significatives dans les concentrations d’E. coli ayant
été observées au sein du transect d’un systeme fluvial britannique, avec une incertitude moyenne

de 62 + 30% (Quilliam et al., 2011).
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Cependant, I’impact des sources diffuses de pollution liées au ruissellement par temps
de pluie ou a la défécation directe des animaux dans les rivieres ou encore la variabilité des
rejets ponctuels liée au caractere aléatoire des orages d’été vont impacter la variabilité spatiale et
temporelle des concentrations en BIF dans les eaux de surface. Ainsi, les variations saisonnieres
de la distribution et I’activité des animaux sauvages ou les changements de paturage pour le bétail
peuvent constituer une source importante d’incertitude (Guérineau et al., 2014). Ces facteurs, qui
varient considérablement dans le temps et I’espace, peuvent générer des niveaux d’incertitude
élevés, comme le souligne Pendergrass et al. (2015), notamment en ce qui concerne I’impact

potentiel des colonies d’oiseaux pouvant entrainer une incertitude dépassant 1000%.

9.3. Incertitude liée a 1a méthodologie de prélevement

Lors du prélevement, quelle que soit la méthode, I’incertitude est introduite par le moment
et le lieu de la collecte de 1’échantillon (incertitude temporelle et spatiale) mais également par
le volume prélevé et I’équipement utilisé qui peut potentiellement générer des contaminations
croisées entre les sites (Harmel et al., 2016; Hathaway et al., 2014). Les trois sources principales
d’incertitude sur la concentration en E. coli dans 1’échantillon sont I’échantillonnage, le stockage
et ’analyse (McCarthy et al., 2008). Nous devons garder a 1’esprit que la premiere incertitude
dans les résultats peut étre liée au prélevement dans le cours d’eau. Plusieurs méthodes de pré-
levements peuvent €tre appliquées sur le terrain (prélévement automatique, prélevement manuel
avec une perche équipée d’un flacon ou une pompe) a une profondeur d’eau et a une distance
de la berge qui peuvent dépendre des caractéristiques du site mais aussi de I’équipement (lon-
gueur de la perche, puissance de la pompe et longueur du tuyau par exemple). Les prélevements
bactériologiques y sont sensibles a ces caractéristiques et les normes NF EN ISO 19458 et FD
T90-523-1, ainsi que la directive 2006/7/EC spécifient des profondeurs et distances minimales
requises tout en laissant une marge de manceuvre.

Selon la norme FD T90-523-1 sur la qualité de ’eau dans 1’environnement, plusieurs
équipements peuvent étre employés pour le prélevement ponctuel : bécher associé a une perche
télescopique, pompe dont le tuyau est associ€¢ a une perche télescopique, seau. Il existe aussi
des bouteilles de prélevements adaptées pour échantillonner a une profondeur donnée (exemple
la bouteille de Niskin). Des mesures sont nécessaires pour limiter I’incertitude et les risques

de contamination lors des prélevements d’eau. Selon les normes NF EN ISO 19458 et FD T
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90-52, I'utilisation de flacons stériles et de lingettes désinfectantes pour les béchers permet
de minimiser les contaminations externes, mais les prélevements effectués a 1’aide de pompes
et de tuyaux sont plus complexes a nettoyer et désinfecter que ce soit pour les prélevements
ponctuels ou intégrés (pompe associée a une perche ou préleveur automatique). En effet, ces
dispositifs ont souvent un volume mort et de ce fait peuvent héberger une contamination résiduelle
ou favoriser la formation de biofilms a I'intérieur des tuyaux, ce qui augmente le risque de
contamination croisée entre échantillons (Solo-Gabriele et al., 2000). La norme FD T90-523-
1 prévoit effectivement un rincage du systeme avec de 1’eau de riviere avant de réaliser un
prélevement, afin de minimiser les risques de contamination. Cependant, ce ringage peut ne
pas étre suffisant pour garantir des résultats représentatifs dans certaines conditions. En effet,
plusieurs facteurs peuvent influencer 1’efficacité du ringage, tels que la longueur du tuyau, son
inclinaison et I’exposition au rayonnement solaire (Hathaway et al., 2014).

Ainsi, I’étude de Hathaway et al. (2014) a révélé une contamination <1% dans la tubulure
d’un préleveur automatique apres 7 jours a sec. Cependant, 1’étude de Galfi et al. (2014) montre
une influence de la longueur du tube ainsi qu'un potentiel de contamination croisée avec des
échantillons successifs de concentrations variables. De plus, Hathaway et al. (2014) a montré
un impact de I’inclinaison du tuyau sur la stagnation du volume mort d’échantillon prélevé. En
inclinant le tuyau de prélévement pour permettre son drainage complet entre les échantillons,
I’incertitude diminue de 5.5 + 0.05% a 1.7 + 0.02%. En raison de la contamination potentielle,
un lavage et un rincage avec de 1’eau déionisée et autoclavée les tuyaux d’échantillonnage entre
les prélevements est recommandé (Hathaway et al., 2010). Cette contamination résiduelle étant
généralement négligeable pour les eaux de surface, un ringage est parfois suffisant (Hathaway
et al., 2014).

Une fois I’échantillon collecté, le délai entre la collecte et 1’analyse d’un échantillon doit
étre aussi court que possible afin de limiter les changements dans les populations microbiennes
(Salam et al., 2021). La température de stockage entre le prélevement et 1’analyse au laboratoire
joue aussi un role important. D’une part, dans le cas des échantillonnages par préleveur auto-
matique, le temps entre le premier prélevement et le dernier peut représenter jusqu’a 24 h or
il n’est pas toujours possible d’avoir une embase réfrigérée pour des raisons d’alimentation en
électricité ou de place. D’autre part, quelque soit le type de prélevement (manuel ou automa-
tique) le temps de transit des échantillons entre le lieu de prélévement et le laboratoire peut étre

long et dans des conditions de température pas toujours contrdlables. A température ambiante,

24



Chapitre 1

Salam et al. (2021) ont constaté dans 80% des cas €tudiés, aucune différence significative entre
les concentrations en E. coli des échantillons traités dans les 8 h et dans les 24 h, avec une
incertitude moyenne de +12% et une tendance a décroitre au cours de la période de stockage.
En effet, McCarthy et al. (2008) ont constaté que lors d’un stockage non réfrigéré dans un
préleveur automatique, une augmentation des concentrations d’E. coli est observée entre 4 et 8
h, puis une diminution a 24 h a une température entre 10 et 15°C. Ainsi, apres 24 h, I’incertitude
moyenne due au stockage était de +25% (McCarthy et al., 2008). Selon la température ambiante,
les résultats peuvent fluctuer, et la saison du prélevement est donc a prendre en compte, ainsi
que la latitude du site de prélevement. Ainsi, pour une durée de stockage de 6 h, I’incertitude
moyenne est légerement plus élevée lorsque les échantillons étaient conservés a 25°C (+8%) par
rapport a 15°C (+6%) (Harmel et al., 2016). La réfrigération a des températures inférieures a
6°C permet une meilleure stabilité des échantillons. En effet, une étude de la Texas Commission
on Environmental Quality n’a fait état que d’une faible incertitude de -4% des concentrations
d’E. coli apres 24 h par rapport a une durée de stockage de 8 h a une température inférieure a 4°C
(Millican and Hauck, 2008). Un changement a été rapporté dans les échantillons d’eau stockés a
une température inférieure a 10°C, avec une incertitude moyenne allant de 1% apres 6 h a 20%
apres 24 h (Agency, 2006). Ainsi la norme FD T90-523-1 préconise un stockage maximal de 24
has5+3°C.

9.4. Incertitude liée a ’analyse

Il existe une incertitude pour la mesure de la concentration en bactéries liée a 1’analyse
en laboratoire de I’échantillon prélevé (Harmel et al., 2016). En comparaison avec I’incertitude
d’échantillonnage qui est peu décrite et sous-estimée, 1’incertitude analytique est quant a elle
controlée et bien rapportée dans la littérature (Guigues et al., 2020). L'incertitude caractérise
la dispersion des valeurs qui pourraient €tre raisonnablement attribuées a la méthode, a I’effet
d’homogénéisation, de dilution choisie et aux facteurs humains (Harmel et al., 2016).

Il peut ainsi y avoir également une source d’incertitude supplémentaire liée a la distri-
bution non homogene des micro-organismes dans 1’échantillon. Il faut noter que les bactéries
peuvent €tre associées a des particules, qui créent des amas de bactéries et sédimentent dans
les flacons d’échantillonnage (Fries et al., 2006). Certaines especes ont également tendance a

s’adsorber sur les parois en raison de la nature de leur paroi cellulaire. Une moyenne de 38 + 4%
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de BIF est associée aux particules dans 1’estuaire de la riviere Neuse (Fries et al., 2006). Ainsi,
lors de la dilution en série des échantillons, I'incertitude augmente (Dufour, 2021). De méme,
si la concentration est faible, I’incertitude peut augmenter. En effet, les fluctuations aléatoires
dans I’échantillon peuvent étre plus prononcées, rendant les estimations moins précises (Harmel
et al., 2016). Tout cela fait qu’a chaque étape, il y a une accumulation de I'incertitude. Ces
données collectées présentent donc une incertitude de départ, difficilement quantifiable, mais
qui ajoute une variabilité dans la mesure de la concentration en indicateurs bactériens qu’il faut
avoir en téte, ce qui peut affecter la répétabilité ou la précision des mesures (Harmel et al., 2016).

En ce qui concerne la méthode d’analyse, Hamilton et al. (2005) a identifié une améliora-
tion des mesures de concentration d’E. coli observée avec les milieux de culture spécifiques aux
enzymes (quantitray Colilert ou en microplaque MUG/EC), en comparaison avec 1’utilisation
des milieux de culture conventionnels. L’incertitude associée aux estimations NPP découle du
fait que cette méthode repose sur des estimations statistiques plutdt que sur une mesure di-
recte, ce qui introduit une variabilité dans les résultats (McBride et al., 2003). Les normes sont
congues pour réduire I’incertitude dans les méthodes d’analyse microbiologique, en assurant
des procédures uniformes et fiables. Pour la détection d’E. coli et des entérocoques intestinaux
dans les eaux de surface, les normes ISO 9308-3, ISO 9308-2 et ISO 7899-1 visent a garantir
des résultats précis et reproductibles. Par ailleurs, pour les méthodes de quantification par PCR
(polymerase chain reaction), le guide MIQE (Minimum Information for Publication of Quan-
titative Real-Time PCR Experiments) offre des recommandations sur les bonnes pratiques en
PCR quantitative, afin d’assurer la rigueur et la reproductibilité des résultats obtenus par cette

méthode (Dooms et al., 2014).

9.5. Estimation de I’incertitude pour les mesures ponctuelles

Lincertitude représente la dispersion des données quantitatives qui peut étre estimée
par différents parametres statistiques. Elle représente un doute sur les résultats de la mesure
(Harmel et al., 2016). Afin d’estimer le pourcentage d’incertitude au niveau de la mesure de la
concentration en BIF, une mesure du pourcentage d’erreur relative d’échantillonnage est réalisée
(Esbensen and Wagner, 2014; Harmel et al., 2016).

Pour comprendre la part relative des sources de variabilité, il a été suggéré de calculer

N

I’incertitude totale en cumulant I’incertitude liée a chaque source (McCarthy et al., 2008;
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Topping, 2012). La méthode de calcul de I’incertitude globale consiste a cumuler 1’ensemble
des incertitudes. L'incertitude de la concentration en E. coli dans I’échantillon (xi/xi1), peut étre

exprimée comme suit (McCarthy et al., 2008) :

2 2 2
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Tl
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total échantillonnage stockage analyse

Pour calculer I’incertitude a chaque étape et en fonction du type de données disponibles,
les formules présentées dans le tableau 1.4 peuvent €tre utilisées.

TABLE 1.4 — Méthodes utilisées pour I’estimation de I’incertitude a partir des données disponibles (Harmel et al.,
2016).

Uncertainty estimation method Comments Equation
1. Used uncertainty estimate as directly reported — Rarely were these estimates available -
2. Used methods of Taylor and Kuyatt (1994) and McCarthy - For random uncertainty +% unc. = 4% ~ 28X (1)
etal. (2008) (Eq. (1)) or Harmel and Smith (2007) to estimate - Used if necessary summary statistics (e.g., mean, standard deviation, ! '
uncertainty number of samples collected) were reported
3.1. Used Eq. (1) to estimate uncertainty - For random uncertainty Eq. (1)
- Used for raw data sets, after determination of mean and standard
deviation

3.2. Used Eq. (2) to estimate uncertainty - For systematic uncertainty +% unc, =@t ()
- Used for paired values (a;, b;) with a; assumed to be the “true” value &

3.3. Used Eq. (3) to estimate uncertainty - For random uncertainty +% unc. = M\/‘;(;ﬁw\]) 3)

- Used for paired values with no “true” value

3.4. Used best professional judgment to assign an uncertainty -
estimate based on data for another constituent such as total Used when no data relevant to E. coli were available.
suspended solids - Used only as a contingency for knowledge gaps present for critical
elements of E. coli monitoring; accounting for these uncertainty sources
was necessary for a comprehensive uncertainty analysis

* Where x; is the sample mean of a given data series, Ax;/x; is the relative uncertainty of a quantity x;, and u(x;) is the standard deviation of the mean.
> Where a; and b; are paired values.

La mesure des indicateurs de contamination pose €galement des problemes pour la
gestion, car un seul échantillon ne peut capturer la dynamique spatiale et temporelle des concen-
trations bactériennes sur tout le site. De plus, le moment de 1’échantillonnage peut a lui seul
influencer I’incertitude dans I’estimation des concentrations bactériennes, rendant ainsi les don-
nées peu fiables pour une gestion en temps réel et pour la modélisation en vue de prédire les

concentrations en BIF (Wyer et al., 2018).

10. Prédiction de la qualité microbiologique

La concentration en bactéries fécales dépend beaucoup des conditions météorologiques,
car en cas de fortes pluies, I’eau de surface est polluée par un apport de contaminant provenant
des ruissellements, générant ainsi une grande variabilité dans les données. L’échantillonnage
ponctuel réglementaire ne permet pas un suivi fin des variations de concentrations en BIF, car

les méthodes sont colteuses, chronophages et laborieuses (Chen et al., 2020). Toutefois, il est
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important de surveiller et de prévoir la qualité d’eau de maniere précise au moment opportun,
pour gérer les baignades au quotidien et en temps réel. ’OMS recommande I’utilisation de la
modélisation pour aider a la gestion des baignades (OMS, 2018).

Disposer de données fiables méme en 1’absence de mesures directes par la modélisation
est particuliecrement pertinent pour des alternatives aux plans d’échantillonnage intensifs, qui
peuvent étre coliteux pour les petites collectivités. En parallele, ces connaissances peuvent servir
a informer le public en temps réel et soutenir la mise en place de systemes d’alerte sanitaire,
comme requis par la directive européenne sur la qualité des eaux de baignade (van der Meulen
et al., 2024). Les gestionnaires utilisent le nowcasting pour décider des avis de qualité de 1’eau
et des options de traitement. Le nowcasting est une technique de prévision a trés court terme
(quelques heures). L’objectif est de fournir des estimations des conditions actuelles ou proches
en temps réel, a I’inverse des prévisions météorologiques classiques, le forecasting porte sur des
conditions futures a 1’échelle de quelques jours. Appliqué aux domaines environnementaux, le
nowcasting utilise des modeles ou des techniques mathématiques pour évaluer rapidement les
menaces sur la qualité de 1’eau, par exemple en détectant des concentrations de contaminants ou
de BIF comme E. coli dans un délai quasi-instantané (Francy et al., 2020).

A cet effet, plusieurs méthodes de modélisation ont été créées et mises en ceuvre pour
surveiller et prédire la qualité de I’eau (Chen et al., 2020). Sur la base des données collectées
sur la qualité de I’eau, un modele de prévision peut établir une relation de correspondance entre
les données de surveillance multiples et les changements des parametres de qualité de 1’eau
(Liu et al., 2019). Ces dernieres années, I’établissement de modeles fiables de prévision de la
qualité de I’eau est devenu I’un des points chauds de la recherche dans le domaine de la science
environnementale de 1’eau (Liu et al., 2019).

Dans la littérature scientifique, il existe une variété de modeles (statistique, déterministe,
apprentissage automatique) qui sont proposés pour prédire la qualité de 1’eau (Milzer et al.,
2016; Visser et al., 2022; Chen et al., 2020). Pour trouver 1’outil de modélisation idéal, il faut
examiner différents modeles prédictifs. Les modeles statistiques et 1’apprentissage automatique
sont deux approches utilisées pour analyser et interpréter des données dans le but de faire
des prédictions. Les modeles statistiques sont souvent plus faciles a interpréter car ils sont
basés sur des principes statistiques classiques et ont généralement des parametres explicites
avec des interprétations directes. Par contre, les modeles d’apprentissage automatique, peuvent

étre plus difficiles a interpréter en raison de leur nature non linéaire et de la présence de
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nombreux parametres qui font d’eux des "boites noires" (Mailzer et al., 2016). Visser et al.
(2022) ont classé onze modeles en fonction de leurs performances prédictives et de leur niveau
de transparence. L' étude a montré qu’il existe un compromis entre les performances prédictives
et les niveaux de transparence des modeles. Les modeles d’apprentissage automatique ont les
meilleures performances en matiere de prédiction mais présentent des structures de modele
non transparentes comme les approches Random Forest et Boosting. Des régressions linéaires
simples et multiples, un modele hydrodynamique et un modele de réseau de neurones ont été
utilisés pour prédire la concentration en E. coli afin d’identifier les pollutions de courte durée
dans la riviere Ruhr en Allemagne (Malzer et al., 2016). Toutefois, la performance de ces
différents modeles variait selon le jeu de données et le contexte (Milzer et al., 2016; Chen et al.,
2020). Ainsi, le long de la riviere Ruhr (Allemagne), la performance des différents modeles
variait d’un site a I’autre (Malzer et al., 2016). En comparaison a des modeles statistiques et
déterministes, les performances des modeles de machine learning ont démontré leur capacité a
prédire de maniere fiable la concentration en E. coli (Milzer et al., 2016). Parmi les différents
outils de modélisation, les outils d’apprentissage automatique se sont avérés capables de prédire
la qualité des eaux de surface des rivieres avec une grande précision dans différentes situations

(Ghahramani, 2015; Milzer et al., 2016; Qiu et al., 2017).

10.1. Modeles statistiques

Les modeles statistiques, notamment les régressions linéaires simples et multiples, sont
couramment utilisés pour prédire la qualité des eaux de baignade en se basant sur des corréla-
tions avec des parametres physico-chimiques et météorologiques tels que le pH, la turbidité, la
conductivité, I’oxygene dissous et les nutriments (ammonium, nitrate et nitrite) (Mélzer et al.,
2016). Ces approches sont souvent employées pour leur transparence et leur facilité d’interpré-
tation, méme si, dans certains cas, les régressions multiples peuvent présenter une précision de
prédiction limitée, car elles ne peuvent pas prendre en compte des interactions complexes entre
plusieurs facteurs et tendent a se limiter aux relations linéaires ou linéarisables (Nevers and
Whitman, 2005).

Différents modeles statistiques ont été appliqués en corrélant les concentrations bacté-
riennes avec divers parametres de qualité de I’eau afin de prévoir les niveaux de contamination

dans les zones de baignade a la suite du calcul de corrélations linéaires entre les bactéries et
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plusieurs parametres physico-chimiques (Nevers and Whitman, 2005; Milzer et al., 2016). Ces
modeles sont souvent utilisés par les collectivités pour développer des systemes d’alerte précoce
utilisant les parametres physico-chimique et hydrométéorologiques les plus étroitement liés aux

occurrences bactériennes (Milzer et al., 2016; Seis et al., 2018).

10.2. Modeles déterministes

Les modeles hydrodynamiques sont essentiels pour simuler les processus dynamiques de
I’eau, en intégrant divers parametres comme le débit et les interactions biologiques et chimiques.
Ils reposent sur la résolution numérique des équations de conservation de la masse et de la quantité
de mouvement, notamment les équations de Navier-Stokes moyennées de Reynolds, qui décrivent
le mouvement des fluides (Liu, 2018). En fonction du besoin, la modélisation peut étre réalisée
en 1D, 2D ou 3D. Le modele 1D convient aux cours d’eau linéaires, le 2D est adapté aux estuaires
ou rivieres larges, et le 3D est utilisé pour des environnements complexes ou les effets verticaux
sont critiques. Ces modeles permettent aussi de simuler le transport des BIF, considérées comme
traceurs passifs ou en intégrant des parametres de mortalité, sédimentation et prédation (Liu,
2018). En région parisienne (France), plusieurs outils de modélisation déterministes sont en
cours de développement ou validés sur la Seine et la Marne. Ainsi, le modele PROSE, appliqué
ala Seine en 2D, inclut des modules hydrauliques, de transport et biogéochimiques pour suivre la
dynamique des BIF, tout en tenant compte des parametres de dégradation pour mieux représenter
leur comportement dans les écosystemes fluviaux (Hasanyar, 2023). Un modele hydrodynamique
Telemac 3D pour la prédiction a court terme a été développé au bassin de La Villette a Paris,
s’appuyant sur la mesure des BIF en amont du site de baignade et la simulation de leur transport.
Le modele permet I’estimation du temps de transfert des bactéries ainsi que de leur distribution
spatiale (Guillot-Le Goff et al., 2023). Un modele Telemac 2D a été développé dans le cadre de
la démarche d’ouverture de sites de baignade dans la partie aval de la Marne et pour la Seine,

afin de procurer un outil de gestion pour les collectivités (Van et al., 2022)

10.3. Modeles basés sur I’apprentissage

10.3.1. Apprentissage automatique

De nos jours, I’apprentissage automatique, aussi appelé machine learning (ML), est de

plus en plus utilisé, dans une grande diversité d’applications. C’est une discipline donnant aux
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algorithmes la capacité d’apprendre sans qu’ils ne soient explicitement programmés (Géron,
2019). Un systeme d’apprentissage automatique peut s’adapter a de nouvelles données et, bien
stir, a de gros volumes de données. Le machine learning est la science moderne qui va permettre
de découvrir des patterns (motifs et structures) dans des données historiques et d’effectuer des
prédictions en se basant sur des statistiques, des reconnaissances de pattern ou sur les analyses
prédictives (Zhu et al., 2022).

Les outils de modélisation prédictive issus de 1’apprentissage automatique, ont gagné
en popularité dans de nombreux domaines de recherche, y compris celui de la modélisation
hydrologique. Cette popularité peut s’expliquer par leurs qualités de prédiction relativement
performantes (Visser et al., 2022). Des modeles prédictifs sont recommandés pour parvenir
a une gestion active du site de baignade (OMS, 2018; Wuijts et al., 2022a). Plusieurs études
antérieures ont utilis€ des modeles d’apprentissage automatique pour prédire la qualité des
eaux de surface a I’aide des parametres physico-chimiques et hydrométéorologiques comme
variables prédictives (Di et al., 2019; Avila et al., 2018; Milzer et al., 2016; Cyterski et al.,
2022). La modélisation prédictive des concentrations en BIF, comme E. coli, peut constituer un
complément a la surveillance réglementaire de la qualité microbiologique des eaux de surface
(Nevers and Whitman, 2005).

Les principales approches d’apprentissage sont 1’apprentissage non supervisé et 1’ap-
prentissage supervisé. Quand il s’agit d’algorithmes non supervisés, nous parlons souvent d’al-
gorithmes de regroupement, car les données a disposition ne seront pas étiquetées ou labellisées
(un label étant une catégorie ou classe d’appartenance), les catégories (cluster ou classes) ne sont
donc pas connues. Dans ce cas, ’algorithme va déterminer par lui-méme des points similaires
entre les caractéristiques pour pouvoir créer des groupes homogenes (Raul, 2017). Cela pourrait
étre par exemple un regroupement en trois catégories "bonne", "suffisante" ou "mauvaise" afin
de caractériser la qualité de I’eau. Ces modeles comprennent I’analyse en composante principale
(ACP), I’algorithme des k-moyennes (classification k-means), la classification hiérarchique et la
classification probabiliste. Les algorithmes supervisés, quant a eux, utilisent des données label-
lisées car la catégorie (cluster ou classe) est déja connue. De ce fait, cela permet de travailler
alors avec des classes données et des exemples connus pour comprendre les patterns cachés.
Les algorithmes apprendront soit de la classification soit de la régression en tant qu’algorithmes
supervisés (Raul, 2017). Les modeles supervisés comprennent le modele linéaire, les arbres de

décision ou DT, les supports de vecteurs (machines a vecteur de support ou SVM), les réseaux
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de neurones et les méthodes ensemblistes.

Par exemple, les arbres de régression ont été utilis€és pour prédire en temps réel la
concentration en E. coli et donc la qualité microbiologique des sites de baignade dans le Sud
de la Nouvelle-Zélande (Avila et al., 2018). Cette prédiction est basée sur les valeurs passées
de précipitation, le débit et la concentration en E. coli (Avila et al., 2018). D’autres modeles
classiques d’apprentissage automatique, tels que la méthode des k-voisins les plus proches, les
réseaux de neurones ou la machine a vecteur de support, ont également été utilisés pour la
gestion et la prédiction de la qualité de I’eau (Chen et al., 2020; Qiu et al., 2017).

Il existe également I’apprentissage semi-supervisé qui combine ces deux approches, des
algorithmes d’apprentissage non supervisé sont alors utilisés pour générer automatiquement des
étiquettes, qui peuvent étre introduites dans les algorithmes d’apprentissage supervisé. Enfin,
I’apprentissage par renforcement permet un apprentissage d’une succession de taches, combiné
avec un feedback continu sous forme de récompense pour affiner la stratégie employée et ainsi
améliorer la performance du modele. Ces deux dernieres approches sont encore peu utilisées
pour la prédiction de la qualité de I’eau.

Avant d’appliquer I’ apprentissage automatique, il est essentiel de procéder a I’acquisition
et au nettoyage des données et éventuellement leur labellisation (Zhu et al., 2022). La premiere
étape clé dans les applications d’apprentissage automatique est donc d’assurer un nettoyage de
qualité des données. Dans un premier temps, il est important d’explorer la qualité des données
en vérifiant leur exactitude, leur complétude, leur conformité, leur cohérence, leur fiabilité et
leur pertinence. Ensuite, les données sont nettoyées. Il existe deux approches : soit en retirant
les observations avec des valeurs manquantes, soit en remplacant ces données manquantes
par des moyennes, des médianes ou en utilisant des approches probabilistes. Le nettoyage
inclut également la suppression des valeurs extrémes (outliers), qui peuvent résulter d’erreurs
ou d’événements exceptionnels (Gong et al., 2023). Enfin, les données sont prétraitées en les
formatant, en réduisant leur taille par agrégation, en les normalisant ou en créant de nouvelles
variables dérivées des données brutes (discrétisation, indices, rapports) (Zhu et al., 2022; Gong
et al., 2023).

Une fois les données préparées, le jeu de données est divisé en deux parties : une pour
I’entrainement du modele (apprentissage) et 1’autre pour le test et la validation. Les hyperpara-
metres du modele sont ajustés et affinés pendant la phase d’entrainement et la performance du

modele est ensuite évaluée a 1’aide de parametres statistiques, afin de mesurer son efficacité et
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sa capacité a généraliser sur de nouvelles données (Jovanovic et al., 2019). Pour les applications
d’apprentissage automatique, la précision de la prédiction est généralement liée a deux aspects,
a savoir la qualité de I’ensemble de données d’apprentissage et la sélection du modele. Parmi
ces processus, le choix de 1’algorithme est crucial (Zhu et al., 2022). Apreés entrainement et
validation du modele, il faut sélectionner I’ algorithme approprié (Zhu et al., 2022).

Une classe de modeles d’apprentissage automatique, les méthodes ensemblistes, amé-
liore la stabilité et la précision des algorithmes d’apprentissage et représente donc un intérét
certain pour la gestion des eaux de baignade. Ainsi, les foréts d’arbres de décision (Random
Forest ou RF) et le bootstrap aggregating (aussi appelé bagging) ont été utilisés pour le suivi de
la qualité de I’eau de la riviere Talar au nord de I'Iran (Bui et al., 2020). Ce méta-algorithme
de boosting utilise de maniere répétée des sous-modeles développés séquentiellement sur un
échantillon d’entrainement, les poids de chaque observation étant ajustés au fur et a mesure de
leur développement. Ainsi, les régresseurs suivants se concentrent davantage sur les observa-
tions mal ajustées ou mal prédites (Hastie, 2009). Les modeles ensemblistes ont souvent des
performances supérieures aux autres algorithmes pour prédire les concentrations en BIF dans
les rivieres (Weller et al., 2020). Ainsi, les modeles RF sont capables de mieux refléter la com-
plexité et I’hétérogénéité des systemes d’eau douce, car ils peuvent mieux prendre en charge
les parametres colinéaires, les données manquantes et les interactions entre parametres (Weller
et al., 2020).

La précision de prédiction des modeles d’apprentissage automatique dépend également
des parametres utilisés pour construire les modeles (Zhu et al., 2022). De nombreuses variables
peuvent étre utilisées pour prédire les concentrations d’indicateurs fécaux bactériens (Cyterski
et al., 2022). Les variables redondantes réduiront la précision du modele tout en augmentant sa
complexité (Zhu et al., 2022). Cyterski et al. (2022) et Nevers and Whitman (2005) ont identifié
que la pluviométrie était le parametre explicatif le plus influent pour prédire les concentrations
en indicateurs fécaux bactériens. En effet, les analyses indiquaient la présence d’eaux usées dans
la riviere apres de fortes pluies. L'oxygene dissous reflete 1’état de 1’écosysteme aquatique et sa
capacité a soutenir les organismes aquatiques (Zhu et al., 2022). Cyterski et al. (2022) ont aussi
identifié la turbidité comme un parametre important ayant une influence sur les modeles prédictifs
des indicateurs microbiens, car sa fluctuation peut €tre un témoin d’apport de rejets urbains, de
ruissellement et de remise en suspension des sédiments qui mobilisent des réservoirs et sources

de BIF. D’autres parametres de qualité de I’eau, comme la température, le pH ou la concentration
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en nutriments (phosphore et azote) peuvent €tre utilis€s comme prédicteurs dans les modeles
de la prédiction de la qualité de I’eau de surface, car ils sont présents également dans les rejets
d’eaux usées et les rejets de temps de pluie (Zhu et al., 2022). Cependant, en fonction des données
a disposition, certains parametres vont exercer une plus grande influence que d’autres sur les
modeles prédictifs (Cyterski et al., 2022). Une amélioration de la performance des modeles avec
plus de parametres lors de I’entrainement a également été constatée (Chen et al., 2020). Toutefois,
la sélection préalable de parametres pertinents constitue également une stratégie d’amélioration
de la performance des modeles. En effet, les modeles peuvent avoir une faible performance
lorsque les données d’entrainement sont en quantité insuffisante ou de mauvaise qualité. Une
des stratégies pour y pallier est de réduire le besoin en données du modele en sélectionnant
les prédicteurs les plus pertinents (Nafsin and Li, 2023; Wu et al., 2024). Une autre stratégie
est d’augmenter la quantité et la diversité des données par une approche d’apprentissage par
transfert a partir de bases de données provenant d’autres rivieres de caractéristiques similaires

(Wu et al., 2024).

10.3.2. Apprentissage par transfert

La plupart des données environnementales proviennent d’une minorité de sites bien
surveillés (Willard et al., 2021). Dans des systtmes complexes et dynamiques comme une
riviere, un corpus de données encore relativement modeste ne permet pas de rendre compte
de toute la variabilité possible des parametres mesurés. Les modeles de machine learning ne
parviennent donc pas toujours a effectuer des prédictions fiables dans toutes les situations
(Pachepsky et al., 2018; Chen et al., 2020). Il existe des solutions pour contourner ce probleéme
a I’aide d’outils d’apprentissage automatique comme 1’apprentissage par transfert. Le transfert
des connaissances des sites surveillés vers les sites non surveillés constitue un défi, et les
méthodes avancées d’apprentissage par transfert sont encore peu utilisées pour prédire la qualité
microbiologique de I’eau (Willard et al., 2021; Wu et al., 2024).

L’ apprentissage par transfert (Transfer Learning, TL) est un sous-ensemble de 1’appren-
tissage automatique. Comme son nom I’indique, il regroupe 1I’ensemble des méthodes permettant
de transférer des connaissances acquises a partir de la résolution d’un probleme, pour en traiter
un autre. Il est basé sur la création de modeles d’apprentissage sur des données et ces modeles

peuvent étre réutilisés sur des jeux de données plus petits (Willard et al., 2021).
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FIGURE 1.2 — Le processus de fonctionnement de 1’apprentissage par transfert pour un modele donné (Peng et al.,
2022).

Le modele proposé par Peng et al. (2022) est composé de deux parties principales (Figure
1.2):

- Une méthode de prédiction est réalisée a partir d’un jeu de données composé de plusieurs
stations de mesures afin d’obtenir le modele source (noté transformer).

- Un transfert des connaissances (modele de prédiction) est réalisé vers le nouveau jeu
de données cible.

De plus, I’apprentissage par transfert est avantageux dans le sens ol la création d’un
modele utilise beaucoup de ressources (Uddin et al., 2019; Shahid Igbal et al., 2018). En
utilisant des modeles pré-entrainés selon le contexte, nous pouvons pallier ce manque de données
et réduire les ressources utilisées (Dipanjan, 2018). Les informations obtenues sur la dynamique
d’un lac pourraient par exemple €tre transférées a d’autres lacs similaires (Willard et al., 2021).
Dans le cas des écosystemes ayant des caractéristiques physiques et une dynamique de la qualité
de I’eau similaires ou méme treés proches, cela pourrait permettre le transfert stratégique de
modeles spécifiques a un site bien surveillé afin de faire des prédictions dans des systeémes
moins surveillés (Willard et al., 2021; Naloufi et al., 2021).

Des modeles de prédiction de la qualité de la riviere Haihe (Chine) ont été testés (Peng
et al., 2022). L’étude a permis d’identifier de meilleurs résultats en utilisant 1’approche d’ap-
prentissage par transfert a partir des données de 10 stations sur la riviere Huaihe (Chine) pour

le pH et 'oxygene dissous. Par contre, pour 1’azote ammoniacal, les modeles pré-entrainés par
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apprentissage par transfert étaient moins performants que ceux entrainés sans apprentissage par
transfert. Ce phénomene s’appelle 1’apprentissage négatif. La perte de connaissance suite a un
apprentissage par transfert peut étre due a une similarité limitée entre les sites des deux bases
de données utilisées. Le transfert négatif est encore peu considéré et de ce fait la connaissance

sur ce type de résultat est encore manquante (Wu et al., 2024).

10.3.3. Apprentissage fédéré

L’ apprentissage fédéré (Federate Learning, FL) est une autre application, analogue a
I’apprentissage par transfert. Il s’agit d’entrainer plusieurs modeles de différentes entités loca-
lement et de créer un modele global basé sur les mises a jour des modeles locaux (Lo et al.,
2021). L’ apprentissage fédéré permet a plusieurs appareils de former en collaboration un modele
partagé tout en conservant les données locales a chaque appareil (Vellingiri et al., 2023). Ainsi,
I’apprentissage fédéré va utiliser les parametres des différents modeles locaux pour créer un
modele centralisé qu’il distribuera a chacune des entités, sans diffuser les données sources (Lo
et al., 2021). Avec cette approche, une précision de prédiction de 87% pour 1’évaluation de
la qualité d’une riviere au sud de I’Inde a été obtenue (Vellingiri et al., 2023). Dahane et al.
(2024) ont également utilisé 1’apprentissage fédéré pour rendre les données plus privées dans le
contexte de I’analyse de la qualité de 1’eau pour la baignade en riviere.

L’approche d’apprentissage fédéré peut également étre utilisée dans d’autres systemes
innovants de gestion de la qualité de I’eau. Park et al. (2021) présentent un réseau sophistiqué
d’apprentissage fédéré intégrant des capteurs. Ce réseau exploite des données de qualité de 1’eau
en temps réel, géographiquement distribuées, afin d’améliorer la précision des prédictions et de

proposer une approche proactive.

10.3.4. Réseau de neurones

La dynamique des BIF dans les habitats aquatiques est caus€e par un certain nombre
de facteurs environnementaux qui peuvent avoir une influence sur la distribution et le devenir
des microorganismes (Devane et al., 2018). De ce fait, il serait intéressant de disposer d’un
modele prenant en compte les conditions des jours précédents. Nous pourrions ainsi utiliser
des réseaux de neurones qui prennent en compte les séries temporelles (Liu et al., 2019). Les
réseaux de neurones utilisent une cascade de couches multiples d’unités de traitement non

linéaires pour I’extraction et la transformation des caractéristiques, ce qui fait qu’ils sont adaptés
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al’analyse et a I’extraction de connaissances utiles a partir de grandes quantités de données et de
données collectées a partir de différentes sources (Shinde and Shah, 2018). Parmi les modeles de
réseaux de neurones, il y a les Long Short Term Memory (LSTM) présentés par Hochreiter and
Schmidhuber (1997). Ce sont des modeles dits récurrents qui utilisent des données qui doivent
étre sous la forme de séries temporelles. Les LSTM ont la capacité d’apprendre les dépendances
a long terme. Avec cette approche, I’évolution de la pollution pourrait €tre prise en compte lors
de la modélisation (Shinde and Shah, 2018). Les chercheurs ont vérifié que les LSTM peuvent
traiter des séries temporelles de données sur la qualité de 1’eau qui sont fluctuantes et non
saisonnieres (Zhu et al., 2022).

Les résultats de I’étude de Liu et al. (2019) révelent le potentiel de 1’application des
LSTM et de I’apprentissage profond pour prédire la qualité de 1’eau. Les valeurs prédites par
leur modele et les valeurs réelles étaient en accord et révélaient avec précision la tendance
future de la qualité de I’eau (Liu et al., 2019). Les modeles de réseau de neurones vont se
baser sur les données pour créer les modeles avec une extraction des caractéristiques de ces
données et apprendre a partir de ces données (Shinde and Shah, 2018). Par exemple, la précision
d’un modele LSTM pour la prédiction des concentrations en oxygene dissous mesurées par une
station de surveillance automatique était meilleure que celle du SVR (support vector regression)
qui, a long terme, devenait inexact avec un ensemble de données d’apprentissage relativement
petit (Liu et al., 2019). Au niveau de I’étude de Milzer et al. (2016), les réseaux de neurones
ont donné de bons résultats pour prédire les concentrations en E. coli pour la plupart des sites
le long de la riviere Ruhr (Allemagne) a I’exception d’une station ol la régression linéaire et
la régression multiple donnaient de meilleurs résultats. Ce résultat montre que les réseaux de

neurones sont suffisamment versatiles pour s’adapter a des sites aux caractéristiques variées.

11. Optimisation de la collecte de données

Cependant, en raison de la petite taille de la plupart des jeux de données disponibles pour
le suivi de la qualité des eaux de surface, la performance des modeles peut étre faible (Chen
et al., 2020; Ghahramani, 2015). En effet, ’entrainement et le test des modeles prédictifs des
concentrations en indicateurs de contamination fécale nécessitent des données de haute précision
qui sont difficiles et coliteuses a collecter (Jovanovic etal., 2019). Les données physico-chimiques
et hydrométéorologiques sont souvent utilisées comme données d’entrée dans les modeles de

prédiction de la concentration des BIF, car la mesure en temps réel de ces parametres fournit
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des données de haute qualité a faible colit (Nnane et al., 2011; Bui et al., 2020; Banda and
Kumarasamy, 2020). Toutefois, il reste nécessaire d’entrainer et de valider le modele avec des
données de concentrations en BIF, données qui sont acquises au mieux une fois par jour et plus
généralement une fois par semaine. La détermination de la taille d’échantillonnage minimale et
de la stratégie d’échantillonnage appropriée requises pour la construction, I’entrainement et le
test des modeles est donc cruciale (OMS, 2018).

Plusieurs stratégies visant a améliorer 1’ensemble des données d’entrée des modeles
d’apprentissage automatique existent, cependant leur utilité pour optimiser 1’acquisition de
données pour la prédiction de la qualité de I’eau doit encore €tre évaluée. Premierement, les
observations les plus pertinentes pendant le processus d’apprentissage des modeles pourraient
étre identifiées afin de maximiser le gain d’information ou bien par I’augmentation des données
(Qian et al., 2020). Ce processus peut étre effectué de différentes manieres, notamment pour les
mesures avec des données manquantes, en utilisant des moyennes ou des médianes, ou en utilisant
une combinaison de méthodes d’apprentissage automatique et de complétion matricielle pour
compléter les données manquantes (Zhu et al., 2022). Deuxieémement, en comblant les lacunes du
jeu d’entrainement avec des données supplémentaires via des méthodes comme 1’ apprentissage
actif (Bouneffouf, 2016) ou I’apprentissage par transfert (Wu et al., 2024). Troisiemement, en
déployant un réseau de capteurs a faible codt sur le site de baignade, cela permettrait de fournir
suffisamment de données d’entrée pour alimenter les modeles d’apprentissage automatique
(KnowFLow, 2021).

Afin de fournir une résolution spatiale et temporelle suffisante et de réduire le cofit
du suivi, une surveillance avec des capteurs in sifu combinés a 1’apprentissage automatique
pourrait aider a optimiser 1’effort d’échantillonnage (Carvalho et al., 2019; Whelan et al., 2020).
Par exemple, dans le cas de la surveillance d’un site de baignade, la mise en place d’un réseau de
capteurs et d’appareils de mesure enzymatique en temps quasi réel fournirait suffisamment de
données a la fois pour les BIF (mesure enzymatique) et pour les prédicteurs (capteurs physico-
chimiques) pour modéliser la qualité microbiologique de I’eau et améliorerait également la

quantité et la qualité des données (Pule et al., 2017).
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11.1. Apprentissage actif

La collecte de données sur la qualité de 1’eau peut étre coliteuse en termes de temps,
d’argent et de ressources. En effet, le colit important en main-d’ceuvre humaine et en matériel
pour collecter les données représente un frein (Jia et al., 2021). La faiblesse dans le jeu d’entrai-
nement pourrait étre déterminée afin d’identifier les classes de données minoritaires dans le jeu
de données pour chaque prédicteur. A partir de cette information, trois stratégies sont possibles
pour réduire le déséquilibre dans le jeu de données : 1) soit d’utiliser un algorithme qui génere
des données synthétiques pour les classes minoritaires, ii) soit d’utiliser un transfert a partir d’un
jeu de données d’un site similaire pour amender les classes minoritaires, iii) soit d’optimiser
I’échantillonnage sur le terrain pour renforcer ces classes minoritaires (Krishnan et al., 2024; Wu
et al., 2024). Ainsi, les données supplémentaires nécessaires pour améliorer les performances
du modele pourraient étre ciblées précisément (Bouneffouf, 2016). L’ apprentissage actif est une
méthode qui offre une certaine flexibilité pour identifier les instances qui doivent étre ajoutées
au jeu d’entrainement. L’objectif est d’améliorer I’efficacité de 1’apprentissage en utilisant de
maniere sélective les données les plus informatives pour I’entrainement du modele (Cacciarelli

etal., 2022).

}J | Query for labels |
Get initial labelled }4 Select informative

data set samples

Training data Train classification

model
Is the
Test data model Deploy model
accurate?

FIGURE 1.3 — Processus d’apprentissage actif (Russo et al., 2020).

Le but est de sélectionner activement les données de maniere a apprendre une bonne
hypothese avec moins d’entrainement. La stratégie populaire consiste a utiliser I’échantillonnage

d’incertitude pour identifier le point ou la prédiction est incertaine dans le modele (Bouneffouf,
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2016). En effet, les efforts d’échantillonnage peuvent €tre considérablement réduits en utilisant
I’approche d’échantillonnage d’incertitude (Russo et al., 2020). Une fois les données ajoutées,
le jeu de données est actualisé et utilisé pour réentrainer le modele (Figure 1.3). Cette opération
peut étre répétée, en fonction des propriétés des données, jusqu’a ce que le modele atteigne des
performances satisfaisantes (Russo et al., 2020).

En optimisant les ressources de collecte de données grace a I’identification des informa-
tions les plus pertinentes, il serait possible d’améliorer la précision du modele. Cela permettrait
de réduire la quantité de données a collecter tout en augmentant la fiabilité des prédictions (Cac-
ciarelli et al., 2022). Dans le domaine de la surveillance environnementale, les applications de
détection d’anomalies permettront de développer les outils de gestion de la qualité (Russo et al.,
2020). Chen et al. (2020) ont montré que de meilleures performances pour la prédiction de la
qualité de I’eau pouvaient €tre obtenues apres avoir augmenté le nombre de parametres d’entrée
pour la modélisation et les données d’entrainement pour un ensemble de modeles d’apprentis-
sage automatique testés. Avec une augmentation des données d’entrainement de 1% a 10%, une
amélioration des performances de prédiction des modeles a été constatée jusqu’a 22,76%. Ce-
pendant, cette amélioration était limitée lorsqu’une augmentation aléatoire des données jusqu’a
100% était utilisée (Chen et al., 2020). Cela illustre bien I’importance d’augmenter les données
de maniere efficace en sélectionnant les données a ajouter. Identifier la faiblesse de performance
du modele pourrait de ce fait étre envisagé pour mettre en place un systeme d’alerte qui pointe
sur les parametres et sur les données nécessaires pour renforcer la prédiction du modele (Qian

et al., 2020; Jiang et al., 2020).

11.2. Collecte automatisée de données

Du contexte d’apprentissage actif résulte le probleme de la collecte des données car les
décisions d’échantillonnage doivent étre prises immédiatement apres 1’observation du déséqui-
libre dans le jeu de données qui génere une performance médiocre du modele. Une méthode de
suivi de la qualité de I’eau consisterait a déployer des systemes de mesures a haut débit de la
concentration en E. coli. Les systémes automatisés ou semi-automatisés permettant I’ estimation
des BIF en temps quasi réel sont relativement chers. Ils sont basés sur de la mesure enzymatique
(systemes automatisés ColiMinder (Vienna Water Monitoring, VWM) et BACTcontrol (Bionef)

par exemple (Cazals et al., 2020)), sur de la culture bactérienne avec une détection entre 2 et 12 h
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(par exemple le systtme ALERT (Fluidion) (Angelescu et al., 2019)) ou la mesure de la matiere
organique urbaine par spectre d’émission-excitation (sondes Proteus-Instruments, Fluocopee
(STIAAP) ou BacTrack (NKE) (Bouleau et al., 2024)) qui peuvent étre utilisées pour la gestion
quotidienne de la qualité de 1’eau en riviere. De plus, pour 1’acquisition des données des pré-
dicteurs physico-chimiques, des capteurs a haute résolution peuvent €tre utilisés et positionnés
a des emplacements stratégiques en amont et au niveau du site de baignade. Cependant, un de
ces dispositifs peut cofiter plusieurs dizaines de milliers d’euros, ce qui rend leur acquisition
difficile pour les petites administrations (Tatari et al., 2016). En outre, méme des villes plus
riches comme Paris limitent la quantité d’équipements a utiliser et leur couverture géographique
en raison des colits élevés de maintenance de ces dispositifs et des analyses de laboratoire asso-
ciées. Ces problemes peuvent réduire considérablement le nombre de données disponibles pour
la modélisation. En raison des changements dynamiques complexes des systemes fluviaux au fil
du temps, le moyen le plus efficace de gérer les rivieres est de surveiller la qualité de I’eau en
temps réel ou de faire des prédictions basées sur ces données en temps réel (Zhu et al., 2022; Jia
et al., 2021).

Une fagon d’améliorer la quantité de données pour I’entrainement consiste a déployer
sur le site de baignade et en amont, un grand nombre de capteurs a faible colit qui viennent
compléter les capteurs physico-chimiques a haute résolution en offrant une couverture et un
maillage spatial accrus. La faiblesse de la qualité de la donnée acquise par ces capteurs bas-colt
peut étre corrigée par la haute résolution spatiale et temporelle en tirant parti d’un déploiement
d’un réseau dense de capteurs (Wang et al., 2019a). Chaque capteur individuel peut présenter
une marge d’erreur légerement supérieure a celle des équipements coliteux de haute précision,
mais la multitude de capteurs permet de construire un réseau dense qui, en moyenne, est
capable de fournir suffisamment d’informations pour les modeles d’apprentissage automatique
(KnowFLow, 2021). Cette réduction de la qualité peut également étre atténuée par 1’association
avec des dispositifs de haute précision, qui aideront a la calibration des capteurs a bas cofit, afin de
fournir des résultats précis (Abegaz et al., 2018). Différentes sondes pour diftérents parametres
peuvent €tre associées et utilisées pour former des systeémes de capteurs multiparamétriques
(KnowFLow, 2021; Wang et al., 2019a). De nombreuses initiatives ont vu le jour pour mettre en
place un réseau de capteurs a faible colit (Hong et al., 2021; Trevathan et al., 2021; Wong et al.,
2021; de Camargo et al., 2023). Cheniti et al. (2023) ont testé leur systeme de surveillance de la

qualité de I’eau basé sur des capteurs Arduino a court terme pendant 24 h dans I’eau du robinet.
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D’autres études Gowri et al. (2023); Sekhar et al. (2023); Bogdan et al. (2023), ont également
développé des systemes de surveillance de la qualité de 1’eau pour la baignade, avec une mesure
des parametres physico-chimiques.

Pour I’ensemble des capteurs se pose ensuite le probleme de leur étalonnage, leur entretien
et de la stratégie de déploiement. Il n’existe pas de lignes directrices sur les meilleures pratiques
pour I’étalonnage et la validation des réseaux de capteurs a faible cofit. De nombreuses initiatives
ont vu le jour pour mettre en place un réseau de capteurs en temps réel a faible cofit, mais peu
d’entre elles se concentrent sur la fiabilité et la viabilité d’une utilisation a long terme (Hong
etal., 2021). Ce manque de validation rend les résultats obtenus moins fiables (de Camargo et al.,
2023). Un prototype de surveillance de la qualité de I’eau basé sur la technologie Arduino a été
développé par Hong et al. (2021) composé de 4 sondes (pH, température, turbidité et solides
dissous totaux (TDS)) dans un petit ruisseau artificiel de I’ Université Brunei Darussalam pendant
une courte durée de 20 jours. Il a été constaté que le systeme fonctionnait de maniere fiable,
mais il était dépendant de I’intervention humaine. Wong et al. (2021) ont développé un systeme
de surveillance de la qualité de 1’eau qui mesure la turbidité et les niveaux d’eau. Cependant,
des erreurs causées par le dépot de débris et I’encrassement biologique sur les capteurs ont été
identifiées. Trevathan et al. (2021) ont souligné également la nécessité d’un entretien régulier et
d’un mécanisme de nettoyage des capteurs. Comme le montrent ces études, pour mettre en ceuvre
les systemes de surveillance de la qualité de 1’eau, des tests sont nécessaires avant installation
pour déterminer la validité des données afin de permettre un bon suivi de la qualité.

Enfin, un tel systeme pourrait bénéficier d’une observation en temps réel pour faciliter
I’utilisation par le grand public et les administrations. Cela pose le défi de déterminer quand et ou
nous devrions déployer des instruments de mesure (par exemple, des capteurs in situ) pour col-
lecter des données de maniere efficace (Jia et al., 2021). Pour améliorer la collecte de données, il
ne suffit pas d’avoir plus de capteurs mais une étude doit étre menée concernant leur déploiement
pour la construction d’un réseau adapté (Senouci and Mellouk, 2016). Actuellement, certains
travaux, comme Ciaponi et al. (2018); Ramesh et al. (2017), ont abordé cette question dans le
contexte de la surveillance de la qualité de 1’eau et ont proposé différentes méthodologies pour
le placement des capteurs. La décision de placement dépendra de la technologie de transmission
et de la durée de vie de la batterie des appareils. Il est donc conseillé d’utiliser des réseaux
étendus de faible puissance (LPWAN). Les technologies de communication comme LoRaWAN

ou Sigfox, couramment utilisées dans le contexte de 1’IdO, sont capables de diffuser les données
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en temps réel avec une transmission a faible colit énergétique et une longue portée (Jiang et al.,
2020). La perte de données due a la distance de communication limitée entre le capteur et la pas-
serelle est également un probleme crucial (Huan et al., 2020). En outre, les réseaux de capteurs
a faible coit publiés sont généralement testés sur un type limité de qualité de 1’eau, ce qui fait
que la gamme de performances et les limites de détection des capteurs sont rarement vérifiées.
Dans une étude récente, de Camargo et al. (2023) ont souligné que des tests supplémentaires
sont nécessaires pour déterminer la validité des données et 1’opérabilité des systemes recom-
mandés afin de mettre en ceuvre sur le terrain une surveillance continue et fiable de la qualité
de I’eau. Occasionnellement, I’ utilisation de la technologie 5G peut également étre intéressante
si la quantité de données est importante (Rahimi et al., 2018). Bien que les passerelles LoRa
soient économes en énergie pour des transmissions limitées, leur capacité de transmission des
données est restreinte. A 1’inverse, la 5G permet des échanges de données plus importants, mais

elle consomme davantage d’énergie.
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FIGURE 1.4 — Cadre basé sur I’IdO pour la surveillance de la qualité de 1’eau (Rahu et al., 2024).

Les technologies d’IdO peuvent répondre aux besoins de surveillance de la qualité de
I’eau en temps réel et a grande échelle (Figure 1.4). Les méthodes de mesure en temps réel
utilisent les informations contextuelles spatiales et temporelles pour identifier des échantillons
représentatifs dans un cadre de renforcement de la base de données (Jia et al., 2021). Du fait
d’une détection en temps réel, ces outils peuvent également €tre utilisés pour suivre spatio-
temporellement la migration des contaminants qui sont difficiles a détecter a I’aide de méthodes
conventionnelles avec des mesures ponctuelles, en fonction de leurs limites de détection (Zhu
et al., 2022). Un systeme de surveillance de la qualité de I’eau basé sur la technologie 1dO

mesurant la turbidité a ét€ réalisé par Huan et al. (2020). Cependant, a mesure que la distance
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de communication entre le capteur et la passerelle augmentait, le systeme subissait des pertes
de paquets de données.

Couplés avec les modeles d’apprentissage automatique ces systemes de mesure permet-
traient de construire un dispositif de suivi en temps réel de la qualité de I’eau et ainsi minimiser
les risques sanitaires (Salam, 2020). En complément, utiliser ces données pour faire la prédiction
en temps réel serait un atout considérable pour une gestion continue de la qualité de 1’eau (Zhu
etal., 2022). La mise en place de réseaux de capteurs pour suivre la qualité des eaux de baignade
urbaines peut également aider a répondre a d’autres besoins en matiere de qualité de 1’eau, tels
que les ressources en eau potable, la connaissance de 1’état écologique, permettant une gestion
intégrée des masses d’eau et de leurs usages multiples (Wuijts et al., 2022b). Les parametres
utilisés pour le suivi de la qualité microbiologique de I’eau, tels que la concentration en BIF ou
en pathogenes, ne peuvent pas étre mesurés directement par des capteurs in situ, car ces derniers
ne sont pas optiquement actifs ou ne disposent pas de données hyperspectrales a haute résolution
spatiale. Cependant, ces parametres peuvent étre estimés indirectement a I’aide d’autres données
plus facilement mesurables (comme leur enzymes, la fluorescence des substances protéiniques,
la température de 1’eau, les nutriments, la turbidité, la conductivité, I’intensité des événements
pluvieux et d’autres paramétres physico-chimiques) (Zhu et al., 2022; Cha et al., 2016; Passerat
et al., 2011; Dueker et al., 2017; Bouleau et al., 2024). L’apprentissage automatique basé sur
I’expérience permettait une optimisation sophistiquée des prédictions (Zhu et al., 2022). Le
systeme d’alerte sur la donnée pourrait €tre alimenté par un réseau de capteurs permettant un
suivi en temps réel des différents parametres de I’eau (Luccio et al., 2020). Cela permettrait de
fournir des recommandations au gestionnaire en indiquant de maniere efficace quand I’échan-
tillonnage manuel est nécessaire. En combinant la modélisation avec une collecte de données
via des capteurs de surveillance en temps réel, cela offre une possibilité prometteuse d’une
utilisation opérationnelle de capteurs pour la surveillance de la qualité de 1’eau et la prise de

décision (Sagan et al., 2020).
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Chapitre 2 : Optimisation de la collecte de
données pour la modélisation de la qualité

microbiologique des eaux de surface

1. Introduction

Les épisodes de canicule et I’essor des activités récréatives aquatiques dans les grandes
villes ont renforcé I'intérét pour ’ouverture ou la réouverture de zones de baignade dans des
rivieres urbaines dans les mégapoles (e.g. Paris, Berlin, Londres...). Cependant, cette tendance
expose les baigneurs a des risques sanitaires li€s aux pathogenes présents dans les eaux de
surface, notamment en raison des rejets d’eaux usées, du ruissellement pluvial et des excréments
d’animaux (Soller et al., 2010; Passerat et al., 2011; Ahmed et al., 2019b). Afin de minimiser
ces risques, il est essentiel de surveiller la qualité microbiologique de 1’eau, principalement a
travers la mesure d’indicateurs fécaux tels que E. coli et les entérocoques intestinaux (OMS,
2018; Commission européenne, 2006). En Europe, cette surveillance repose sur des analyses en
laboratoire, mais leur fréquence et leur cott limitent I’efficacité de la gestion en temps réel des
sites de baignade (Milzer et al., 2016; Jovanovic et al., 2019).

Dans ce contexte, les techniques de modélisation, et en particulier les outils d’apprentis-
sage automatique, apparaissent comme une solution prometteuse pour prédire la qualité de I’eau
et anticiper les épisodes de pollution de courte durée (Ghahramani, 2015; Avila et al., 2018;
Chen et al., 2020). Ces modeles permettent d’analyser de grandes quantités de données issues
de parametres physico-chimiques, météorologiques et microbiologiques. Toutefois, leur perfor-
mance est fortement influencée par la taille et la précision des bases de données disponibles. Les
jeux de données limités, souvent dus a des échantillonnages peu fréquents et/ou a des données
coliteuses a acquérir, réduisent la capacité des modeles a fournir des prédictions fiables (Banda
and Kumarasamy, 2020; Ghahramani, 2015). Dans ce chapitre, le premier et le deuxieme article
explorent les approches d’apprentissage automatique pour prédire la qualité microbiologique

des eaux de surface en Seine et en Marne, en optimisant I’effort d’échantillonnage. Ces études
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mettent en lumiere différentes méthodes de machine learning, afin d’identifier celles qui offrent
les meilleures performances dans la prédiction des contaminations microbiennes des eaux de
surface, en mettant 1’accent sur I’optimisation de I’effort d’échantillonnage et la précision des
prévisions. Ce type d’approche est de plus en plus pertinent face a la complexité croissante des
sources de pollution, tant naturelles qu’anthropiques. L’ apprentissage actif permet d’identifier
les données les plus informatives a ajouter au jeu d’entrainement, en se concentrant sur les
zones d’incertitude du modele (Bouneffouf, 2016). Cette approche permet d’apprendre plus
efficacement avec moins de données, en maximisant la pertinence de chaque échantillon collecté.

Pour optimiser la collecte de données et améliorer les performances des modeles, plu-
sieurs stratégies peuvent €tre mises en place. En parallele de apprentissage actif, le déploiement
de réseaux de capteurs a faible cofit peut également renforcer la densité des données disponibles,
méme si chaque capteur présente une marge d’erreur plus élevée que les équipements de labo-
ratoire (KnowFLow, 2021; Wang et al., 2019a). Le troisieme article de ce chapitre explore la
stabilité a long terme des systemes basés sur 1’IdO pour la surveillance continue des parametres
physico-chimiques de I’eau. Il met en avant les avantages d’un réseau de capteurs a faible colt
pour assurer une couverture spatiale et temporelle accrue. Toutefois, il souligne également les
défis liés a la fiabilité des données, notamment en raison de la dérive des capteurs et des besoins
de maintenance régulicre.

L’intégration de I’apprentissage actif et de réseaux de capteurs dans un cadre de modé-
lisation permettra non seulement d’optimiser la collecte de données, mais aussi d’améliorer la
précision des modeles de prédiction microbiologique. Ces outils constituent un atout précieux
pour les gestionnaires des sites de baignade urbains, en leur offrant des moyens plus efficaces
de surveiller et d’anticiper la qualité de I’eau, notamment dans des rivieres comme la Seine et
la Marne, ou des projets ambitieux de réouverture de zones de baignade sont en cours (Noury
et al., 2018).

En combinant ces différentes perspectives, ce chapitre vise a illustrer les avancées tech-
nologiques récentes dans la surveillance de la qualité de I’eau. Cela offre une vision globale des
solutions pratiques et accessibles pour surmonter les défis complexes de la gestion des ressources

hydriques dans les environnements urbains.
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2. Evaluating the Performance of Machine Learning Ap-
proaches to Predict the Microbial Quality of Surface Wa-
ters and to Optimize the Sampling Effort
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Abstract : Exposure to contaminated water during aquatic recreational activities can lead
to gastrointestinal diseases. In order to decrease the exposure risk, the fecal indicator bacteria
Escherichia coli is routinely monitored, which is time-consuming, labor-intensive and costly. To
assist the stakeholders in the daily management of bathing sites, models have been developed to
predict the microbiological quality. However model performances are highly dependant on the
quality of the input data which are usually scarce. In our study, we proposed a conceptual frame-

work for optimizing the selection of the most adapted model, and to enrich the training dataset.
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This frameword was successfully applied to the prediction of Escherichia coli concentrations in
the Marne River (Paris Area, France). We compared the performance of six machine-learning
(ML) based models : K-nearest neighbors, Decision Tree, Support Vector Machines, Bagging,
Random Forest and Adaptive boosting. Based on several statistical metrics, the Random Forest
model presented the best accuracy compared to the other models. However, 53.2+3.5% of the
predicted E. coli densities were inaccurately estimated according to the mean absolute percen-
tage error (MAPE). Four parameters (temperature, conductivity, 24 h cumulative rainfall of the
previous day the sampling and the river flow) were identified as key variables to be monitored
for optimization of the ML model. The set of values to be optimized will feed an alert system
for monitoring the microbiological quality of the water through combined strategy of in situ
manual sampling and the deployment of a network of sensors. Based on these results we propose
a guideline for ML model selection and sampling optimization.

Keywords : Water quality prediction ; Machine learning ; Escherichia coli concentration ;

Optimized sampling ; River monitoring

2.1. Introduction

Worldwide the heat wave episodes have recently intensified the development of aquatic
recreational activities in megapoles, increasing the interactions between citizens and freshwater
in urban context (Jang, 2016). Indeed, many cities such as Paris, London or Berlin promote
the opening of bathing areas and organize open water swimming competitions in their rivers.
However, the development of these activities increases the risk of exposure of bathers to water-
borne pathogens, which could result in gastrointestinal diseases, eye infections or skin irritations
(Davies-Colley et al., 2018; Soller et al., 2010; Mallin et al., 2000).

In highly urbanized areas, the microbiological quality of surface waters is strongly
degraded by different diffuse and point sources of contamination that may bring high pathogen
flow into the rivers (Passerat et al., 2011; Dueker et al., 2017; Droppo et al., 2009; Garcia-Armisen
and Servais, 2009). Fecal contaminations due to sewer discharges, animal feces and rain runoff
are among the main factors impacting the quality of surface waters (Ahmed et al., 2019b). As the
climate change is expected to modify precipitation patterns, with higher frequency of extreme
events, these new conditions should negatively impact the water quality (Whitehead et al., 2009).

Currently, the water quality is mainly assessed using a collection of water samples for biological

48



Chapitre 2

and chemical analysis in the laboratory and/or highly accurate sensors at fixed position. The
regulatory monitoring of the bathing waters is based on the enumeration of culturable fecal
indicator bacteria, Escherichia coli and intestinal enterococci (e.g. European Bathing directive
2006/7/EC). Such surveys are costly, time-consuming and labor-intensive, as a consequence
weekly or montly sampling strategies are routinely implemented with additional event-based
sampling (WHO, 2018; Weiskerger and Phanikumar, 2020).

For the daily management of urban bathing sites, models could also be used instead of
collecting additional samples to check the microbial quality of the water after each short-term
pollution event (WHO, 2018). However building, training and validation of predictive models
require high accuracy data that are difficult and expensive to collect (Jovanovic et al., 2019).
Environmental stressors such as physico-chemical, hydrological and meteorological variables
are often used as input data in models to predict the concentration of fecal indicator bacteria
since real-time measurement of these parameters provides cost effective and high quality data
(Nnane et al., 2011; Bui et al., 2020; Banda and Kumarasamy, 2020). Among the different
predictive models, machine-learning tools have been proved to predict surface water quality in
rivers with high accuracy in different situations, including traditional machine-learning models
or ensemblist methods (Ghahramani, 2015; Milzer et al., 2016; Qiu et al., 2017). However due
to the small size of most stakeholder datasets, the performance of the model can be low (Chen
et al., 2020; Ghahramani, 2015). The determination of the minimum sampling size and the
appropriate sampling strategy required for building, training and validation of models is thus
crucial (WHO, 2018).

Several strategies to improve the input dataset of machine learning models exist, however
their usefulness for rationalizing the data acquisition for water quality prediction still needs to
be evaluated. First, the most relevant observations during the learning process of the models
could be identified in order to maximize the information gain (Qian et al., 2020). Second, the
weakness in the training dataset could be determined in order to identify which and how much
additional data are needed to improve the model performance. For instance, active learning
is a method that gives flexibility to identify which instances need to be added to the training
set (Zhu et al., 2017). Another popular strategy is to use uncertainty sampling, to identify the
point where the prediction is uncertain in the model (Bouneffouf, 2016). Third, another way to
enhance the amount of training data is to deploy on site a large number of low cost sensors.

Each individual sensor may present a slightly greater error margin than the costly high precision
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equipment, however the multitude of sensors allows to build a dense network which in average is
capable of providing enough information for the machine learning models (KnowFLow, 2021).
However, enrichment of training datasets with high quality data of extreme events is particularly
important in the context of climate change with the expected rise of temperature and increase
in the frequency and intensity of storm events (Weiskerger and Phanikumar, 2020). Therefore,
the objective of this study is to explore these three strategies to improve the input datasets
for training and testing machine learning models, particularly study the relevance of the active
learning strategy. The ultimate goal is to provide a conceptual framework and an operating mode
to assist the stakeholders in the daily management of the bathing sites. The framework thus
includes 1) a guideline for selecting from a toolbox of six machine-learning models, the one
most adapted to their bathing site context and ii) a strategy to improve the training and testing of
their model via the sub-optimization of the sampling strategies. The Marne River (Paris Area,
France) was considered as a use case. Indeed, several municipalities wish to open bathing sites
on the border of the Marne river by 2022. Environmental stressor dataset used to predict E. coli
concentrations were acquired from the Syndicat Marne Vive.

Using this database, we tested the following strategy :

- 1) We propose to compare the performance of six machine-learning models, including
three traditional models and three ensemblist models, to predict the concentrations of the fecal
indicator bacteria Escherichia coli. To train and test the models, meteorological data and river
flow data should be aggregated with physico-chemical data.

-2) For the chosen model, we propose to set up an alert system on the performance of
the model in order to optimize the data collection. This alert should consist in identifying under
which conditions the model fails to make the prediction and thus alerting the managers to carry
out on site analysis in order to enrich the database.

- 3) The usefulness of a network of low cost sensors for sampling optimization as a

complementary strategy to improve the dataset is discussed.
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2.2. Materials and methods

2.2.1. Study site and water quality data collection

N
A
Paris
PL14
# )
‘. ‘ SMV7 SAVE
, My8 Champigny-sur-Mame
SMv15, SMV14 — SN
' i 2
W nais32 Saint-Maur-des-Fossés
i ) SMV1Q
* Rain §auges CréteﬁM 2 SMV11
T

FIGURE 2.1 — Marne River water quality monitoring stations. The light grey stars indicate the SMV sampling
stations and the dark grey stars indicate the location of the rain gauges used.

From mid-June to mid-September for 5 years (2015, 2017-2020), samplings were carried
out weekly or bi-weekly by the Syndicat Marne Vive (SMV) on 18 stations (SMVO0 to SMV17)
in the lower Marne River (France) (Figure 2.1). For each sampling site the following parameters
were measured : E. coli concentrations (Most Probable Number or MPN/100 mL), temperature
(°C), turbidity (FTU), conductivity (uS/cm), Total Suspended Solids or TSS (mg/L), NH} (mg
of N/L), Total Kjeldahl Nitrogen or TKN (mg of N/L), number of dry days after the last rainfall,
24 h cumulative rainfall of the day (mm), 24 h cumulative rainfall of the previous day (mm)
and the river flow (m?/s) measured at Gournay-sur-Marne (Paris area, France). The sampling
protocole for surface water was carried out according to the French standard FD T 90-523-1
(2008) for physicochemical parameters and according to the 2006/7/EC directive for E. coli
concentrations. Microbiological and physico-chemical measurements were respectively carried
out by Aquamesures and Eurofins (2015) and the Val de Marne Departmental Environmental
Health Laboratory (2017-2020) following the French standard methods NF EN ISO 9308-3, NF
EN ISO 7027-1, NF EN 27888, NF EN 872, NF T 90-015-2, NF EN 25663.

Rainfall data were obtained from the network of rain gauges of the Departmental Councils

of Val-de-Marne (station CHAM23, MAIS32), Seine-Saint-Denis (station NE-17) and the City
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of Paris (station PL.14). For each sampling point, the meteorological data of the nearest measuring
station were used. For the year 2020, rainfall data of the stations SMVS5 to SMV 13 were not yet
available. Flow data measured at the Gournay-sur-Marne station were retrieved from the Banque

Hydro (http://www.hydro.eaufrance.fr/).

2.2.2. Data preparation

A total of 1696 measures were obtained after data cleaning which consisted of removing
the entries with missing and aberrant values. The ID of the station (ordered from upstream
to downstream) and the ten measured physico-chemical and hydro-meteorological parameters
were used as inputs for our modeling. The output of the models was the concentration of E. coli.
Then, the dataset was divided randomly in two parts, the training set (90%, 1526 observations)
and the test set (10%, 170 observations).

In order to keep all the input parameters with the same degree of influence on the final
outcomes, we performed a Z-score standardization for each feature of the datasets (inputs and
output) (Chen et al., 2020). The training dataset was used for the standardization in order to

block access to the values of the test set during the training of the models.

2.2.3. Machine-learning models

In order to evaluate the performance of the estimation of E. coli concentration by the
machine-learning models, three traditional machine-learning models ( KNN (K-nearest neigh-
bors (Cover and Hart, 1967)), DT (Decision tree (Swain and Hauska, 1977)) and SVM (Support
vector machines, (Vapnik, 1995 - 1995)) and three ensemblist learning models (bagging (Brei-
man, 1996), RF (Random forest (Breiman, 2001)) and AdaBoost (adaptive boosting (Freund and
Schapire, 1996)), that combines several base models, were selected and used in this study. All
the models were carried out in python 3.7.10 with the Scikit-learn packages (Pedregosa et al.,
2011). The GridSearchCV technique was applied to select the hyperparameter that gives the
most optimal model by 5-fold cross-validation, over a parameter grid. A 10-fold cross-validation
was used to train and to estimate the performance of each model, by randomly generating 10
different sub-sets of the training and test datasets.

2.23.1. KNN
The k nearest neighbor method consists in considering the k nearest samples in the

training dataset as an input to predict each new observation (Hastie, 2009). For each test datum
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the closeness to all the training data is calculated with an Euclidean distance. This allows finding
the k observations closest in input space to assign the test datum to a class label, and the output
value of each class label is used to estimate the value to predict. The value of k thus varied from
1 to 30 with a step of 2, depending on the dataset.
223.2. SVM
The support-vector machine goal is to find the optimal hyper-plan from which the distance
to all the data point is minimum, it can be applied to classification and regression problems.
It consists in transforming the training data representation space into a higher dimensional
space, infinite in some cases, and in constructing a hyperplane or set of hyperplanes in a high
dimensional space (Hastie, 2009). The idea is to find a solution to flatten the projections of the
training points in space without moving too far away from the training points.
2233. DT
Tree-based models are used to estimate a quantitative variable or classify observations
by reapeatedly separating data into mutually exclusive groupes. The tree-based method slices
the variable space and recursively partitions each variable into subsets based on the values of
the input variable and then fits a model in each of them (Hastie, 2009).
2.2.3.4. Bagging
Bagging, also known as bootstrap aggregation, uses portions of the data and combines
them by generating random subsets of the data through sampling, with repositioning (Barboza
et al., 2017). The prediction is obtained by averaging the outcomes of all models. The goal is to
reduce the overfitting of predictions in the model.
2.23.5. RF
Random forests combine multiple DT at training time. Each tree uses a sample obtained
by bootstrap. Given a training set with N measures, the bootstrap aggregation randomly selects
N samples with replacement of the training set (Chen et al., 2020). Then a subset of features is
randomly selected, in order to construct a collection of decision trees with controlled variance,
and fits trees to these samples. The results of the predictions from each tree are averaged (Hastie,
2009).
2.2.3.6. Adaboost
Adaboost repeatedly uses a regression tree developed sequentially on a training sample
with weights for each observation adjusted as they are developed (Shrestha and Solomatine,

2006). It starts with fitting a regression to the original dataset and then adjusts the weights of
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the variables based on the error of the prediction. Thus, subsequent regressors focus more on
poorly fitted or poorly predicted observations (Hastie, 2009). Finally, the results from each weak

machine-learning model are combined using the weighted median.

2.2.4. Models evaluation

In order to select the model that performs the best in predicting E. coli concentration, the
testing phase was carried out with 10 random trials for each model with the 10 test datasets. The
prediction performances of each model was evaluated by four statistical metrics. They included
Root-mean-square error (RMSE) (Qiu et al., 2017), mean absolute error (MAE) (Bui et al.,
2020), the ratio of performance to deviation (RPD) (Wang et al., 2017), and Mean absolute
percentage error (MAPE) (Lewis, 1982; Yan et al., 2020). These metrics are calculated as

follows :

1 N
MAE = NZIyz- —yi](2)
=1

SD

RPD = RMSE(?))
N (4. _ 7)2

In these formulas, (y;) is the measured value, (/) is the predicted value, (N) is the total
number of samples, and (SD) is the standard deviation of the tested dataset (y is the mean of
the measured values). The smaller the RMSE or the MAE, the more stable is the predictive
capacity of the model. RPD values < 1.4 indicate that the model is not reliable. For RPD values
between 1.4 and 2, the model is moderately accurate and when the value is higher than 2 the
model presents a high level of predictive ability (Wang et al., 2017). Mean absolute percentage
error (MAPE), which measures the goodness of fit, was also applied.

—y
MAPE = W=yl 100(5)

Yi
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The lower the MAPE value, the more accurate is the prediction (Lu and Ma, 2020). Values
< 50% can be evaluated as “reasonable” even good if < 20%. MAPE values greater than 50%,
are indicative of an “inaccurate” prediction. A MAPE value of 50% indicates an overestimation

or an underestimation of 50% with regard to the measured value.

2.2.5. Identification of the weakness parts of the dataset

The MAPE values calculated during the 10 trials were used to separate the predicted
values in two datasets : the reasonable (MAPE < 50%) and inaccurate estimations of the E. coli
densities (MAPE < 50%), generated by the best model on the Marne River dataset. In order to
determine the physico-chemical and hydro-meteorological parameters that potentially influenced
the predictive capacity of the best model, a spearman-correlation analysis was performed between
the physico-chemical or hydro-meteorological parameters and the predicted values of E. coli
(V3.5.1, (R-Core-Team, 2018)). All Spearman coeflicients (r;) were tested for their significance
based on 5% error. Then the correlation coefficients obtained with the reasonably and inacurately
predicted concentrations were compared using a t-test in order to identify the set of hydro-
meteorological and physico-chemical parameters that are influent in the model (significant r)
and that need improvement (t-test, p-value<0.01), or parameters that are less influent (non
significant ry) but could be worth checking after improvement (t-test p-value <0.01). Next,
we identified for each parameter that could be improved (t-test p-value <0.01), which data were
weakly represented in the dataset. For each parameter, the 10 test sets have been merged together.
The set of values contributing to the reasonable dataset were identified and the set of values that
gave at least one inaccurate prediction were removed and inspected to identify which additional
data are needed to improve the model. This allowed us to identify the set of values that give at
least a reasonable or good prediction for our dataset. The guideline for selecting the best model
for E. coli concentration prediction among the six machine-learning models, and the strategy
to identify a set of parameters and values range needed to optimize the sampling strategies are
displayed in the Figure 2.2. The python and R script of the framework are avaible on GitHub

(https://github.com/naloufi-manel/ML-performance-microbial-quality.git).

55


https://github.com/naloufi-manel/ML-performance-microbial-quality.git

Chapitre 2

Dataset =

'

10-fold cross-validation

' '

Training Dataset (90%)  Testing Dataset (10%)

' v

Z-score standardization

'

ML-based |:'>‘ Training trials — Testing trials ‘
models 7

Evaluation
(RMSE, MAE, RPD)

'

Best model —= MAPE values

e N

Reasonnable Inaccurate

Predictors needing an optimization

predicted values  predicted values

Spearman correlations with predictors

Predictors data Predictors data ranges

allowing prediction needing more data
Additional loT, network
Sampling of sensors

FIGURE 2.2 — Guideline to provide and select an adapted model for water quality prediction and for the identification

of a set of data to optimize the sampling strategies.

2.3. Results and discussion

2.3.1. The dataset used in this study

The Marne River dataset was characterized by a high heterogeneity concerning the

number of observations per station (13 to 47 entries). The summary sample statistics of the dataset

are reported in Table S1. The temperature and the conductivity displayed a fair representativeness

(Figure 2.3). However, most parameters presented a skewed distribution and the presence of

upper and lower outliers (Figure 2.3). Indeed, for each parameter (except the temperature and

the conductivity) a range of values were rarely measured and therefore not well represented in

the dataset. This indicates that our dataset is not yet representative of all possible measurements.
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FIGURE 2.3 — Distribution of the data for each variable. The median is indicated as a solid black line inside each
boxplot, outliers are indicated as black dots. On the ordinates are the values taken by each variable with the units
specified in parenthesis.

The concentration of E. coli (4337.61 + 25983.50 MPN/100 mL) measured during the
5 summers in the Marne river ranged from 19 to 820670 MPN/100 mL. Three pollution events
producing very high concentrations of E. coli could be identified. For instance, the maximum
E. coli value (820670 MPN/100 mL), corresponds to high values of turbidity, TSS and TKN
levels (respectively 28 FTU, 33 mg/L and 2.6 mg of N/L) compared to the majority of the
measurements. Extreme pollution events are often under-represented in the datasets due to
their low frequency. For instance rainfalls >10 mm which lead to peaks of pollution occur less
than 20 days per years in Quebec region (Sylvestre et al., 2020). However, removing extreme
values from the dataset can lead to a decrease in the predictive capacity of the model during
events with high pollution. Chen et al. (2020) have shown that a better performance could be
achieved after increasing the training data for each of the learning models. Considering the
biased distribution of most parameters in the Marne River dataset, it may be necessary to add
additional measurements to increase the size of the database and improve the training of the
ML models. This would provide a better representation of the set of possible values. However,
the high cost of field sampling and laboratory analyses for monitoring microbiological quality
(about 100 € according to the Syndicat Marne Vive) requires an optimisation of the collection

in order to identify the necessary measures to efficiently complete the datasets.
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2.3.2. ML-based E. coli prediction comparison

Various machine-learning models have been used previously to predict water quality
and their predictive performance was compared to other models by assessing their ability for
prediction (e.g. Milzer et al. (2016); Avila et al. (2018); Bui et al. (2020)). In this study, we
compared the performance of six machine-learning based algorithms (KNN, DT, SVM, Bagging,
RF and AdaBoost) to predict E. coli concentration in an urban river, to identify the best suited
model. We performed a trial-and-error procedure, using the RMSE, MAE and RPD metrics
to evaluate the performance of each model. Average values of these statistics metrics for each
random trial are available in Table S2. The RF model exhibited the highest prediction power
among all the models with the weakest error (average value 0.37 + 0.20 for RMSE and 0.09 +
0.02 for MAE) followed by KNN and Bagging (respectively 0.41+£0.28 and 0.38+0.19 for RMSE
and 0.09+£0.03 and 0.14+0.06 for MAE) (Figure 2.4).

m

A RMSE MAE

0.25
|

0.20

oHa| | 0e T8

1.0
0.15
|

05
0.10

0.05
|

T T T T T
KNN RF DT SVM AdaBoost Bagging

T T
KNN RF oT SVM AdaBoost  Bagging

c RPD

0 [

]

T T T T
KNN RF DT SVM AdaBoost  Bagging

FIGURE 2.4 — Evaluation of the prediction performances of the 6 machine-learning models during the 10 trials.
On the abscissa the model is indicated and on the ordinate the value of the statistical metrics are displayed
(dimensionless) : (A) RMSE; (B) MAE; (C) RPD.

An analysis of the accuracy and reliability of the model was also performed using the

RPD metrics (Figure 2.4C). Three models (KNN, Bagging and RF) were estimated as moderately
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accurate and presented acceptable results. The 3 other models were not reliable, with an RPD
< 1.4 (Figure 2.4). For the RF model, the RDP value was close to 2 (1.91 + 1.65), indicating
that the model had a high predictive capacity. In conclusion, the RF model gave better E. coli
concentration estimation compared to other machine-learning models. This result is in agreement
with Bui et al. (2020) but disagree with the results of Chen et al. (2020). Both studies compared
the performances of DT models with RF models in their ability to predict water quality. We
also checked if the performance of the models will increase by compacting the sampling sites
together, however without the station ID the performance of all models slightly decreased (data
not shown).

Our results confirm that Ensemblist learning models have a better performance compared
to traditional models (e.g. KNN and SVM). This conclusion is in agreement with some previous
studies (e.g. Ahmed et al. (2019a); Bui et al. (2020)). However we must bear in mind that the
performance of a model depends on external uncertainty conditions (Chen et al., 2020). Thus,
for each specific dataset, several algorithms should be tested in order to find the models with the
best fitting to E. coli concentrations. Indeed Milzer et al. (2016) found that the performance of
models could differ from one site to another along the Ruhr River in Germany. For this reason

we proposed this set of six machine-learning models as a basic toolbox to be used.

2.3.3. Limits of ML-based E. coli estimation

Identifying observations with uncertain predictions is an approach to determine the set
of data requiring optimization and thus find a way to optimize the collection and to efficiently
complete our training set, allowing for a better prediction in the future by re-running the model
with the newly collected measurements. Indeed, recent studies have shown that increasing the
quality and quantity of the dataset by adding complementary measures allows to effectivly
increase the training set and to improve prediction accuracy (Pachepsky et al., 2018; Chen et al.,
2020).

To further analyze the performance, the MAPE indice, which measures the goodness
of fit and examines the performance of models based on their tendency to estimate the E. coli
concentration, was calculated for all testing trials. For 46.7 + 3.5% of the predicted values
generated by the RF model, the percentage of the absolute error was less than 50%, which
indicates that the estimates were reasonable or even good. The remaining 53.2 + 3.5% of the

predicted values were associated with MAPE values equal or exceeding 50%, corresponding to
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inaccurate estimates. These results indicate that the RF-based model did not properly predict E.
coli values in all contexts and that our dataset is not sufficient to efficiently train the RF-based

model. Figure 2.5 indicates uncertainty in the prediction for some of the E. coli measurements.

E. coliconcentration measured (In NPP/100ml)

E. coliconcentration predicted (In NPP/100ml)

FIGURE 2.5 — Relationship between the E. coli concentration predicted by the RF-based model and the measured
concentration. The white circles indicate the values. The red line indicates theoretical values corresponding to an
accurate prediction of the model compared to the measured values for the ten testing trials. Blue lines indicate the
50% confidence interval.

2.3.4. Identification of the weaknesses in the dataset

Different methods can be used to improve the input datasets. Some studies focuses on
finding the best combination of input variables to improve the algorithm’s predictions (e.g. Bui
etal. (2020); Hameed et al. (2017)). However, weak features also represent a powerful source of
information, that can be used in combination with the features that are adequate for learning the
target concept (Muslea et al., 2006). Thus, in our study, we propose to use the second strategy. For
this purpose, the prediction limits and biases of the RF-based model were further examined in
order to identify among the physicochemical and hydro-meterological variables the weaknesses
in the training and testing datasets.

We hypothetized that the variability induced by the low representativeness of some
parameters can affect the predictive capacity of the model. In order to identify the key parameters
allowing a reasonable estimation of E. coli concentrations and those leading to an inaccurate

estimation, the predicted values were separated in two datasets (inaccurate and reasonable

60



Chapitre 2

TaBLE 2.1 — Correlation coeflicients (average ry £ SD) for the relationship between the values of E. coli predicted
by the RF model (reasonable and inaccurate) and the environmental variables. Significant coefficients are indicated
with a * (coefficient significance test p <0.05). Significant differences between the correlation coefficients of the
two datasets are indicated as t-test p-values < 0.01. MAPE values were used to identify reasonable (less than 50%)
and inaccurate (over 50%) estimations of E. coli concentrations obtained with the RF model during the ten testing
trials.

| Parameter Reasonable predictions (r,) | Inaccurate predictions (r,) | p-value |

Water temperature —0.17£0.05 —0.28* £ 0.07 0.001
Conductivity —0.05£0.11 —0.18 £ 0.09 0.009
Turbidity 0.42* £ 0.07 0.39* £ 0.08 0.43
TSS 0.43* £0.09 0.40* +0.04 0.42
NH,* 0.54* +0.06 0.48* £ 0.07 0.05
TKN —0.03 £0.08 0.001 £ 0.06 0.26
Number of dry days —0.10 £ 0.09 —0.01 £0.09 0.02
24 h cumulative rain- 0.09 £+ 0.10 —0.02+£0.11 0.02
fall (day)

24 h cumulative rain- 0.17 £ 0.08 0.03 £ 0.10 0.002
fall (previous day)

River flow 0.54* +0.09 0.39* +0.09 0.001

estimations) based on the MAPE indice 50% threshold. Then an analysis of the relationship
between the differents physico-chemical and hydro-meteorological variables and the predicted
values was carried out on the inaccurate and reasonable datasets. We assumed that a significant
difference in the coeflicient correlation between the two datasets would point out the variables
that had an impact on the outcome of the model but needed optimization. To compare the
correlation coefficients obtained with the reasonable and inacurrate datasets, a t-test was used
(n = 10). The p-values obtained are displayed in (Table 2.1).

Turbidity, TSS, NHj, were important predictors (significant r, above 0.40), and no
significant differences in the two datasets arised (t-test, p > 0.05, Table 2.1). We classified these
parameters has having an impact of the RF-model output, with no urgent need for additional
data. The river flow also contributed to the model output (significant r; > 0.40), but there
was a significant difference between the two datasets (t-test, p < 0.01, Table 2.1). It was thus
considered as an important parameter that needs additional data. Finally the water temperature,
the conductivity, the 24 h cumulative rainfall of the previous day (Table 2.1, t-test, p < 0.01),
as well as for the number of dry days after the last rain and 24 h cumulative rainfall of the
day (Table 2.1, t-test, p < 0.05) showed weak correlations with E. coli values, but a difference
between the two datasets. Since it is not certain if these weak correlations are an artifact due

to the skewed distribution of these parameters or if these parameters are just bad predictors, we
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decided to further explore the parameters with a highly significant difference in the correlation
obtained with the reasonable and inaccurate estimates. Thus for the river flow, temperature,
the conductivity and the 24 h cumulative rainfall of the previous day (t-test, p < 0.01), it was
considered that additional data were needed to provide the dataset with enough information to
reduce the uncertainty in the model’s estimates. The reasons for this uncertainty may be that the
measurements have not yet been tested and it is not yet known whether the model will be able
to reasonably estimate the E. coli concentration, or that the distribution of the data is skewed

and the correlation of some environmental variables with the E. coli concentration is not yet
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FIGURE 2.6 — Vizualisation of the values that need enrichment in the dataset for the temperature, conductivity, 24 h
cumulative rainfall of the previous day and the river flow. The abscissa displays the value range of each parameter.
Predicted values giving a reasonable estimation are visualized with solid black bars, white spaces represent the
values that need further enrichment in the dataset.

The next step was to identify the value ranges of the four parameters that needed extra
measurements to efficiently complete the training and testing datasets. A deeper understanding
of the behavior of these parameters in the model should help optimizing the sampling process
while minimizing additional cost and efforts of sample collection and analysis. The temperature
is the parameter for which the reasonable predicted values of E. coli densities covered pretty well

the whole range of values [17.6-26.5 °C] (Figure 2.6). For the conductivity [data range 430-657
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uS/cm] and the flow [data range 4-101 (m> /s)] the distribution of the reasonable estimates was
not regularly disseminated along the data range, and the 24 h cumulative rainfall of the day there
was only 4 reasonable values in the [data range 0-35.4 mm] (Figure 2.6). The Figure 2.6, is a
valuable tool to identify which data are missing in the data range, and thus help to determine
where the sampling efforts should be carried out.

In our study, the RF-based model produced a versatile modeling in prediction. Based on
this observation, we were able to identify a set of parameters and values needed to complete the
dataset. An alert system based on the analysis of the reasonable and inacurate estimates would
be a valuable tool for stakeholders to optimize their sampling and measurement efforts. However
manual sampling and laboratory analysis maybe too costly and labor intensive to realistically
implement the training dataset. A network of sensors allowing continuous monitoring of physico-
chemical parameters and the monitoring of rainfalls as well as dry weather, could help in
optimizing the sampling. Such approach may help developping models able to adapt under
environmental perturbations such as accidental pollutions or heavy rainfalls (> 30 mm), which are
usually under-represented in the datasets due to their scarcity, and/or the fact that weekly/monthly

routine survey often miss such events.

2.4. Automated data collection

From the results, it is clear that the machine-learning models are capable of delivering
interesting results, as long as one can provide enough good-quality data. Thus, the use of
data sensors in addition to manual collection should be investigated as means of feeding these
models. Concerning the water quality parameters that we have investigated in this work, there
are a myriad of sensors that could perform their collection with acceptable data quality. Those
sensors may vary in price, accuracy, usage, lifespan among other characteristics, as they were
extensively studied in Abegaz et al. (2018) and Kruse (2018). Therefore, to incorporate sensors as
a permanent brick in the data collection system, further studies must be conducted to determine
their optimal and sub-optimal numbers to be deployed on a given site, the expected accuracy and
the available budget for their acquisition. In this direction, Abegaz et al. (2018) have thoroughly
discussed the nature of different sensors (piezoelectric, optical, etc.) and how they fit for different
use cases, while Kruse (2018) provide interesting inputs concerning their usages for different

use cases.
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One strategy for monitoring the bathing water quality and decide when to open or
close a bathing site is to use online measurement systems that detect Beta-D-Galactosidase or
Beta-D-Glucuronidase activity. For instance, the ColiMinder automated measurement system
(Vienna Water Monitoring, VWM GmbH) (Cazals et al., 2020), ALERT system (Fluidion)
(Angelescu et al., 2019), Colifast ALARM™ (Tryland et al., 2015), TECTA-B16 (Endetec,
Veolia) (Bramburger et al., 2015), have been demonstrated to be useful to monitor E. coli in
rivers, but the price of these devices may be economically prohibitive for numerous cities, since
one unit may cost up to tens of thousand of euros. Alternatively the use of sensing technologies
to measure proxies or surrogate parameters procures high frequency, precise and accurate data.
Based on electrodes, fluorescence, colorimetry, wet analytical chemistry, or flow cytometry
techniques, these devices are deployed at fixed strategic locations (Rode et al., 2016). However
these sensors are often costly (~10K euros unit price), for instance multiparameter sensors
such as Proteus Multi-parameter Water Quality Sensor based on tryptophane-like fluorescent
detection or sensors plateforms measuring physico-chemical proxies (such as YSI, Sea-Bird or
NKE instrument) are often used to monitor water quality.

One interesting way of integrating a network of sensors to data collection is to build an
Internet of Things (IoT) network, mixing high-quality (expensive) and medium-quality (cheaper)
devices capable of delivering real-time analysis. In comparison, cheaper sensors can be used to
deliver good enough approximations of the correct data. For instance, the KnowFlow platform
KnowFLow (2021), based on Arduino computers and IoT long-range communication can be a
significant addition to the network. A recent review of low-cost sensors is provided by Wang
et al. (2019a).

Concerning the deployment of these heterogeneous sensors, some approaches exist to
maximize the quantity and quality of gathered data. The collection system may rely on i) deter-
ministic deployment, where sensors position is calculated before the collection begins, based on
the environmental and economic conditions (Nguyen et al., 2019); i1) random deployment, in
the case where areas are hard to achieve and to position sensors (Priyadarshi et al., 2020); iii)
hybrid deployment, a mix of aforementioned approaches, which is used indicated to very large
networks, covering vastly heterogeneous areas (Senouci and Mellouk, 2016). Some studies have
investigated this topic, with a further analysis on the advantages of IoT networks to enhance
data collection (Ciaponi et al., 2018; Ramesh et al., 2017). For instance, in Ciaponi et al. (2018)

authors proposed a methodology to derive the optimal placement of sensors in an aquatic envi-
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ronment, based on a "divide-and-conquer" approach, which could reduce the complexity of this
task for large scenarios.

The deployment of sensors will heavily depend on the battery lifespan of devices, as much
as on their communication range. Therefore, IoT-based measurement networks should be based
on Low Power Wide Area Networks (LPWAN) technologies, as LoORaWAN, Sigfox or NB-IoT.
Such technologies allow communications range up to kilometers and ensure very low energy
consumption, when compared to 4G, Wi-Fi or Bluetooth networks (Mekki et al., 2019). Users
can also consider the utilization of new 5G cellular technology, which is adapted for large-scale
sensor networks and IoT communications (Rahimi et al., 2018).

One remaining challenge to enhance the use of IoT networks for water quality assessment
is the real-data collection and visualization mechanisms. For example, Grafana allows users to
analyze sensor metrics through dashboards, messaging and alerts in real time (Betke and Kunkel,
2017). The Elastic stack application allows a deeper analysis of data logs and provides so-called
intelligent dashboards, capable of adapting screens to environmental, economic or user contexts
(e.g., what a researcher sees is not what a common user would see) (Protopsaltis et al., 2020). In
Ramesh et al. (2017), authors developed an IoT-based system within a town, capable of sensing
the environmental parameters and effectively delivering real-time information on water quality.
This clearly shows that the automation of the collection process is possible and viable for the
estimation of water quality in urban sites Chen and Han (2018).

Although the use IoT network composed of heterogeneous sensors is an interesting
solution to enhance surveillance systems, the use of low-quality devices must be taken with
caution due to their less accurate results. Therefore, the calibration of sensors remains an
important issue to be investigated. As discussed in Abegaz et al. (2018), the errors, margins
and durability of devices vary a lot. Therefore, an automated data collection must take into
account a mechanism to estimate which sensors are no longer in optimal operation conditions,
which is more likely to happen to low-quality models. One simple solution consists in compare
their output to nearby high-quality devices and analyze when important deviations occur. More
complex solutions would consist in estimating their lifespan based on already collected data to

perform changes preemptively.
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2.5. Conclusion

In this paper, we proposed a framework and statistical indicators to select among a toolbox
of six supervised learning algorithms (KNN, SVM, DT, RF, Bagging and AdaBoost) the most
suitable model for the prediction of fecal indicator bacteria in an urban river. This framework
was sucessfully applied to the Marne River (Greater Paris, France). Netherless, with regard to
the actual dataset, E. coli concentration could not be predicted in all contexts (53.2 + 3.5% of
inaccurate predicted values). This result illustrates well the fact that predicting the microbial
quality of surface waters in urban rivers remains complex. Refining the models to be able to
adapt to environmental changes represents a future challenge in the context of the global change
which may increase the frequency of extreme rainfalls and floods Sylvestre et al. (2020). Further
amelioration and testing of predictive models is needed to reproduce and predict the temporal
and spatial dynamic of fecal indicators in changing and complex aquatic environments. Due to
the fact that our dataset was not representative of all the possible values in the data range, some
values have not yet been trained or tested by the RF-based model. For these values it is not
clear yet whether our model is able to estimate the E. coli concentration in a reasonable way at
the moment. To address this problem, we proposed a strategy and tools to help improving the
quality and quantity of the training data. The distribution of the accurate values along the data
range of each parameters seems an appropriate approach to identify which additional data are
needed for which parameter, in order to achieve a good predictive efficiency.

Acquiring additional data is usually costly because it’s a manual process that requires
human action. As a consequence our proposed approach aims to optimize the sampling process.
It requires to focus on the following points :

i) How and where to use of microbiological high-quality monitoring systems to feed
itself’; i1) How to install low cost physico-chemical sensors on an IoT network for the prediction
of microbiological quality and iii) When to perform sampling by human operators when the
model fails to correctly estimate the E. coli concentration and the microbiological quality of
surface water ?

Overall the proposed framework will help rationalize and optimize the sampling effort,

thus saving time and cost of microbiological analyses.

Data Availability Statement : Datasets are deposited in the CapGeo database of a
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working group directed by the City of Paris to study the water quality of the Seine and the Marne
river. This dataset is not yet openly accessible.
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2.6. Appendix

TABLE S1 — Descriptive statistics of the parameters.

| Parameter | Mean | Standard deviation | Minimum | Maximum |

Water temperature 21.77 1.59 17.60 26.50
Conductivity 537.36 56.09 430.00 657.00
Turbidity 7.91 7.33 0.12 132.00
TSS 9.76 9.13 0.90 190.00
NH,* 0.12 0.07 0.03 1.11
TKN 0.72 1.08 0.15 33.70
Number of dry days 4.80 5.72 0.00 27.00
24 h cumulative rainfall (day) | 0.97 2.90 0.00 26.00
24 h cumulative rainfall (pre- | 1.86 4.69 0.00 35.40
vious day)

River flow 41.68 10.59 4.00 101.00

TABLE S2 — Average and standard deviation of the statistic metrics (RMSE, MAE, RDP) obtained with each model
during the ten testing trials.

Metric| KNN | RF | DT | SVM | AdaBoost | Bagging |
RMSE | 041 +0.28 | 0.37+£0.20 | 0.54 £0.29 | 0.53 +£0.48 | 0.53+0.28 | 0.38 +£0.19
MAE 0.09+0.03 | 0.09+0.02|0.14+0.05 | 0.13+0.05| 0.10+£0.03 | 0.14 +£0.06
RDP 1.60£049 | 191£1.65 | 1.12+£036 | 1.32+0.22 | 1.28 +0.62 | 1.77 £1.62
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FIGURE S1 — Correlation analysis between water quality parameters and E. coli concentration estimated by RF for
(A) reasonable estimation ; (B) inaccurate estimation of E. coli (n=10).
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3. Evaluation de la performance des approches d’appren-
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prédire la qualité microbienne des eaux de surface en Seine

et en Marne

Manel Naloufi'">*, Francoise S. Lucas?, Sami Souihi®, Pierre Servais*, Aurélie Janne® and
Thiago Wanderley Matos De Abreu %*

1 Direction de la Propreté et de ’'Eau - Service Technique de 1’Eau et de I’Assainissement,
27 rue du Commandeur 75014 Paris, France ; manel.naloufi @paris.fr,
2 Leesu, Université Paris-Est Créteil, Ecole des Ponts ParisTech, 61 avenue du Général de
Gaulle, 94010 Créteil Cedex, France ; lucas @u-pec.fr
3 Image, Signal and Intelligent Systems (LiSSi) Laboratory, University of Paris-Est Créteil
Val de Marne, 122 rue Paul Armangot, 94400 Vitry sur Seine, France ; thiago.wanderley-matos-
de-abreu @u-pec.fr; sami.souihi @u-pec.fr
4 Ecology of Aquatic Systems, Université Libre de Bruxelles, Brussels, Belgium;
Pierre.Servais@ulb.be
®  Syndicat Marne Vive, Maison de la Nature, 77 quai de la Pie, 94100 Saint-Maur-des-Fossés,

France; aurelie.janne @marne-vive.com

Résumé : Pour améliorer la gestion quotidienne des sites de baignade, la surveillance
d’E. coli est essentielle. Cependant, ce suivi est souvent limité temporellement et spatialement en
raison de contraintes méthodologiques, logistiques et financieres. La modélisation constitue un
outil précieux pour gérer les pollutions a court terme et pourrait également optimiser la collecte
de données. Néanmoins, la performance des modeles varie selon les sites, rendant crucial le
choix du modele le plus approprié. Dans notre étude, nous avons comparé les performances de
six algorithmes d’apprentissage automatique : K-nearest neighbors (KNN), Decision tree (DT),
Support vector machines (SVM), bagging, Random forest (RF) et adaptive boosting (AdaBoost)
pour prédire les concentrations d’E. coli dans la Marne et la Seine en région parisienne, France.
Nous avons proposé un cadre conceptuel pour sélectionner le modele le plus adapté et rationaliser

I’effort d’échantillonnage afin d’optimiser le jeu de données d’entrainement. Selon plusieurs
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mesures statistiques, le modele RF a démontré la meilleure précision. Il apparait que I’origine du
jeu de données d’entrainement, ainsi que la distribution et le nombre de parametres explicatifs,
influencent significativement la performance du modele. Si certains parametres explicatifs sont
bien représentés dans le jeu de données, d’autres, comme la température et la conductivité,
nécessitent une optimisation pour la Seine. Ainsi, le modele prédictif pourrait alimenter un
systeme combinant échantillonnage manuel in situ et déploiement de capteurs, optimisant ainsi
le suivi de la qualité microbiologique de 1’eau.

Mots clés : Prédiction de la qualité de I’eau, apprentissage automatique, concentra-

tion en E. coli, optimisation de I’échantillonnage, surveillance des rivieres

3.1. Introduction

Ces dernieres décennies, les vagues de chaleur mondiales ont intensifié les activités
aquatiques dans les mégapoles, augmentant les interactions entre les citoyens et I’eau douce
urbaine (Jang, 2016). Cependant, nager dans des eaux de surface urbaines, riviere ou lac,
présente des risques sanitaires liés a la contamination des eaux par des agents pathogenes issus
de rejets ponctuels ou diffus (Soller et al., 2010). La surveillance actuelle repose sur des analyses
biologiques et chimiques en laboratoire, mais des modeles prédictifs pourraient compléter et
aider a rationaliser 1’échantillonnage réglementaire, afin de faciliter la gestion quotidienne des
zones de baignade (OMS, 2018).

Plusieurs modeles prédictifs, allant des régressions linéaires aux réseaux de neurones,
peuvent étre utilisés pour estimer les concentrations en Escherichia coli (van der Meulen et al.,
2024). Par exemple, un modele basé sur les arbres de régression a été utilisé pour prédire en
temps réel les concentrations en E. coli dans les rivieres du sud de la Nouvelle-Zélande, en se
basant sur des données météorologiques et hydrologiques (Avila et al., 2018). Cependant, la
performance des modeles peut varier en fonction du site et/ou du contexte météorologique et
hydrologique (Mailzer et al., 2016). Les modeles d’apprentissage automatique, notamment les
méthodes ensemblistes comme les foréts d’arbre de décision (Random Forest) et le bootstrap
aggregating (aussi appelé bagging), ont montré une grande précision dans la prédiction de
la qualité des eaux de surface (Bui et al., 2020). Toutefois, 1’efficacité des modeles basés
sur I’apprentissage automatique est souvent limitée par la taille des ensembles de données

disponibles (Chen et al., 2020). Or, la collecte de données de haute qualité reste coliteuse
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et complexe, ce qui tend a limiter la fréquence des prélevements au minimum exigé par la
réglementation et a limiter la période a la saison de baignade de juin a septembre (van der Meulen
et al., 2024). Par ailleurs, les données de concentration en bactéries indicatrices fécales (BIF)
sont généralement acquises de maniere épisodique et ne couvrent pas toujours les différentes
conditions environnementales qui peuvent affecter le site de baignage telles que les périodes
d’étiage et de hautes eaux (Jovanovic et al., 2019). En effet, il est important d’utiliser des jeux
de données qui couvrent différentes conditions environnementales qui se produisent sur un site,
telles que les débits €levés et les débits faibles (Herrig et al., 2019).

Les connaissances sont augmentées en explorant d’autres bases de données pour identifier
des similitudes entre différents sites ou contextes, en utilisant I’apprentissage par transfert
(Dipanjan, 2018). Pour pallier la faible taille et diversité des ensembles de données, il existe
différentes stratégies tout en minimisant 1’effort et le colit de I’échantillonnage (Wu et al.,
2024). D’une part, il est possible d’orienter les campagnes de mesure et d’optimiser la collecte
de données en ciblant des périodes ou des conditions environnementales stratégiques, afin
d’améliorer la quantité et la représentativité des données disponibles. D’ autre part, il est possible
d’augmenter la taille et la qualité de la base de données existante sans faire de prélevements
supplémentaires a 1’aide de techniques d’apprentissage automatique, en générant des données
synthétiques, ou bien en réduisant les besoins en données du modele, ou bien entransférant les
connaissances d’une autre base de données disponible (Wu et al., 2024). Pour cette derniere
approche, en effet, le transfert de connaissance d’une base de données a une autre peut servir soit
a compléter une série temporelle avec des données manquantes, soit a pré-entrainer un modele.
Le transfert de connaissance consiste a tirer parti de jeux de données riches et diversifiés pour
améliorer les performances des prédictions (Noam, 2016; Segev et al., 2015). Par exemple, un
modele initialement entrainé sur des données issues de plusieurs bassins versants peut étre adapté
a d’autres sites. Les connaissances sont alors augmentées en explorant d’autres bases de données
pour identifier des similitudes entre différents sites ou contextes, en utilisant I’apprentissage par
transfert (Dipanjan, 2018).

L'objectif de notre étude est de développer un cadre conceptuel et pratique pour aider
les gestionnaires des sites de baignade a prédire les concentrations en E. coli, notamment dans
les rivieres Seine et Marne en région parisienne (Ile-de-France). Ce cadre inclut la sélection
des modeles les plus performants et 'optimisation des stratégies d’échantillonnage. Avec la

demande croissante pour des sites de baignade en Ile-de-France, en particulier en vue des Jeux
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Olympiques et Paralympiques de 2024, il est crucial d’améliorer les méthodes de gestion de
la qualité de I’eau (Noury et al., 2018). Nous avons comparé les performances de six modeles
d’apprentissage automatique, incluant des modeles traditionnels et des méthodes ensemblistes,
pour la prédiction des concentrations en E. coli. L’entrainement a été réalisé avec des variables
prédictives physico-chimiques et des variables hydrométérologiques. Nous faisons 1’hypothese
que les concentrations en BIF peuvent étre prédites avec des données acquises en routine par
les collectivités. Le modele avec la meilleure capacité de prédiction et la meilleure précision a
été sélectionné. Afin de tenter d’améliorer la performance des modeles, nous avons testé trois
stratégies. Tout d’abord, nous avons manipulé le nombre de variables prédictives pour évaluer
si la sélection d’un nombre limité de prédicteurs peut permettre une bonne prédiction. Ainsi,
nous avons comparé les performances de six modeles d’apprentissage automatique en utilisant
11 et 8 parametres de la base de données de la Marne. Nous avons également testé 1’approche
d’apprentissage par transfert entre deux bases de données de rivieres proches localement, pour
vérifier si cet enrichissement de I’entrailnement apporte une amélioration de la prédiction. Pour
cela, nous avons utilisé alternativement les bases de données de la Marne et la Seine pour
entrainer et tester les modeles. Enfin, nous proposons une approche pour optimiser la collecte
des données, en identifiant les conditions physico-chimiques qui génerent des incertitudes dans
les prédictions des concentrations en E. coli dans la Seine. Ce travail vient compléter I’article

de Naloufi et al. (2021) présenté au niveau de la section 2.
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3.2. Matériel et méhodes

3.2.1. Site d’étude et collection de données sur la qualité de I’eau

20e
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|
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FIGURE 2.1 — Stations de surveillance de la qualité de I’eau de la riviere en Marne (étoiles vertes) et en Seine
(étoiles bleues).

Plusieurs sites de suivi de la qualité des eaux de surface de la Marne (Syndicat Marne
Vive) et de la Seine (Ville de Paris) ont été retenus, leurs données étant regroupées dans la base
de données CapGeo de la Ville de Paris (Figure 2.1). Cette base de données est issue de 1’activité
du groupe de travail “Amélioration de la connaissance de la qualité microbiologique de la Seine
et de la Marne* qui est piloté par la Ville de Paris et elle n’est pas en open source pour 1’instant.

A partir de la base de données CapGeo, les stations de suivi pour lesquelles a la fois
les données microbiologiques, physico-chimiques et météorologiques étaient disponibles sur 5
ou 6 ans ont été sélectionnées. Pour I’ensemble de ces stations, le protocole d’échantillonnage
des eaux de surface a été réalisé selon la norme francaise FD T 90-523-1 (2008) pour les
parametres physico-chimiques et selon la directive 2006/7/CE pour les concentrations en E.
coli. Huit parametres physico-chimiques et microbiologiques sont communs pour les deux jeux
de données (Seine et Marne). Pour chaque point de prélevement, les données météorologiques
de la station de mesure la plus proche ont été utilisées.

3.2.1.1. La Marne

De mi-juin a mi-septembre pendant 5 ans (2015, 2017-2020), des prélevements ont été ef-
fectués de maniere hebdomadaire ou bi-hebdomadaire sur 18 stations situées dans la section aval
de la riviere Marne (France). Pour chaque site d’échantillonnage, les parametres suivants ont été
mesurés : concentrations en E. coli (NPP/100 mL), température (°C), turbidité (FNU), conducti-

vité (uS/cm), MES (mg/L), NH;" (mg de N/L), NTK (mg de N /L), nombre de jours secs apres
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la derniere pluie (jours), pluviométrie du jour cumulée sur 24 h (mm), pluviométrie de la veille
cumulée sur 24 h (mm) et le débit (m?/s),mesuré 2 Gournay-sur-Marne (station hydrométrique
F664 0001 04, (https://www.hydro.eaufrance.fr). Les mesures ont été réalisées selon les
méthodes normalisées frangaises. Les pluviometres (station CHAM23, MAIS32) du conseil dé-
partemental du Val-de-Marne, (station NE-17) du conseil départemental des Seine-Saint-Denis
et (station PL14) de la Ville de Paris ont fourni les données de pluviométrie.
3.2.1.2. La Seine

De début-juin a fin-septembre pendant 6 ans (2015-2020), des prélevements ont été effec-
tués de maniere hebdomadaire ou bi-hebdomadaire sur 14 stations de la riviére Seine (France).
Pour chaque site d’échantillonnage, les parametres suivants ont été mesurés : concentrations en
E. coli (NPP/100 mL), température (°C), turbidité (FNU), conductivité (uS/cm), nombre de jours
secs apres la derniere pluie (jours), pluviométrie du jour cumulée sur 24 h (mm), pluviométrie
de la veille cumulée sur 24 h (mm) et le débit (m>/s) mesuré a Austerlitz (Station hydromé-
trique F700 0001 03, (https://www.hydro.eaufrance. fr). Les mesures microbiologiques et
physico-chimiques ont été réalisées par Eau de Paris selon les méthodes normalisées francaises
NF EN ISO 9308-3, NF EN ISO 7027-1, NF EN 27888. Les données pluviométriques ont été

obtenues a partir du réseau de pluviometres de la Ville de Paris (stations PL1, PL4, PLS).

3.2.2. Préparation des données

Apres le nettoyage des données qui a consisté a supprimer les entrées avec des valeurs
manquantes, un total de 1696 mesures a été obtenu pour le jeu de données de la Marne et un total
de 985 mesures pour la Seine. Les modélisations ont été réalisées séparément sur les deux jeux
de données (Marne et Seine). L'ID de la station (ordonnée d’amont en aval) et les parametres
physico-chimiques et météorologiques en Seine (8 parametres) et en Marne (11 parameétres),
ont été utilisés comme entrées des modeles. La sortie des modeles était la concentration en E.
coli prédite. Chaque jeu de données (Marne et Seine) a été divisé aléatoirement en deux parties,
le jeu de données d’entrainement (90%, 1526 observations pour la Marne et 886 observations
pour la Seine) et le jeu de données test (10%, 170 observations pour la Marne et 99 observations
pour la Seine).

Afin que tous les parametres d’entrée aient le méme degré d’influence sur les résultats
finaux, nous avons effectué une normalisation Z-score pour chaque caractéristique de I’ensemble

des données (entrées et sorties) (Chen et al., 2020). Le jeu d’entrainement a été€ utilisé pour la
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standardisation afin de bloquer I’acces aux valeurs des données du jeu test pendant I’entratnement

des modeles.

3.2.3. Les modeles d’apprentissage automatique

Afin d’évaluer la performance de I’estimation de la concentration en E. coli par les
modeles d’apprentissage automatique, trois modeles traditionnels d’apprentissage automatique
(KNN, DT et SVM) et trois modeles d’apprentissage ensemblistes (Bagging, RF et AdaBoost),
qui combinent plusieurs modeles de base, ont été sélectionnés et utilisés dans cette étude.

Tous les modeles ont été réalisés avec les packages Scikit-learn comme décrit dans
notre étude précédente (Naloufi et al., 2021). La technique GridSearchCV a été appliquée pour
sélectionner 1’hyperparametre qui donne le modele le plus optimal par validation croisée 5
fois, sur une grille de parametres. Dix répliques ont été générées en divisant aléatoirement les
ensembles de données pour générer 10 jeux d’entrainement et de test différents. Les modeles
ont été formés avec les 10 jeux d’entrainement, puis chaque modele a été testé avec un des 10
jeux test.

Apres I’entrailnement des 6 modeles, en vue de sélectionner le modele le plus performant
pour prédire la concentration en E. coli, une phase de test a été réalisée avec les 10 jeux aléatoires

de données test (Figure 2.2).

p
Données .
Entrainement Marne Seine
~
'
Nombre de
paramétres < 11 Paramétres 8 Paramétres 8 Paramétres
utilisé
N
-~
Données Test < Marne Marne Seine Seine Marne
~

FIGURE 2.2 — Schéma récapitulatif de la stratégie utilisée pour 1’entrainement et le test de 1’ensemble des modeles
sur les données de la Marne et de la Seine.

Pour la base de données de la Marne, I’entrainement a été réalisé€ sur 10 jeux aléatoires
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avec les 11 parametres, puis avec uniquement les 8 parametres physico-chimiques et hydro-
météorologiques en commun avec la base de données de la Seine (ID de la station, température,
conductivité, turbidité, nombre de jours de temps secs apres la derniere pluie, pluviométrie du

jour cumulée sur 24 h, pluviométrie de la veille cumulée sur 24 h et le débit de la riviere).

3.2.4. Apprentissage par transfert

Afin d’évaluer I’approche d’apprentissage par transfert, dix tests aléatoires ont été réalisés
pour évaluer les performances des modeles entrainés. D une part, des modeles ont été entrainés
sur les données de la Marne avant d’€tre testés sur celles de la Seine, et d’autre part, I’'inverse a
été effectué, avec des modeles entrainés sur la Seine puis appliqués a la Marne. Seuls les huit
parametres communs entre les jeux de données de la Seine et de la Marne ont été utilisés afin

de garantir la comparabilité et de maximiser la transférabilité des modeles.

3.2.5. Evaluation des modéeles

Les tests et les calculs de métriques d’erreur et de performance des modeles ont été
réalisés alternativement sur chacun des deux jeux de données (Marne et Seine) comme explicité
dans la figure 2.2 présentant la stratégie employée.

Les performances de prédiction de chaque modele pendant les 10 essais aléatoires ont été
évaluées par quatre mesures statistiques. Il s’agit de ’'RMSE, de 'MAE, du RPD et du MAPE

(Naloufi et al., 2021). Ces métriques sont calculées comme suit :

N

RMSE = J ;] S (yi — i) (1)

=1

MAFE = — Z|yz y'il (2

SD
RPD = RMSE (3)
Dans ces formules, (y;) est la valeur mesurée, (y;) est la valeur prédite, (N) est le nombre total
d’échantillons, et (SD) est I’écart-type de I’ensemble des données testées. Plus le RMSE ou le
MAE sont petits, plus la capacité de prédiction du modele est stable. Des valeurs de RPD <1.4
indiquent que le modele n’est pas fiable. Pour des valeurs de RPD comprises entre 1,4 et 2,0,

le modele est modérément précis et lorsque la valeur est supérieure a 2,0, le modele présente
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un niveau €levé de capacité prédictive (Wang et al., 2017; Naloufi et al., 2021). Le pourcentage
d’erreur absolue moyenne (MAPE), qui mesure la qualité de I’ajustement, a également été

appliqué.

-
mapE = =Y 00 (4
Yt

Plus la valeur MAPE est faible, plus la prédiction est précise (Lu and Ma, 2020). Les valeurs
<50% peuvent étre évaluées comme "raisonnables", voire bonnes si elles sont <20%. Les
valeurs MAPE supérieures a 50%, indiquent une prédiction "inexacte". Une valeur MAPE de
50% indique une surestimation ou une sous-estimation de 50% par rapport a la valeur mesurée

(Naloufi et al., 2021).

3.2.6. Identification des points faibles du jeu de données

Les valeurs MAPE calculées au cours des 10 essais aléatoires ont été utilisées pour

séparer en deux les valeurs prédites : les estimations raisonnables de la concentration en E. coli
et les estimations inexactes. L’analyse a été effectuée sur la base des prédictions générées par le
meilleur modele et cela sur les deux jeux de données (Marne et Seine).
Afin de déterminer les parametres physico-chimiques et météorologiques qui ont potentiellement
influencé la capacité prédictive du meilleur modele, une analyse de corrélation a été réalisée pour
les deux jeux de données (raisonnable et inexact). Sachant que les concentrations prédites en
E. coli n’avaient pas une distribution normale, un test du coefficent de corrélation de Spearman
a été réalisé entre chaque parametres physico-chimiques et la concentration en E. coli prédite
par les modeles ou les valeurs mesurées (R Project V3.5.1, (R-Core-Team, 2018)). Pour tous les
tests statistiques, le niveau de signification était basé sur 5% et 1%.

Les résultats ont été utilisés pour identifier I’ensemble de parametres présentant une
différence de corrélation entre les valeurs prédites raisonnables et inexactes. Par la suite, apres
I’analyse de corrélation, les 10 jeux de test aléatoires ont été fusionnés. Pour chaque variable
physico-chimique et météorologique, I’ensemble des valeurs permettant une estimation raison-
nable a été identifié et I’ensemble des valeurs donnant une prédiction inexacte a été retiré. Le
résultat a été inspecté afin d’identifier les données supplémentaires nécessaires pour améliorer
le modele. Cela nous a permis d’identifier I’ensemble des valeurs qui donnent au moins une
prédiction raisonnable ou bonne pour la Seine.

La stratégie utilisée pour sélectionner le meilleur modele pour la prédiction de la concen-
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tration en E. coli et pour identifier sur I’ensemble des parametres les plages de valeurs nécessaires
pour optimiser les stratégies d’échantillonnage pour la Marne a été présentée dans notre étude
précédente (Naloufi et al., 2021). Les scripts python et R utilisés sont disponibles sur GitHub

(https://github.com/naloufi-manel/ML_qualite_microbiologique_eau.git).

3.3. Résultats
3.3.1. Jeux de données

Deux bases de données ont été analysées, celle du suivi estival de la Marne et celle de la
Seine.
3.3.1.1. La Marne
Le jeu de données de la riviere Marne est caractérisé par une grande hétérogénéité
concernant le nombre d’observations par station (24 a 167 entrées pour les 18 stations). L’analyse
descriptive des données est détaillée dans I’étude de Naloufi et al. (2021) au niveau de la section
2.
3.3.1.2. La Seine
Le jeu de données de la riviere Seine est caractérisé par une grande hétérogénéité
concernant le nombre d’observations par station (15 a 200 entrées pour les 14 stations). La
concentration en E. coli mesurée au cours des 6 étés dans la riviere varie entre 30 et 35000
NPP/100 mL avec une valeur moyenne de 3434 + 6987 NPP/100 mL. La distribution comprend
plusieurs valeurs extrémes (Figure 2.3). Concernant les variables physico-chimique, hormis la
température, I’ensemble des parametres présentent une distribution asymétrique avec la présence

de nombreuses valeurs extrémes (Figure 2.3).
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FIGURE 2.3 — Description des données de la Seine pour les parametres physico-chimiques, pluviométriques et
microbiologiques (température en °C, conductivité en puS/cm, turbidité en NTU, nombre de jours secs apres la
derniere pluie, pluviométrie du jour cumulée sur 24 h en mm, pluviométrie de la veille cumulée sur 24 h en mm,
débit au pont d’Austerlitz en m?/s et le logarithme népérien de la concentration en E. coli (NPP/100 mL).

3.3.2. Prédiction de la concentration en E. coli par les modeles par apprentissage auto-

matique

Dans cette étude, nous avons comparé la performance de six algorithmes basés sur 1’ap-
prentissage automatique (KNN, DT, SVM, Bagging, RF et AdaBoost) pour prédire la concen-
tration en E. coli dans deux rivieres urbaines (Marne et Seine). Afin d’identifier le modele le
mieux adapté, nous avons analysé I’erreur test de chaque modele entrainé sur 10 jeux de don-
nées aléatoires, en utilisant les métriques RMSE, MAE et RPD pour évaluer la performance de
chaque modele.

3.3.2.1. Effet du nombre de parametres sur les performances des modeles en
Marne

Les six modeles ont été entrainés et testés avec les données de la Marne (avec 11
parametres et 8 parametres). Les valeurs moyennes des métriques calculées pour chaque essai
aléatoire sont présentées au niveau du tableau S1. Lorsque les modeles sont entrainés avec les
11 parametres, on observe que pour le modele RF, la valeur RPD était proche de 2 (1,91 +
1,65), ce qui indique que le modele avait une capacité de prédiction élevée. Une description
plus détaillée des résultats est présentée au niveau de la section 2. Par la suite, les modeles ont
été entrainés avec 8 parametres, le modele AdaBoost présenté le pouvoir de prédiction le plus
élevé, avec I’erreur la plus faible (valeur moyenne de 0.52 + 0.29 pour la RMSE et 0,11 + 0,02
pour la MAE) (Figure 2.4), suivi par les modeles RF et SVM (respectivement 0,58 + 0,33 et
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0,59 £ 0,35 pour la RMSE et 0,15 + 0,04 et 0,14 £ 0,03 pour la MAE). En effet, en retirant 3
parametres du modele, aucun des modeles testés ne pouvait étre considéré comme fiable (RPD

<1,4, Tableau S1).
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FIGURE 2.4 — Evaluation des performances de prédiction des 6 modeles d’apprentissage automatique au cours des
10 essais avec 8 parametres issus de la base de données de 1a Marne. Métriques statistiques : (A) RMSE; (B) MAE;
(C) RPD.

3.3.2.2. Comparaison des performances de prédictions de E. coli avec les
données de la Seine

Aprés entrainement et test des 6 modeles sur les données de la Seine (Tableau S2), les
valeurs RMSE et RPD indiquaient que les modeles RF et Bagging étaient les plus performants
et pouvaient étre considérés comme modérément précis et fiables (présentant des résultats
acceptables). L’analyse de I'indice MAE a montré que le modele Bagging présentait 1’erreur
la plus faible suivi par les modeles SVM et RF (Figure 2.5). Le modele KNN a été estimé
également comme modérément précis avec des résultats acceptables (Tableau S2). Ainsi, le

modele RF semble donner la meilleure estimation de la concentration en E. coli avec un rapport

de performance le plus €élevé pour les données de la Seine.
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3.3.3. Apprentissage par transfert

Etant donné que la base de données de la Seine présente moins de données que celle de
la Marne, nous avons testé I’approche d’apprentissage par transfert entre les 2 bases de données
de bassins versants de la méme région géographique. Les différents modeles ont tout d’abord
été entrainés en utilisant le jeu d’entrainement de la Seine, puis testés sur le jeu de données test
de la Marne. Nous avons également évalué un entrainement des modeles sur les données de la
Marne suivi par un test sur le jeu de données de la Seine. Pour cela nous avons utilisé pour la
Marne la base de données avec 8 parametres.

3.3.3.1. Evaluation de ’apprentissage par transfert pour prédire les concen-
trations en Marne

Aprés entrainement des modeles sur les données de la Seine, des tests ont été effectués
avec les jeux de données de la Marne (Figure 2.6). Les valeurs moyennes des métriques calcu-
lées sont présentées dans le tableau S3. Les modeles présentaient des performances moyennes

similaires (RPD entre 0,98 et 1,00).
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FIGURE 2.6 — Evaluation des performances de prédiction des 6 modeles d’apprentissage automatique au cours
des 10 essais avec les données de la Marne avec 8 parametres, apres entrainement avec les données de la Seine.
Métriques statistiques : (A) RMSE; (B) MAE; (C) RPD.

3.3.3.2. Evaluation de ’apprentissage par transfert pour prédire les concen-

trations en Seine
Sur les modeles entrainés par le jeu de données Marne, des tests ont été effectués avec
les jeux de données de la Seine. Les valeurs moyennes des métriques calculées pour chaque
essai aléatoire sont présentées dans le tableau S4. Les modeles SVM, Adaboost et RF présen-
taient de meilleures performances de prédiction par rapport aux autres modeles d’apprentissage

(Figure 2.7). Toutefois, aucun de ces modeles ne semblait fiable (RPD < 1.4, Tableau S4).
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FIGURE 2.7 — Evaluation des performances de prédiction des 6 modeles d’apprentissage automatique au cours des
10 essais en Seine avec 8 parametres apres entrainement avec les données de la Marne. Métriques statistiques : (A)
RMSE; (B) MAE; (C) RPD.

Ces résultats montrent que le jeu de données d’entrainement détermine la capacité de
prédiction au sein de chaque bassin versant. Par exemple, les modeles entrainés avec les données
de la Seine avaient une meilleure capacité prédictive pour la Seine et de méme les modeles
entrainés avec les données de la Marne avaient une meilleure capacité prédictive pour la Marne
(Tableau S1 et S2). L’ensemble de ces résultats a été utilisé afin de sélectionner le meilleur
modele pour prédire la concentration en E. coli en Seine et en Marne. C’est le modele RF,
que se soit en Seine ou en Marne, qui a été le plus performant (entrainé sans apprentissage par
transfert). Ce dernier a été€ sélectionné pour une analyse plus détaillée des performances de de
prédiction. Suite a notre étude précédente sur les limites de 1’estimation de la concentration
en E. coli en Marne (Naloufi et al., 2021), cette étude se focalise sur les limites des modeles

d’estimation en Seine.

3.3.4. Limites de ’estimation de la concentration en E. coli basée sur le modele RF de la

Seine

L’identification des observations avec des prédictions incertaines est une approche per-
mettant de déterminer I’ensemble des données nécessitant une optimisation et donc de trouver un
moyen d’optimiser la collecte et de compléter efficacement le jeu d’entrainement, permettant une
meilleure prédiction dans le futur en réexécutant le modele avec les mesures complémentaires

nouvellement collectées de maniére ciblée.
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FIGURE 2.8 — Nombre d’observations identifiées comme des estimations raisonnables ou inexactes selon les valeurs
MAPE obtenues avec le modele RF au cours des dix essais sur les données de la Seine.

L’indice MAPE, qui mesure la qualité de I’ajustement et examine la performance des
modeles en fonction de leur tendance a estimer la concentration en E. coli, a été calculé pour
tous les essais effectués avec les deux modeles RF respectifs pour les données de la Marne ou
de la Seine . En se basant sur la valeur MAPE calculée pour chaque observation, une distinction
a été effectuée entre les estimations raisonnables (<50%) et les estimations inexactes (>=50%),
permettant de séparer les données prédites en deux selon ces catégories, respectivement pour la
Marne et pour la Seine.

Pour les données de la Seine, sur la base des 10 essais, 35.75 + 3.11% des concentrations
prédites en E. coli générées par le modele RF correspondent a des estimations raisonnables. Par
contre 64,25 + 3,11% des valeurs ont été identifiées comme des estimations inexactes, le plus
souvent surestimées (Figure 2.8).

En effet, la figure 2.9 indique une incertitude de la prédiction pour certaines des mesures
de E. coli plus élevées que pour le modele RF de la Marne (Figure 2.5). Ainsi, les limites de
prédiction du modele RF ont été examinées plus en détail afin d’identifier les faiblesses dans le

jeu de données de la Seine.
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FIGURE 2.9 — Relation entre la concentration en E. coli (NPP/100 mL) prédite par le modele RF et la concentration
mesurée en Seine. Les cercles noirs indiquent les valeurs. La ligne rouge indique les valeurs théoriques correspondant
aune prédiction exacte du modele par rapport aux valeurs mesurées pour les dix essais et les courbes bleues indiquent
I’intervalle d’incertitude de 50% autour de la valeur exacte de prédiction.

Ensuite les parametres permettant une estimation raisonnable des concentrations d’E.
coli et ceux conduisant a une estimation inexacte ont été identifiés pour ce jeu de données de la
Seine. La relation entre les différentes variables explicatives et les concentrations prédites d’E.

coli a été explorée sur les données test de la Seine.

TABLE 2.1 — Comparaison des coefficients de corrélation (moyenne + écart-type) obtenus entre les variables
prédictives et les concentrations en E. coli (NPP/100 mL) raisonnablement prédites par le modele RF entrainé
et testé sur les données de la Seine et celles pour lesquelles la prédiction est inexacte. Les p-valeurs des tests
statistiques comparant les valeurs de corrélation entre les prédictions raisonnables et inexactes sont données.

Parametres Prédictions raisonnables | Prédictions inexactes | p-valeur
Température -0,51 £ 0,06 -0,37 £ 0,06 0,002
Conductivité -0,45 + 0,10 -0,26 + 0,08 0,002
Turbidité 0,39 £ 0,15 0,28 £ 0,09 0.173
Nombre de jours secs -0,45 £ 0,16 -0,32 + 0,09 0,139
Pluviométrie du jour 0,44 + 0,15 0,27 + 0,09 0,01
Pluviométrie de la veille 0,56 + 0,08 0,45 + 0,08 0,10
Débit a Austerlitz 0,26 + 0,10 0,33 + 0,08 0,18

Pour le jeu de données de la Seine, la pluviométrie de la veille cumulée sur 24 h semble

un prédicteur important avec un coefficient de corrélation élevé et aucune différence significative
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n’a été observée entre les prédictions raisonnables et les prédictions inexactes (Test de Wilcoxon,
n=10, p>0,05, Tableau 2.1). La température et la conductivité semblent également étre de bons
prédicteurs, mais il y avait une différence significative entre les deux ensembles de données
(Test-t, n=10, p<0,01, Tableau 2.1). Ces deux parametres ont été classés comme ayant un impact
sur la prédiction mais nécessitant des données supplémentaires. L’ensemble des parametres
restants ont approximativement les mémes niveaux de corrélation a I’exception du débit au Pont
d’Austerlitz qui présente le niveau de corrélation le plus faible (r=0,26 et 0,33, Tableau 2.1).
Aucune différence significative n’étant observée entre les données raisonnablement prédites et
celles inexactes pour le débit de la Seine, ce prédicteur reste néanmoins intéressant.

Par la suite, une exploration des deux parametres présentant une différence de corrélation
hautement significative entre les valeurs raisonnables et celles inexactes a permis d’identifier
I’ensemble des mesures permettant une estimation raisonnable. En ce qui concerne la tempé-
rature, les valeurs bien prédites sont disséminées le long de la plage de données [15,60-27,50
°C], mais nécessite principalement une optimisation dans I’intervalle de valeur [19-24°C] (Fi-
gure 2.10). Pour la conductivité, les valeurs bien prédites couvrent le début de la plage de
valeurs (Figure 2.10). Cependant, un grand intervalle de valeur [606-1393 uS/cm] nécessite des

échantillonnages supplémentaires.
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FIGURE 2.10 — Valeurs des parametres donnant une estimation raisonnable des concentrations en E. coli (NPP/100
mL) dans la plage de valeurs des prédicteurs pour I’ensemble de données mesurées en Seine pour (A) la température ;
(B) la conductivité.
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3.4. Discussion

E. coli est un des deux indicateurs biologiques utilisés pour évaluer la qualité de I’eau de
baignade (directive européenne sur les baignades 2006/7/CE) car il peut caractériser les risques
de contamination fécale de I’eau testée et sa présence est relativement bien corrélée avec le risque
de contracter une gastro-entérite (van Asperen et al., 1998). Ainsi dans le cadre de I’ouverture de
site de baignades en ville, disposer d’outils pour prédire la qualité microbiologique est nécessaire
pour la surveillance quotidienne de la qualité de I’eau des rivieres urbaines (OMS, 2018). Dans
ce travail de these, différents modeles d’apprentissage automatique ont été utilisés pour prédire
la concentration en E. coli dans deux rivieres urbaines et leurs performances prédictives ont été
comparées et évaluées. Nous avons également proposé une méthode d’analyse détaillée des jeux

de données afin d’évaluer les faiblesses a renforcer pour améliorer la prédiction des modeles.

3.4.1. Comparaison des méthodes d’apprentissage automatique

Plusieurs études antérieures ont utilisé des modeles d’apprentissage automatique pour
prédire la qualité des eaux de surface a I’aide des parametres physico-chimiques (Di et al., 2019;
Avila et al., 2018; van der Meulen et al., 2024). Leur performance prédictive a été comparée a
des modeles statistiques et/ou déterministes en évaluant leur capacité de prédiction, montrant
ainsi tout leur intérét et notamment leur grande capacité a prédire de maniere fiable dans
différentes configurations de sites (par exemple Mailzer et al. (2016); Avila et al. (2018); Bui
et al. (2020)). Les modeles d’apprentissage automatique ont la capacité d’identifier des motifs
ou structures et des relations non-linéaires parmi les variables utilisées, ce qui explique le fait
qu’ils ont souvent des performances meilleures que les modeles de régression linéaire (Nafsin
and Li, 2023). Dans le cadre de notre étude, six algorithmes d’apprentissage automatique (KNN,
DT, SVM, Bagging, RF et AdaBoost) ont été utilisés pour prédire la concentration d’E. coli
dans la Marne et la Seine. Les performances de ces modeles ont été comparées. De meilleures
performances de prédiction et une plus grande fiabilité ont été observées lorsque les modeles
ont été entrainés sur un jeu de données provenant de la méme riviere. Ainsi, au niveau de la
Seine, le modele basé sur la méthode RF et entrainé avec les données de la Seine a donné
une meilleure estimation de la concentration en E. coli que lorsqu’il est entrainé avec le jeu de
données d’une autre riviere. La méme conclusion a été observée sur les données de la Marne.

Ceci confirme les résultats de Milzer et al. (2016) qui ont constaté que la performance d’un méme
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modele d’apprentissage automatique pouvait différer d’un site a ’autre le long d’une riviere.
En effet, pour chaque site, des interactions complexes entre des facteurs physico-chimiques, des
facteurs hydrométéorologiques et des caractéristiques géospatiales telles que 1’usage des sols
vont déterminer la dynamique des concentrations en BIF (Nafsin and Li, 2023).

Globalement nos résultats montrent que les modeles d’apprentissage ensemblistes ont
une meilleure performance par rapport aux modeles traditionnels (Naloufi et al., 2021). Ceci est
en accord avec la littérature, avec plusieurs études qui montrent que les méthodes d’apprentissage
d’ensembles tels que le bagging ou le boosting ont souvent une bonne capacité a prédire tout
en étant précis (Ahmed et al., 2019a; Bui et al., 2020; Qiu et al., 2017). Pour nos deux bases
de données, le modele RF a donné une meilleure estimation de la concentration en E. coli
par rapport aux autres modeles d’apprentissage automatique. Ce résultat est en accord avec
notre précédente étude Naloufi et al. (2021) et avec plusieurs autres études (e.g. Bui et al.
(2020); Choi and Seo (2018); Sokolova et al. (2022); Iyer (2024); Weller et al. (2020)) qui ont
identifié les modeles RF et Bagging comme ayant les meilleures performances pour prédire les
concentrations en BIF dans les eaux de surface des rivieres. Si les modeles RF ont souvent
les meilleures performance, ils ont aussi tendance au sur-apprentissage (Sokolova et al., 2022).
De plus, les modeles ensemblistes sont 1’objet d’'un compromis entre I’interprétabilité et la
précision, car ils se présentent plus comme des "boites noires" comparés aux modeles basés sur
les arbres de décision (Weller et al., 2020). Il reste néanmoins difficile de comparer nos résultats
avec ceux de la littérature car le nombre et le type de parametres different d’une étude a I’autre,
de mé€me que les conditions climatiques, 1’usage des sols et I’'urbanisation.

Nous avons également pu constater avec le jeu de données de la Marne qu’avoir des
parametres supplémentaires en entrée du modele permettait une amélioration de la performance
de la prédiction. Ceci est en concordance avec 1’étude de Chen et al. (2020) qui a également
constaté une diminution de la performance des modeles en enlevant un ou deux parametres lors
de I’entrainement. La sélection d’une combinaison optimale de variables et I’optimisation des
parametres clef du modele font d’ailleurs partie de stratégies pour augmenter la performance
d’un modele d’apprentissage automatique (Nafsin and Li, 2023).

En conclusion, pour nos deux bases de données (Seine et Marne), le modele RF a donné
une meilleure estimation de la concentration en E. coli par rapport aux autres modeles d’appren-
tissage automatique. Nos résultats confirment que les modeles d’apprentissage ensemblistes ont

une meilleure performance par rapport aux modeles traditionnels (par exemple DT et SVM)
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(Naloufi et al., 2021). De plus, les modeles RF ont produit une modélisation polyvalente en
matiere de prédiction. Ces données sont précieuses car il y a encore peu d’études utilisant 1’ ap-
prentissage automatique pour prédire les concentrations en E. coli dans les rivieres urbaines,
ce qui limite notre compréhension de leur capacité a prédire les pics de contaminations en BIF

(van der Meulen et al., 2024).

3.4.2. Incertitude sur la prédiction des modeles RF

En plus de la structure du modele, nous nous sommes intéressés a la précision de la
prédiction en fonction de la qualité et de la taille des jeux de données test. En dépit de la
performance du modele RF, une grande incertitude dans la prédiction peut étre observée que
ce soit pour la Marne ou pour la Seine. Il a été établi que la qualité des eaux de surface
dépend de multiples conditions. Cependant, comme nous 1’avons observé dans cette étude,
une grande variabilité de la distribution des parametres physico-chimiques et hydrologiques
et des concentrations en E. coli en raison des faibles quantités de données d’apprentissage
peuvent conduire a une faible précision des modeles d’apprentissage automatique (Bui et al.,
2020; Naloufi et al., 2021; Nafsin and Li, 2023). Pour améliorer la capacité de prédiction des
modeles d’apprentissage automatique, ce n’est pas seulement la taille du jeu de données qu’il
faut augmenter mais aussi sa diversité. Dans le cas de notre modélisation des concentrations en
E. coli par la méthode RF, une part de I’incertitude sur la prédiction pourrait avoir pour origine
le fait que toute la gamme des mesures des différents parametres explicatifs n’a pas encore été
testée et que I’on ne sait pas encore si le modele RF serait capable d’estimer raisonnablement
la concentration en E. coli, avec toute 1’étendue des valeurs que peuvent prendre les variables
explicatives. Une explication serait que la distribution des données était asymétrique et que
la corrélation de certains parametres physico-chimiques et/ou hydrométéorologiques avec la
concentration en E. coli était faible dans ces jeux de données (Naloufi et al., 2021). Cela était
probablement di a la complexité spatiale des processus dans chacun des bassins versants et aux
différentes sources de pollution qui entrainaient des relations non linéaires entre les parametres
de I’eau et la concentration en E. coli (Bui et al., 2020). En effet, le tableau S5 montre bien
des niveaux de corrélation différentes entre la Marne et la Seine pour les différents parametres
de I’eau avec les concentrations en E. coli prédites raisonnablement. De plus, pour plusieurs
variables, certaines classes de données étaient minoritaires (peu de données collectées sur les

événements polluants extrémes par exemple) comparées a des classes majoritaires (conditions de
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temps sec, faibles pluies par exemple). Ce déséquilibre peut présenter un défi pour les algorithmes
d’apprentissage automatique qui tendent a €tre biaisés vers les classes de données majoritaires et
ainsi présentent de faibles capacités prédictives sur les classes de données minoritaires (Li et al.,
2021). Pour contourner le probleme des données de qualité et quantité insuffisantes pour entrainer
les modeles, trois stratégies peuvent étre employées : i) la génération artificielle de données,
i1) ’apprentissage par transfert et iii) la réduction des besoins du modele en sélectionnant
les variables explicatives utilisées (Wu et al., 2024). Toutefois ces approches présentent des
limitations comme I’a montré le transfert de connaissance entre la Seine et la Marne. Un
transfert de connaissance pauvre peut €tre dii a une similarité limitée entre les deux rivieres
malgré leur appartenance a la méme hydroécorégion, leur taille et leur débit different, la Marne
étant un affluent de la Seine (Elbaz-Poulichet et al., 2006). La solution qui consiste a générer des
données synthétiques doit maintenir les caractéristiques réalistes d’un jeu de données réel, et
cette approche ne peut pas simuler de nouvelles conditions in situ (Wu et al., 2024). Acquérir des
données réelles par des échantillonnage plus fréquents peut étre une solution pour augmenter la
base de données. Toutefois cette approche est coliteuse et laborieuse. Nous avons donc exploré
une autre stratégie qui consiste a utiliser les résultats du modele pour identifier les classes
minoritaires dans le jeu de données existant et ainsi rationaliser 1’effort d’échantillonnage pour
renforcer ces classes minoritaires et limiter le cofit et I’effort de collecte. Optimiser le processus
d’échantillonnage permettrait d’obtenir une meilleure représentation de 1’ensemble des valeurs
possibles sur le site évalué. L'approche que nous avons développée a permis d’identifier les
parametres sur lesquels le focus devrait étre porté, ainsi que les classes de données minoritaires
a acquérir ou renforcer dans le jeu de données. Ainsi, pour le cas de la Marne et celui de la
Seine, la température de I’eau et la conductivité ont ét€ identifiées comme étant les parametres
nécessitant des mesures supplémentaires. Par contre, pour la pluviométrie du jour cumulée sur 24
h et le débit de la riviere, il a été considéré que des données supplémentaires étaient nécessaires
uniquement pour le jeu de données de la Marne. En effet, les jeux de données acquis pour le
suivi des sites de baignade sont souvent limités a la saison estivale, et a des mesures au mieux
journaliere mais le plus souvent hebdomadaires. De ce fait, I’étendue des mesures de température
fluctue peu, et pour les autres parametres certains événements générant des variations intenses
peuvent ne pas avoir été échantillonnés (accidents sur le réseau, pluies extrémes, crues). Des
capteurs en temps réel peuvent aider a augmenter le jeu de données. Toutefois certaines classes

de données minoritaires peuvent étre difficiles a renforcer avec des mesures sur le terrain. Par
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exemple dans le cas de la pluviométrie, autant il est aisé de se procurer des données temporelles
avec un pas de temps fin (5 min), il est plus compliqué d’acquérir des données avec une résolution
spatiale fine car le maillage des pluviometres est relativement large sur le territoire Francilien.
De plus, I'intensité des précipitations n’est pas réguliere en Ile-de-France, les pluies < 5 mm
étant plus couramment observées que les pluies >10 mm ou encore les pluies > 20 mm qui
sont plus exceptionnelles (Lucas et al., 2020). La stratégie de I’augmentation des données par
génération de données synthétiques peut alors constituer une solution pour les données difficiles

ou impossibles a acquérir (Wu et al., 2024).

3.5. Conclusion

Dans cette étude, nous avons discuté d’un modele basé sur I’apprentissage automatique
pour la prédiction afin d’évaluer la qualité de I’eau dans des deux rivieres franciliennes. D’apres
les résultats, les modeles basés sur la méthode Random Forest ont donné la meilleure précision
dans la prédiction de la concentration en E. coli (RMSE de 0,37 £ 0,20 en Marne et 0,67 +
0,09 en Seine). Néanmoins, selon le pourcentage d’erreur absolu moyen (MAPE) permettant de
distinguer entre les estimations raisonnables et inexactes, la concentration en E. coli ne peut étre
prédite dans tous les contextes (la valeur de MAPE est supérieur a 50%, avec 53,20 £ 3,50% et
63,25 + 3,11% de prédictions inexactes respectivement pour la Marne et la Seine). Etant donné
que notre jeu de données n’est pas représentatif de toutes les valeurs possibles dans la gamme
de données, il est raisonnable de penser que les modeles RF n’ont pas été encore entrainés ou
testés avec toute 1’étendue des valeurs que peuvent prendre les parametres prédictifs clefs. Pour
ces valeurs, il n’est donc pas encore clair si notre modele est capable d’estimer la concentration
en E. coli de maniere raisonnable.

Pour augmenter le jeu de données deux stratégies ont été explorées. Le transfert de
connaissance, ne s’est pas révélé concluant, conduisant a une performance moindre des modeles
(phénomene appelé "transfert négatif"). Cependant nous avons utilisé une approche simple se
limitant a utiliser les parametres communs entre les deux jeux de données. Il existe des approches
plus sophistiquées d’apprentissage par transfer qu’il pourrait étre intéressant d’explorer (Wu
et al., 2024). En effet, il est nécessaire de conduire des recherches sur le transfert négatif et
la facon de I’éviter (Wang et al., 2019b). Notre deuxieme stratégie a été d’utiliser les résultats

du modele RF pour identifier les parametres clefs a optimiser en premiers lieu. Cette approche
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semble appropriée afin d’augmenter de maniere ciblée et rationelle les bases de données. De plus,
pour ces parametres, 1’analyse de la distribution des valeurs donnant une prédiction raisonnable
le long de la plage de données permettrait d’identifier quelles données minoritaires mal prédites
nécessitent d’étre renforcées dans la base de données, afin d’obtenir une meilleure efficacité
prédictive.

Afin d’améliorer les modeles prédictifs des concentrations en bactéries indicatrices de
contamination fécale (E. coli, entérocoques intestinaux), I’apprentissage actif permet d’identifier
les observations les plus pertinentes, et le déploiement de capteurs a faible cofit peut aider a
densifier la collecte de données physico-chimiques (qui servent de variables explicatives dans
les modeles) en temps réel tout en réduisant les cofits (Bouneffouf, 2016; KnowFLow, 2021).
Ces capteurs, bien qu’individuellement moins précis, peuvent ainsi collectivement fournir des
informations fiables pour optimiser les bases de données pour les modeles de prédiction.

Acknowledgments : Nous remercions les Conseils départementaux du Val-de-Marne et
de la Seine-Saint-Denis, pour leur contribution au jeu de données. Nous sommes reconnaissants
envers Miguel Gillon-Ritz pour ses conseils avisés et pour I’acces a la base de données Cap-
Geo (Ville de Paris, Direction de la Propreté et de I’Eau - Service Technique de I’Eau et de

I’Assainissement).

3.6. Annexe

TABLE S1 — Moyenne et écart-type des mesures statistiques (RMSE, MAE, RPD) obtenues pour chaque modele au
cours des dix essais avec 11 paramétres et 8 parametres avec les données de la Marne.

Modele | KNN RF | DT | SVM | AdaBoost | Bagging |
11 parametres
RMSE | 0,41 £0,28 | 0,37 £0,20 | 0,54 £0,29 | 0,53 + 0,48 | 0,53 + 0,28 | 0.38 £ 0,19
MAE | 0,09 £0,03 | 0,09 +0,02 | 0,14 £0,05 | 0,13 £0,05 | 0,10 £ 0,03 | 0,14 + 0,06
RPD | 1,60+£0,49 | 191 £1,65| 1,12+0,36 | 1,32+0,22 | 1,28 £0,62 | 1,77 £ 1,62
8 paramétres
RMSE | 0,62 +0,35 | 0,58 £0,33 | 0,63 £0,32 | 0,59 + 0,35 | 0,52 + 0,29 | 0,63 +£ 0,28
MAE | 0,16 +0,04 | 0,15+0,04 | 0,18 £0,03 | 0,14 £0,03 | 0,11 £ 0,02 | 0,16 + 0,03
RPD | 0,98 +0,04 | 1,08 £0,06 | 0,94 +0,09 | 1,07+0,04 | 1,19+0,16 | 0,92 £0,16
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TABLE S2 — Moyenne et écart-type des mesures statistiques (RMSE, MAE, RPD) obtenues avec chaque modele au
cours des dix essais avec les données de la Seine.

Modeéele KNN RF DT SVM AdaBoost | Bagging
RMSE | 0,69 £ 0,09 | 0,67 £0,09 | 0,77 £0,12 | 0,75+0,12 | 0,73 + 0,10 | 0,68 + 0,09
MAE | 0,34+0,03 | 0,33 +0,02 | 0,40 £0,03 | 0,32 +0,04 | 0,35 + 0,02 | 0,30 £ 0,03
RPD | 143+0,21 | 1,47+£0,23 | 1,30+0,13 | 1,33 £0,11 | 1,37 £0,25 | 1,44 £0,18

TABLE S3 — Moyenne et écart-type des mesures statistiques (RMSE, MAE, RPD) obtenues avec chaque modele au
cours des dix essais avec les données de la Marne avec 8 parametres, apres entrainement avec les données de la

Seine.
| Modéle | KNN | RF | DT | SVM | AdaBoost | Bagging |
RMSE | 3,73 +0,04 | 3,70+ 0,04 | 3,76 £0,06 | 3,68 0,04 | 3,77 £0,06 | 3,73 + 0,04
MAE |0,72+0,03 | 0,81 +0,01 | 0,83 +0,09 | 0,66 +0,01 | 0,79 +0,03 | 0,93 + 0,01
RPD |0,99+0,02 | 1,00£0,01 | 0,98+0,01 | 1,00+0,01 | 0,98 +0,01 | 0,99 + 0,01

TABLE S4 — Moyenne et écart-type des mesures statistiques (RMSE, MAE, RPD) obtenues avec chaque modele
au cours des dix essais avec les données de la Seine avec 8 paramétres aprés entrainement avec les données de la

Marne.
(Modéle| KNN | RF | DT | SVM | AdaBoost | Bagging |
RMSE | 0,33 +£0,07 [ 0,32+0,02 | 0,34 +0,06 | 0,28 0,01 | 0,32 0,03 | 0,48 0,02
MAE [ 0,25+0,04 | 0,23 +0,01 [ 0,24+0,02 | 0,22+0,01 | 0,17 +0,01 | 0,33 +0,02
RPD | 0,83£0,09 | 0,81 +0,07 | 0,81 +0,10 | 0,90 + 0,01 | 0,82 + 0,06 | 0,54 + 0,03
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TABLE S5 — Comparaison entre les jeux de prédictions raisonnables en Marne et en Seine des coefficients de
corrélation (moyenne et écart-types) entre les variables prédictives et les valeurs de concentrations en E. coli
prédites.

parametres Prédictions raisonnables | Prédictions raisonnables
pour la Marne pour la Seine

Température -0,17 £ 0,05 -0,51 = 0,06

Conductivité -0,05 £ 0,11 -0,45 +£ 0,10

Turbidité 0,42 £ 0,07 0,39 £ 0,15

MES 0,43 £ 0,09 NA

NH,* 0,54 £ 0,06 NA

NTK -0,03 + 0,08 NA

Nombre de jours secs -0,10 +£ 0,09 -0,45 £ 0,16

Pluviométrie du jour 0,09 + 0,10 0,44 + 0,15

Pluviométrie de la veille 0,17 £ 0,08 0,56 + 0,08

Débit 0,54 £ 0,09 0,26 £ 0,10

93



Chapitre 2

4. Long-Term Stability of Low-Cost IoT System for Monito-
ring Water Quality in Urban Rivers

Published in : Water (2024)
https://doi.org/10.3390/w16121708

Manel Naloufi "**, Thiago Abreu **, Sami Souihi 3, Claire Thérial 2, Natdlia Angelotti de
Ponte Rodrigues 2, Arthur Guillot Le Goff 2, Mohamed Saad 2, Brigitte Vingon-Leite 2, Philippe
Dubois 2, Marion Delarbre !, Paul Kennouche ! and Francoise S. Lucas %*

1" Direction de la Propreté et de I’Eau—Service Technique de I’Eau et de 1’Assainisse-
ment, 27 Rue du Commandeur, 75014 Paris, France; marion.delarbre @paris.fr (M.D.);
paul.kennouche @paris.fr (P.K.)

2 Laboratoire Eau Environnement et Systemes Urbains (Leesu), Université Paris-Est
Créteil, Ecole des Ponts ParisTech, university. 61 Avenue du Général de Gaulle, 94010
Créteil , France; claire.therial@u-pec.fr (C.T.); natalia.angelotti-de-ponte-rodrigues @enpc.fr
(N.A.d.PR.); arthur.guillot-legoff@enpc.fr (A.G.L.G.); mohamed.saad@enpc.fr (M.S.);
b.vincon-leite @enpc.fr (B.V.-L.) ; philippe.dubois @enpc.fr (P.D.)

3

Image, Signal and Intelligent Systems (LiSSi) Laboratory, Université Paris-Est Créteil,

122 Rue Paul Armangot, 94400 Vitry sur Seine, France ; sami.souihi @u-pec.fr

Correspondence : manel.naloufi@gmail.com (M.N.); thiago.wanderley-matos-de-abreu@u-

pec.fr (T.A.); lucas@u-pec.fr (F.S.L.)

Abstract : Monitoring water quality in urban rivers is crucial for water resource manage-
ment since point and non-point source pollution remain a major challenge. However, traditional
water quality monitoring methods are costly and limited in frequency and spatial coverage. To
optimize the monitoring, techniques such as modeling have been proposed. These methods rely
on networks of low-cost multiprobes integrated with IoT networks to offer continuous real-time
monitoring, with sufficient spatial coverage. But challenges persist in terms of data quality. Here,

we propose a framework to verify the reliability and stability of low-cost sensors, focusing on the
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implementation of multiparameter probes embedding six sensors. Various tests have been deve-
loped to validate these sensors. First of all, a calibration check was carried out, indicating good
accuracy. We then analyzed the influence of temperature. This revealed that for the conductivity
and the oxygen sensors, a temperature compensation was required, and correction coefficients
were identified. Temporal stability was verified in the laboratory and in the field (from 3 h to
3 months), which helped identify the frequency of maintenance procedures. To compensate for
the sensor drift, weekly calibration and cleaning were required. This paper also explores the
feasibility of LoRa technology for real-time data retrieval. However, with the LoRa gateways
tested, the communication distance with the sensing device did not exceed 200 m. Based on
these results, we propose a validation method to verify and to assure the performance of the
low-cost sensors for water quality monitoring.

Keywords : Arduino sensor; stability ; water quality ; chemical parameters ; urban rivers

4.1. Introduction

Monitoring the water quality of urban rivers is one of the most important issues in
water resources management (Bunsen et al., 2021). However water quality degradation is still
problematic, due to leaky sewers, rain runoff on contaminated surfaces, and untreated wastewater
discharge in surface waters during rain events (Whelan et al., 2022). The spatial and temporal
monitoring of water quality in rivers is crucial to optimize the management of freshwater
resources since it provides important information to guide stakeholders (Sutadian et al., 2016;
Carvalho et al., 2019; Whelan et al., 2020). However for most regulatory parameters, expensive
and time-consuming field collection and laboratory analysis are necessary. For instance, for the
management of bathing sites, the regulatory monitoring of the bathing waters is based on the
enumeration of cultivable fecal indicator bacteria following the European Bathing directive
2006/7/EC (WHO, 2018; Mouchel et al., 2020). Such a monitoring approach is restrictive both
in terms of frequency and spatial coverage, resulting in poor comprehension of the actual water
quality in a particular area at a particular time (Yaroshenko et al., 2020; Sutadian et al., 2016).

More effective water quality control should rely on methods that are rapid and low cost
with minimum sampling required, and, ultimately, it should provide real-time results (Farouk
et al., 2022; McGrane, 2016; Yaroshenko et al., 2020). In addition, in situ sensing devices

combined with machine learning could help stakeholders to detect in real time the possible
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contamination and to optimize the sampling effort (Carvalho et al., 2019; Whelan et al., 2020).
Cost-effective strategies should rely on few selected parameters with available low-cost sensors
that will serve as indicators of water quality. As pointed out by Zhu et al. (2023), there is no
consensus definition of ‘low-cost” sensors. The cheapest sensors available on the market are
usually considered "low cost", and price ranges can depend on the parameter (Zhu et al., 2023).
Several physico-chemical parameters can easily be measured in situ, with sensors. For instance,
(Kannel et al., 2007) showed the usefulness of monitoring temperature, pH, dissolved oxygen
concentrations, conductivity and turbidity to assess the spatial and temporal changes of water
pollution and to classify rivers according to their water quality.

A high number of low-cost sensors could be deployed in networks at large spatial scale
(Internet of Things, IoT). Each individual sensing device may present a slightly greater error
margin than the precision obtained with high-cost equipment. However, the multitude of sensors
should compensate by increasing the amount of information both temporally and spatially (Wang
et al., 2019a). The continuous development of IoT solutions based on non-proprietary methods
during the last decade allows a viable real-time measurement of the water quality for a large
spectrum of applications such as monitoring drinking water resources and bathing sites (Bogdan
et al., 2023; Wuijts et al., 2022b,a). Many initiatives have arisen, and the interest of the research
community has tremendously increased over time (de Camargo et al., 2023). Real-time water
quality monitoring through IoT application is expected to help reduce costs associated with
logistics and increasing the number of sites monitored. However, the energy autonomy of the
monitoring devices deployed on the field needs to be considered. Usually, the sensor is powered
by batteries or solar cells. Data are then transmitted either using SMS or long-range (LoRA)
technology. In order to be energy-efficient, the long-range (LoRA) technology offers an inter-
esting solution, making it suitable for devices deployed over long periods of time (de Camargo
et al., 2023; Huan et al., 2020).

Many challenges remain and need to be covered, such as the reliability, the stability and
the repeatability of the measurement, the similarity of performance between sensor units and
their interoperability in order to implement in the field reliable continuous monitoring of the
water quality (de Camargo et al., 2023). Therefore, the general objective of this paper is to
propose a framework to verify the reliability and the stability of the readings and to identify the
necessary maintenance of low-cost sensors in order to optimize the quality of the acquired data

to assist the stakeholders in the daily management of river water.
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Indeed, few studies have focused on the long-term reliability and viability of the sensors,
and were restricted to a maximum of 20-30 days despite the fact that river monitoring requires
longer periods (Hong et al., 2021; Gowri et al., 2023; Sekhar et al., 2023; Bogdan et al., 2023;
de Camargo et al., 2023; Cheniti et al., 2023; Hacker, 2023). As a consequence, our first objective
was to analyze the stability over a longer period of 3 months.

Moreover, previous papers highlighted the need for maintenance and cleaning routines
to avoid the deposition of debris and biofouling of the sensors that would impair the measure-
ment (Trevathan et al., 2021; Wong et al., 2021). However, no best-practice guideline for the
calibration and validation of low-cost sensor networks exists. As the consequence, our second
objective was to propose a framework for validation of low-cost sensors.

An additional crucial issue is to consider the data loss due to the limited communication
distance between the sensors and the LoRa gateway (Huan et al., 2020). As a consequence,
our third objective was to test two LoRa gateways in order to determine the maximum distance
between the devices and the gateway without data loss.

In order to address these three objectives, we designed a low-cost multiparameter pro-
totype that can monitor surface water quality using IoT technology. Several sensors such as
temperature, pH, conductivity, turbidity and dissolved oxygen were embedded in this device.
After the calibration of each sensor, their precision and stability were analyzed in laboratory
using reference solutions. The low-cost sensing device was validated for long-term monitoring
in the field by comparing it with highly accurate monitoring platforms. In order to validate the
possibility of using the prototype in networks, two units were compared, and the performance

of the LORA gateways was assessed.

4.2. Materials and Methods

To monitor water quality, we implemented a LoRa-based wireless system network which
includes a LoRa gateway and a network of low-cost sensing devices with real-time data recovery
(Figure 2.1). Arduino technology was selected to design this multiparameter sensing device.
To execute instructions, process the data, and perform data transmission, two boards can be
used : the Arduino UNO R3 based on the Microchip ATmega328P, or the Arduino Mega 2560
microcontroller board based on ATmega2560. The latter was chosen for its compatibility with

a high number of monitoring devices (Abotaleb, 2023). Indeed, the Arduino mega board has 8
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times more memory space than the UNO R3 board (Abotaleb, 2023; RANDIKA et al., 2022).

Sensor n
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o @@
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B— \
Sensor 1 | S
[ LoRa

Sensors Gateway

THE THINGS
NETWORK

Network
Server

Data storage
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Analysis Datarecovery

FIGURE 2.1 — Synoptic view of the low-cost system for water quality monitoring in real time.

4.2.1. Prototype Design

Each monitoring device (called "unit") included an external battery (20,000 mAh), 6 ana-
log or digital sensors from DFRobot (Shanghai, China) (temperature, 2 pH, conductivity, tur-
bidity, and dissolved oxygen), a micro SD module/card for data storage, a 16 Bit ADC module
V1.0 to increase the precision of the conductivity, turbidity and dissolved oxygen sensors, and a
LoRa Shield to connect to a LoRa network (DFROBOT, 2023; Gravity, 2023). Zhu et al. (2023)
and de Camargo et al. (2023) compared a list of low-cost water quality sensors with their
specifications and a summary of their performance characteristics. These studies were used to
select the sensors for our device in order to have a range of reliable low-cost and medium-cost
sensors (Zhu et al., 2023). No true low-cost sensors exist for monitoring nutrient concentra-
tions, such as nitrogen and phosphorus. The cheapest from Vernier costs around EUR 300
(Zhu et al., 2023). For pH, two different types of sensors were mounted in the sensing devices
in order to compare their performance, which are later named “pH-1" and “pH-2". All parts
of the system were contained in a waterproof box. Analog isolators were used to avoid any
signal interference among the sensors, except for the pH sensor. The code allowing the measu-
rement of all parameters at regular intervals was uploaded to the Arduino board and is available
on GitHub (https://github.com/naloufi-manel/low_cost_sensor.git (accessed on 20
March 2024) with the Python (version 3.8.1) and R scripts (version 4.1.1).

4.2.1.1. Low-Cost Sensors
The pH sensor, which measures the hydrogen ion activity in solution, comprises a pH glass

electrode and a silver/silver chloride reference electrode (Bogdan et al., 2023). The pH-1 sensor
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(SENO161-V2, DFRobot) was cheaper than the industrial pH-2 sensor (SEN0169-V2, DFRobot,
Shanghai, China).

The specific conductivity reflects the number of electrolytes dissolved in the wa-
ter (Conductivity Meter V2, 2023). We selected the DFR0300 (DFRobot) sensor since it is
the cheapest sensor compatible with Arduino (Zhu et al., 2023). However, its detection range
may be more adapted for coastal environments than rivers (Table 2.1). For the conductivity
measurements, Equation (3.2) is commonly used to correct the measurements by comparing

with a reference measurement at 25 °C :

ECy

ECy; = —————
® 7 1+a(T —25)

2.1

where E'Crp is the conductivity at temperature 7' (°C), ECy; is the conductivity at 25 °C,
and (°C™!) is a temperature compensation factor corresponding to the percentage increase per

degree (Hem, 1985).

TABLE 2.1 — Characteristics and specifications of the Arduino sensors (Farouk et al., 2022; DS18B20, 2023; pH
V2,2023a,b; Conductivity Meter V2, 2023; Hakim et al., 2019; Arduino, 2023; DO, 2023; Villeneuve et al., 2006).

Parameters | Temperature pH-1 pH-2 Conductivity | Turbidity | Dissolved
Oxygen

°C) (mS-cm™1) (NTU) | (%)

Sensor DS18B20 | SEN0161-V2 | SEN0169-V2 | DFR0300 SENO0189 | SEN0237-A

Detection —10to 85 0to 14 0to 20 0 to 1000 | 0to 100

range

Resolution 0.010 0.010 0.001 1.000 0.050

Measurement +0.5 +0.5 +0.1 +1.0 +3.6 +2.0

Accuracy

Price (EUR) 8 39 65 70 9 148

For turbidity measurement, the selected sensor (SEN0189, DFRobot) measures the light

transmittance and scattering rate which changes with the amount of total suspended solids (Ar-
duino, 2023). The sensor uses an infrared LED as a light source and an infrared phototransistor to
detect the amount of light not blocked by the water. A change in voltage is obtained and conver-

ted into unit measuring turbidity NTU (Nephelometric Turbidity unit) using Equation (3.1) in a
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range from 1 to 1000 NTU (Hakim et al., 2019; Arduino, 2023). The upper part of the sensor is
covered with a heat-shrink sheath to make it waterproof, and the sensor is shielded from external

light using an opaque plastic cover (Trevathan et al., 2020) :

3.9994 — voltage
0.0008

Turbidity = 2.2)

For measuring dissolved oxygen (SEN0237-A, DFRobot), we select a galvanic sensor
with a filling solution and a membrane cap. Its response time stands within a few seconds. Since
dissolved oxygen concentration is directly influenced by temperature, we include a temperature
compensation in our code (DO, 2023; Villeneuve et al., 2006). Equation (3.3) is usually used to

take into account the temperature effect (DO, 2023) :

volt +bxT —bx*xT.y
0= 100 2.3
wolty + b% T — b s Tog 2-3)

where DO is the dissolved oxygen (in saturation (%)), voltis the voltage measured at a temperature
T', volt is the voltage corresponding to the saturated dissolved oxygen measured at a temperature
Tvai, and b (°C1) is a temperature compensation factor (DO, 2023).
4.2.1.2. Reference Sensors

To validate the low-cost sensors (noted Arduino sensor), we compared their readings with
2 high-end HYDROLAB Series 5 multiparameters (OTT, Aix-En-Provence, France), which
embedded 4 sensors (noted OTT). For dissolved oxygen, we also compared the low-cost sensor
with a MINIDOT LOGGER sensor (PME, California, United States), which recorded data on
an internal SD card (PME, 2023). The PME sensor measures dissolved oxygen concentration in

water using a fluorescence method (PME, 2023).

4.2.2. Specifications and Price

Tables 2.1 and 2.2 show the specifications, operating range, accuracy, and the price of
each sensor. The price of the monitoring devices includes the 6 sensors prices added to EUR
159 for the total price of the other components (battery, microSD card and reader, ADC module,
box, Arduino card, and isolators) and EUR 93 for the LoRa connection. The total price of each
monitoring device was between EUR 285 and EUR 400. For the Hydrolab multiprobes from
OTT, the price reached EUR 3050 and the PME sensor cost EUR 1775.
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TABLE 2.2 — Characteristics and specifications of the Hydrolab multiprobes (OTT) (Hydrolab DS5X, 2024).

Parameters Temperature pH Conductivity | Turbidity
°C) (mS-cm™) (NTU)
Detection range —5t0 50 Oto 14 0to 100 0 to 3000
Resolution 0.01 0.01 0.0001 0.10
Measurement Accuracy +0.100 +0.200 £0.001 +1.000
Price (EUR) 480 380 1540

4.2.3. Cleaning and Calibration

Standard solutions at different concentrations were used to calibrate each sensor except
for the temperature sensor. The standard solutions were checked using an Eutech multiparameter
probe for pH and conductivity, the CellOx® 325 sensor for the dissolved oxygen and the 2100P
turbidimeter (HACH) for turbidity. For the pH, we used standard buffer solutions (pH 4, 7 and
10) from VWR. To remove contamination, which leads to a reduction in slope and unstable
readings, every month, the pH sensor must be immersed in 0.1 mol - L™* of HCL solution for
a few hours then rinsed with deionized water. For conductivity, the standard solutions were
prepared from a 1 M stock solution of potassium chloride. Standard solutions were diluted in
deionized water to reach 0.36 mS - cm™!, 0.72 mS - cm ™! and 1.41 mS - cm™. For the turbidity
sensor, we used a Formazin stock solution at 4000 NTU (prepared from dissolved hydrazine
sulfate and dissolved hexamethylenetetramine). The stock solution was diluted to 0, 20 and 200
NTU in deionized water. Finally, for the dissolved oxygen sensor, a sodium sulfite solution was
used for the zero point (VWR), and tap water maintained at saturation with a bubbler served
as a 100% standard solution. The oxygen sensor needed to be prepared before use by adding
a filling solution into the membrane cap, which consisted of a 0.5 mol - L™! NaOH solution.
The filling solution needed to be changed every month. Then, the sensor was calibrated at a fixed
temperature (between 20 and 25 °C) in the 100% saturated water.

Each sensor was carefully washed with deionized water and wiped before calibration.
The calibration took place at a fixed temperature and under agitation at 700 rpm using a magnetic
stirrer. The sensor was kept in the standard solution for a few minutes to stabilize, after which
the calibration point could be set. Each calibration point was measured 10 times, and the fitting

regression curve (y = ¢x + d ) was determined. For each parameter, the coefficients (¢ and d)
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were used to correct the measured values after data recovery. Calibration needed to be performed

once a week.

4.2.4. LoRa Gateway

The LoRa Shield v1.4 from Dragino with SX1276 LoRa Chip fully compatible with
Arduino models was associated with the Arduino Mega 2560, which operates at a frequency
of 868 MHz (European Union) and contains an external antenna (Dragino LoRa Shield, 2023).
The LoRa modules were configured at a bandwidth of 125 kHz, transmit power of 14 dBm,
and spread factor of 12. We tested 2 different models of the LoRa Gateway to compare their
performance in terms of range coverage. The first gateway is a Raspberry gateway made of LoRa
hat for RPi (Raspberry Pi) with a SX1276 LoRa Chip associated to a RPi 3 and implemented
with a single-channel gateway program (LoRa, 2023). The second gateway is the Arduino
pro Gateway LoRa connectivity. It allows up to 8 LoRa Channels in the 868 Mhz frequency
(Semtech solution) and includes a microchip SX1301 with two SX1257 and an on-board UFL
antenna. According to the manufacturer, LoRa gateways allow connecting devices within several
kilometers (Arduino Pro Gateway Documentation, 2023). For the two gateways, we estimated
the spatial coverage of the gateways by measuring the distance between the end node and the
gateways using a signal levels analysis. The transmission distance was tested regarding the
quality of the signal by analyzing the Received Signal Strength Indicator (RSSI), the Signal-
to-Noise Ratio (SNR) measured by the gateway and the time interval between the reception of
2 successive data. RSSI measures the distance between a transmitter and a receiver and SNR
quantifies the strength of the signal regarding the amplitude of the ambient noise (Tsanousa
et al., 2021; Audéoud et al., 2020). These indicators are commonly used for the estimation of
the maximum distance (Guidara et al., 2021). The tests were performed in dense and residential
urban zones (Greater Paris area), with the gateway placed at a fixed position and the end device

at different positions (Figure S9).

4.2.5. Sensor Validation

The reliability and the long-term stability of the tested low-cost sensors were checked
in laboratory and in the field. The field tests were conducted in Bassin de La Villette (Paris,
France), where OTT sensors were already deployed (Guillot-Le Goff et al., 2023).

4.2.5.1. Accuracy
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The accuracy of each sensor after a calibration was tested for 2 sensing device units
in order to evaluate the linearity and the repeatability of each sensor (norm ISO 21748 : 2017
and NF EN 17075 2018) (Venelinov, 2016). The tests were performed in the laboratory at
ambient temperature (20.97 £ 0.12 °C) under agitation at 700 rpm. To validate the temperature
sensor, the reading was performed in a water bath with a range of temperature from 5 °C to 30 °C,
incremented by 5 °C every 8 min, followed by stabilization for 15 min at the same temperature.
For the other sensors, between 2 and 7 standard solutions at varying concentrations were used.
For each sensors, readings were repeated 10 times for each standard solution (Table 2.3).
Repeatability was estimated by calculating the standard deviation of the sensor’s measurements
during the repeated trials. Trueness and linearity were evaluated by comparing the readings with
the value of the standard solutions (true value). A linear regression was generated by plotting
the low-cost sensor measurements against the known concentration of the standard solutions.
Reproducibility of the sensing devices was evaluated by inter-comparison of the performance
of two sensing devices. For each sensor, 2 units were tested in parallel for a week with the
same standard solutions. Each parameter except for oxygen (due to high-cost of the sensor)
was measured every 15 min. The temperature was maintained at around 20 °C, the pH sensors
were placed in a pH 4.22 solution, the conductivity sensors were placed in a 1.42 mS - cm™!
solution and finally, the turbidity sensors were placed in a 10 NTU solution. Reproducibility was

estimated by calculating the standard deviation between 2 units.
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TABLE 2.3 — Descriptive analysis of sensors calibration for 2 units.

Parameters Temperature pH-1 | pH-2 | Conductivity Turbidity Dissolved
Oxygen
(&S] (mS - em™1) (NTU) (%0)
Number of | 368 30 30 |44 77 20
measures (n)
Standard solu- | Temperature 4,7 and 10 | 4 standards from | 7 standards | 0 and 100
tions from 5 to 30°C 0.22to 1.42 from 0 to 800
Linearity 0.999 0.999 | 0.999 | 0.998-0.993 0.998 0.999
(units 1-2)
Slope of the
curve
Unit 1 0.999 0.938 | 0.959 | 1.060 0.947 1.038
Unit 2 0.999 0.950 | 0.984 | 1.083 0.916
Repeatability
Unit 1 0.01 0.02 | 0.01 |0.02 3.66 1.74
Unit 2 0.01 0.02 | 0.01 |0.02 3.69
Reproducibility| 0.03 0.02 | 0.01 |0.02 3.54
4.2.5.2. Temperature Effect

In order to analyze the effect of temperature on the measurement by all the sensors and

to identify the correct parameters for compensation, each sensor measured every 15 min under

agitation at 700 rpm a standard solution previously cooled at 10 °C, allowing the solutions

to reach an ambient temperature for 3 h (from 10 to 19 °C). The standard solutions were the

following : pH 10.2; conductivity 0.72 mS - cm™!; turbidity 20 NTU; and dissolved oxygen

100% O, saturated water via a bubbler. For dissolved oxygen, the age of the membrane cap

was also taken in consideration by using a 6-month-old membrane and a new membrane.

For the new membrane, the temperature variation analyzed was between 14 and 25 °C. In order

to distinguish variations due to temperature fluctuations from sensor errors, the results were

compared to readings of the same standard solutions at a fixed temperature of 20.97 + 0.12 °C

for 3 h.

4.2.5.3.

Temporal Stability in the Laboratory
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Testing a probe’s stability in the laboratory, where environmental conditions are tightly
regulated, provides reliable test conditions (de Camargo et al., 2023). The controlled conditions
of the laboratory enable the probe’s readings to be compared with known standards to verify
that the measurements are accurate and consistent. The short-term and long-term stability of the
sensors was tested in the laboratory at a steady ambient temperature of 19 £ 2 °C. To evaluate
the short-term stability, we collected 3 replicates of 1 L water samples from Créteil Lake and
from the lower Marne River (Paris area, France) in April 2022. The samples were placed under
agitation, and measurements were taken continuously with the sensors every 10 s for 3 to 6 h.
This short-term analysis was carried out under continuous supervision in order to immediately
detect any problem or rapid variations. The pH-2 was not tested, as it was bought later.

The long-term stability was analyzed by placing each sensor in a standard solution (pH :
7; conductivity : 0.72 mS - cm™ ! ; turbidity : 20 NTU ; and dissolved oxygen : 100% O, saturated
water via a bubbler). Measurements were taken every 3 to 5 min for approximately 3 months.
For dissolved oxygen, the PME sensor was used as a reference.

4.2.5.4. Temporal Stability in the Field

To test the long-term stability of the sensors in the field, we installed the low-cost
monitoring devices at two sites 1 km apart from each other (A and B) at Bassin de la Villette
(Paris area, France), as shown in Figure 2.2. Site B is in front of the bathing site of Paris
Plage, and site A is upstream of site B, enabling contamination to be anticipated at the bathing
site. Every year, analyses are regularly carried out by the City of Paris during the summer
period (June to September) to monitor the microbiological quality in the proximity of site B.
In 2022, the results indicated a good microbiological quality, with an average concentration of
Escherichia coli and intestinal enterococci of 101 £ 78 MPN/100 mL and 44 + 50 MPN/100
mL, respectively. As for the physico-chemical parameters measured, the temperature was 21.27
+ 2.83 °C, the conductivity was 0.65 &= 0.03 mS - cm !, and the turbidity was 7.32 4= 2.61 NTU.
These 2 selected sites are part of a research project where high-precision OTT multiparameter
probes have been deployed continuously since 2020. This long deployment was regularly verified
and maintained in order to provide reliable data. OTT multiparameters were used as a reference.
Measurements were performed in situ at site A from early September 2022 to early January
2023 and then from May 2023 to June 2023, and at site B from early September 2022 to the
end of November 2022 . For site B, the OTT probe only measures temperature and conductivity.

Occasional loss of data occurred due to unit malfunction or installation problems on site.
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The installed low-cost devices were changed every week in order to clean the sensors and to
check their calibration. In the beginning, cleaning and calibration were carried out directly
in the field on the same unit. However, because of the length and complexity of the process
starting from 15 October 2022, the method was modified by alternating between two units
each week. The sensors of device N°2 were cleaned, calibrated and stabilized for a few hours
in the laboratory before replacing the device N°1 in the field, and vice versa. The measurement

interval was also optimized during these stability tests.

B OTT MS5 sensor (Temperature,
Conductivity, Turbidity, pH)
Arduino  sensor (Temperature,
Conductivity, Turbidity, pH)

OTT DS5 sensor (Temperature, Conductivity)

Arduino sensor (Temperature, Conductivity, Turbidity, pH,
Dissolved oxygen)

FIGURE 2.2 — Installation sites (A,B) and parameters measured by each type of sensor (source : Google Maps).

4.3. Results and Discussion

Figure 2.3 shows a low-cost sensing device once it is completely assembled.

106



Chapitre 2

Sensing device Gateways

Network server - Live data

B (((@ [MIMMOSSTACK  mz Oveview [ Applications o Gateways 2% Organizations | @ v sandbr

i-70b3d57ed00519f6 » Live data

B3 testapp
eui-70b3d57ed00519f6

B8 Overview ID: eui-70b3d57ed00519f6
X End devices 40 Ln/a « Lastactivity 27 seconds ago

(3 Livedata Overview ve data Messaging Location Payload formatters General settings

Time Type

1t * 1 Pau o
<> Payload formatters v B L]

5 Formard uplink data message 7, ph2: 7, temp: ,turb: 203 60 © @ 1 SF7BN125 4.2 RSSI: 42
. Integrations v

17 Forward uplink data message r: 2608AAF2 < @ 1 { do: 160, ec: 8.7, ph: 7, ph2: 7, temp: 20,14, turb: 20
e Collaborators

age 7, ph2: 7, temp: , turb: 203 80 © & 1 SF7BW125 a2 a2

Ov APlkeys
Formard uplink data message Deva 2608MF2 O B 1 do: 100, ec: . ph: 7, ph2: . temp: . turb:

2 General settings 4 14:43:23 Forward uplink data message ph2: 7.01, temp: 20.15, turb: 20 } 00 <« i@ rt: 1 Tate: SF7BW125 4.2 RsSI: 42

FIGURE 2.3 — Hardware components involved in the field experiment : 1 : temperature, 2 : turbidity, 3 : conductivity,
4 :pH-1, 5 : pH-2, 6 : dissolved oxygen, A : LoRa HAT gateway, B : LoRa Arduino Pro gateway.

4.3.1. Accuracy of the Sensors

After calibration, the accuracy of each sensor was evaluated with the linearity and
repeatability (Table 2.3). Correlation between measured values and the expected values of the
standard solutions showed good linearity with a significant rh > 0.99 (p < 0.01) for all sensors
(Figure S1). The slopes were between 0.92 and 1.08, which showed a good precision of the
measure compared to the true value (Table 2.3). Each sensor from both devices showed high
repeatability with low standard deviation values between the repeated measures, with values
ranging from 0.01 to 0.02 for temperature, pH and conductivity sensors (Table 2.3). Turbidity
and dissolved oxygen sensors showed less accuracy with higher standard deviation between
repeated measures. The reproducibility between units was satisfactory for all sensors except the
turbidity since measurements of the 2 sensing devices were in good agreement as demonstrated
by the low standard deviation values. A recent review of Zhu et al. (2023) compiled performance
indicators of several low-cost sensors, including the SEN0169, DFR0300, and SEN0189 sensors

selected in our study (Moyon Rivera and Ordoniez Berrones, 2019; Saputra et al., 2017; Rozaq
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et al., 2020; Hakim et al., 2019; Trevathan et al., 2020). Zhu et al. (2023) noticed that the
information was heterogeneous and somewhat difficult to compare for trueness and linearity,

and most of the time repeatability and reproducibility were not estimated.

4.3.2. Reproducibility of the Sensors

In order to verify if there is a difference in the accuracy of different units of the same
type of sensor, a one-week experiment was carried out with two units of each sensor placed in
the same standard solutions (Figures 2.4 and S5). The temperature measurements of the two
units matched almost perfectly. The average difference between the 2 units was only 0.07 °C,
with a significant correlation of Spearman (Figure 2.4A, r = 0.98, p < 0.01, n = 434). There
was fairly good reproducibility between the 2 conductivity sensors, with a mean deviation of
0.04 mS - cm™ 1, a low coefficient of variation of 2.83% for unit 1 and 2.14% for unit 2 and a

low but significant correlation (Figure 2.4B, r = 0.30, p < 0.01, n = 434).
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FIGURE 2.4 — Comparison of two unit sensors placed simultaneously in the same solution. In blue unit 1, and in red
unit 2. (A) Temperature, (B) turbidity.

The pH-1 sensor needed a few hours to stabilize its reading and the pH-2 meter took one
day (Figure SSA,B). After stabilization, the mean deviation between the 2 units was low for both
sensors (pH-1 : 0.09 and pH-2 : 0.02), with a low coefficient of variation for pH-1 of 0.47% for
units 1 and 1.71% for unit 2 and for pH-2 0.23% for unit 1 and 0.47% for unit 2.

For the turbidity sensor, the two units differed by an average of 3.91 NTU (monitoring of
a 10 NTU solution, Figure 2.4B). The correlation was significant but weak (r = 0.32, p < 0.01,
n =434). Figure 2.4B shows that the 2 units displayed the same trend over time but with a greater
dispersion for the 2nd unit (coefficient of variation 29.81% for units 1 and 38.06% for units

2). The reproducibility appears rather poor for the sensor. This may be due to the difference in
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performance of the infrared LED and phototransistor inside the sensors (Zhu et al., 2023).

4.3.3. Sensitivity to the Environment

Low-cost sensors are usually sensitive to the environmental conditions and need retrofit
actions such as compensation equations, waterproof enclosure, or coating (Zhu et al., 2023).
For instance, water temperature is known to influence the measure of some parameters and the
sensitivity to sensor current (Hayashi, 2004; Jeroschewski and Zur Linden, 1997). We analyzed
the effect of temperature by comparing between 3 h series of measurements under increasing
temperature conditions with measurement at fixed ambient temperature. Under fixed conditions
of temperature, for all of the sensors, the fluctuation over time of the measurement was low,
showing a good stability of the measure. Compensation for the temperature effect was not
necessary for the 2 pH meters and the turbidity sensor. The coefficients of variation of the stable
temperature series for pH-1 and pH-2 meters were 0.45%, 0.22% (respectively), and 12.76%
for the turbidity sensor. Under fluctuating temperature condition, the coefficients of variation
were higher (0.52% and 0.47% for pH meters and 14.38% for the turbidity sensor). This slight
variation as confirmed by Figures S2A,B and 2.5A,B was rather due to random variations
observed over time.

In the case of conductivity and dissolved oxygen sensors, there was a noticeable deviation
in the measurement under varying temperature (3.09% and 5.88%) compared with the fixed-
temperature measurements (1.60% and 0.63%) (Figures S2C,D and 2.5C,D). This indicates that
a compensation for temperature effect was required. Compensation coefficients were determined
by fitting a model linear curve to the data. Several values of the ‘a’ coefficient (Equation (3.2))
are commonly cited in the literature. For example, Hayashi (2004) reported an average a value
of 0.0187 °C~!(minimum-maximum : 0.0175-0.0198 °C~!), which is in accordance with the
0.019 °C~! value recommended by Clesceri (1998). Based on the EC-temperature relation, we
identified a compensation factor of 0.0265 °C~!, which is comparable to the 0.025 °C~! value
reported by Keller and Frank (1966). After compensation of the measured values using the
coefficient 0.0265 °C~!, the coefficient of variation displayed a lower value (1.19%), close to the
coeflicient of variation obtained at a fixed temperature. The 0.0265 coefficient provided a better
fit (Figure S2D) compared to the 0.0185 factor recommended by the manufacturer (Conductivity
Meter V2, 2023).

For the dissolved oxygen sensor, there was an effect of temperature on the readings
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(Figure 2.5C,D). This result is not surprising since the saturation of oxygen in water is
dependent on the temperature and due to the change in permeability of the sensor mem-
brane (Hitchman, 1978; Villeneuve et al., 2006). By fitting Equation (3.3) to the increasing
temperature series, a factor ‘b> of 14.48 °C~! was determined and used for the temperature
compensation of the sensor signal. After compensation, the coefficient of variation decreased
from 5.88% to 1.78%, which is closer to the coeflicient of variation of 0.63% obtained for the
reference analysis at a fixed temperature (Figure 2.5D). Moreover, the cap membrane should be
replaced at least every 6 months since the coefficient of variation with a new membrane was

1.78%, whereas it was 7% with a membrane used for 6 months (Figure S4).
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FIGURE 2.5 — Temperature effect on the turbidity and dissolved oxygen. (A—C) Fixed temperature analysis, (B) turbi-
dity measurement at different temperatures, (D) Dissolved oxygen before compensation in blue, after compensation
in black and the PME sensor in red.

Other external factors may affect the sensing device, causing irreversible damage and
reducing its lifespan. We tested if the battery was overheating the sensors housing and whether
this might affect vulnerable components on the Arduino board. The manufacturer specify that
Arduino boards should be operated between —25 °C and +70 °C (Arduino Boards, 2023).
During 3 months of monitoring temperature in the laboratory, the temperature in the box

(19.97 £ 1.77 °C) and the water temperature (19.15 4+ 1.91 °C) remained steady. This indicates
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that at ambient temperature, the battery did not overheat the waterproof box.

4.3.4. Temporal Stability in the Laboratory

Following calibration, a short- and long-term stability analysis was carried out with all
sensors. This checking was rarely performed for the low-cost water quality sensors (Zhu et al.,
2023).

4.3.4.1. Short-Term Stability

Different surface water samples were monitored for 3 to 6 h at room temperature. The rea-
dings showed a relatively satisfactory temporal stability with average standard deviation values
not significantly different from those obtained during the calibration, except for temperature (¢
test,n =3, p > 0.05) (Table 2.4). Different studies checked the stability of DFRobot sensors using
standard solutions but only for a few minutes to several hours (Saputra et al., 2017; Trevathan
et al., 2021; Alimorong et al., 2020; Saha et al., 2018) (and Atlas Scientific (Méndez-Barroso
et al., 2020)). Generally speaking, in situ water measurement with low-cost sensors appears pro-
mising, with relatively satisfactory temporal stability for all parameters (temperature (Méndez-
Barroso et al., 2020; Alimorong et al., 2020; Saha et al., 2018), pH (Méndez-Barroso et al.,
2020; Saha et al., 2018), turbidity (Trevathan et al., 2020; Alimorong et al., 2020), conducti-
vity (Méndez-Barroso et al., 2020; Alimorong et al., 2020; Saha et al., 2018; Saputra et al.,
2017), and dissolved oxygen (Méndez-Barroso et al., 2020)).

TABLE 2.4 — Short-term analysis of sensors (repeatability).

Parameters Average | Min-Max
Temperature (°C) 0.78 0.38-1.01
pH-1 0.04 0.02-0.08
pH-2 0.03 0.02-0.06
Conductivity (mS - cm™!) 0.04 | 0.02-0.08
Turbidity (NTU) 4.68 3.89-5.46
Dissolved Oxygen (%) Arduino Sensor 2.33 1.55-3.71
Dissolved Oxygen (%) PME Sensor 0.31 0.16-0.59

4.3.4.2. Detection and Removal of Outlier for Long-Term Series

The long-term stability was checked by placing each sensor in a standard solution for
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3 months. The turbidity sensor showed a wide dispersion, which required rectification (Figure
2.6A). Indeed,the measurement of the 20 NTU standard solution gave values ranging from
0 to 1000 NTU. Filtering noise is a common pre-processing step of real-time datasets, and
numerous noise-reduction methods have been used to detect and remove outliers (Xu et al.,
2015; Le Deunf et al., 2020). A set of filtering methods was tested to identify the most optimal
one : interquartile range, density-based methods K-means, DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) clustering, combining DBSCAN with Local Outlier
Factor, Mean-shift and the ARIMA (Autoregressive Integrated Moving Average) model with
the median filter approach (Xu et al., 2015; Wang and Wang, 2019; Sedaghat et al., 2013; Yang
et al., 2021; Bianco et al., 2001).
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FIGURE 2.6 — Long-term turbidity analysis. The blue dots correspond to measurements taken by the sensors and
the red dots to measurements taken by the laboratory turbidimeter. (A) Raw data, and (B) after removal of outlier
using ARIMA with a median filter (width of 5).

The first five methods removed mainly extreme outliers, corresponding to 2.69% to
9.84% of the data. The ARIMA model, which can be used for data cleaning of non-stationary
time series (Wang and Wang, 2019; Bianco et al., 2001), seemed the best for cleansing this
turbidity dataset (Figure 2.6B). With a moving window of 3, 5 and 8 points, 18.84%), 26.77%
and 37.12% of the data were identified as outliers, respectively. Considering the data density
and trend, the optimal window seemed to be 5, but this parameter is data-dependent (e Deunf
et al., 2020). The conductivity and the dissolved oxygen datasets did not require extensive
cleaning since less than 0.01% and 0.001% (respectively) of the data were removed using
the ARIMA approach. Time series methods are robust, and efficient data cleaning tools can
process a dynamic dataset within a solid theoretical framework and detect outliers with different
properties (Xu et al., 2015; Liu et al., 2004). Since the cleaning process should be based on a

minimum modification of the original data Liu et al. (2004), for each dataset of the different
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sensors, different parameters were tested and retained.
4.3.4.3. Long-Term Stability

After cleaning of the datasets, the long-term stability was estimated using the standard
deviation. Given the manufacturer’s precision values for each sensor, the calculated standard
deviation values could be considered reasonable (Tables 2.1 and 2.5). Long-term measurements
remained quite stable for most of the sensors, with the exception of turbidity and dissolved
oxygen, which showed greater variability (Figures 2.6B and 2.7). It could be noted that the
temperature sensor correctly measured two air-conditioning incidents in the laboratory in early
November and early December (Figure 2.7A).

Figure 2.7B shows that both pH meters were fairly stable (standard deviations of 0.04).
However, after 3 months, the pH-1 meter drifted by 1.0 pH unit (Figure 2.7B). This was due
to the fouling of the electrode which was removed by soaking the sensor in a 0.1 M solution
of HCl for at least 8 h to a maximum of 24 h (pH V2, 2023a). After regeneration at the end of
December, the pH-1 meter was back to a stable reading (Figure 2.7B). The pH-2 meter is more
suitable for long-term online detection due to its ring PTFE membrane that confers resistance

to clogging (pH V2, 2023b).

TABLE 2.5 — Stability analysis of sensors : standard deviation (* without missing values during the sensor regene-
ration, ** values cleaned with an ARIMA method using a median filter).

Parameters | Value |
Temperature (°C) 1.91
pH-1 * 0.04
pH-2 0.04
Conductivity (mS-cm~1) 0.03
Turbidity (NTU) 64.85
Turbidity ** (NTU) 13.23
Dissolved Oxygen (%) Arduino Sensor | 12.42
Dissolved Oxygen (%) PME Sensor 0.73
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FIGURE 2.7 — Long-term stability of sensors reading standard solutions. (A) Temperature, (B) pH, (C) conductivity
measurement cleaned with an ARIMA model and median filter (width of 11), and (D) dissolved oxygen measurement
cleaned with an ARIMA model and median filter (width of 5).

For the conductivity sensor, only minor variations could be observed (Figure 2.7C).
A sharp decrease in the reading happened in early December due to a sudden drop in the
laboratory temperature to 11 °C (Figure 2.7C). The compensation equation was not sufficient to
make up for this sudden temperature variation. It may have originated from a desynchronization
between the water temperature variation and the optical components heat change (Shi et al.,
2022). Special care should be taken with rapid temperature variations, as the reading will not
be totally reliable. Finally, at the end of the 3-month period, the sensor needed to be cleaned to
restore a stable monitoring.

For the oxygen sensor, after one month of stable measurements, the percentage of oxygen
decreased from 95.00 + 4.37% to 36.87% (Figure 2.7D). A new calibration only helped to
stabilize the reading for a few days until the measures raised to 154.93%. A change in filling
solution is in fact necessary every month. Finally, for the turbidity sensor, the long-term standard
deviation remains quite high 13.23 NTU, though the data cleaning tremendously improved the
situation (Figure 2.6B). This high variability indicates a certain instability of the sensor. In fact,
the study of Trevathan et al. (2020) also reported low reliability and accuracy for the same

sensor with values below 100 NTU. The difference in performance of the infrared LED and

114



Chapitre 2

phototransistor of this equipment probably affects the detection limit, making the sensors more
adapted for monitoring high-turbidity waters (Zhu et al., 2023; Trevathan et al., 2021).

Overall, laboratory experiments showed that the measurements were relatively stable
over the short and long term. Readings were concordant between two units of the same sensor,
with the exception of turbidity, which fluctuated considerably and was not reliable. In terms of
sensor maintenance, the pH-1 and the dissolved oxygen sensor needs to be maintained monthly.
In addition to the oxygen sensor, the membrane should be changed twice a year. Finally, for the
conductivity sensor, care must be taken when dealing with sharp temperature variations fully.
The longevity of the sensors was not checked; however, the manufacturer datasheets usually

indicate a lifespan > 6 months (Zhu et al., 2023).

4.3.5. In Situ Validation

The accuracy and stability of the low-cost sensors was estimated by comparing with
high-end probes at two sites in Bassin de la Villette (Paris), which were already equipped with
OTT multiparameter probes (Hydrolab Sensor, 2024). Field monitoring also raised concerns
about the interferences of environmental parameters (such as sunlight and temperature variation)
with the reading signal of the low-cost sensors, especially with the turbidity sensor (Trevathan
et al., 2020).

4.3.5.1. Light Interference with the Turbidity Sensor

The ambient infrared radiation interfered with the detection of the sensor infrared LED by
the infrared photo transistor. This resulted in a daily oscillation of the turbidity readings, with a
peak in the late afternoon and evening (Figure 2.8A). Trevathan et al. (2020) also identified
a degree of ambient infrared interference during the daytime using the same sensor. To avoid
light interference from external light, the sensor should be shaded by a cover, an opaque box
or a tubing, with the bottom open to allow water to circulate freely. Half of the bottom of the
sensor with the infrared LED and the infrared phototransistor is not in the opaque box. This
allows water to circulate between the two ends, without affecting the results obtained. We partly
solved this light interference problem by shading the sensor using an opaque shell held with a
weight above the sensor submerged in the water (Figure 2.8B). However, some variations were
still present (Figure 2.8B), probably due to the inherent instability of this sensor and due to the

indirect refracted light penetrating the water (Trevathan et al., 2020).
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FIGURE 2.8 — Effect of the ambient light on the reading of the turbidity sensor. (A) Before shading, and (B) af-
ter shading.

4.3.5.2. Temporal Stability in the Field

Although calibration with standard solutions is crucial to improve the accuracy of sensors,
it is not sufficient. It is also essential to compare the results obtained from low-cost sensors with
those of reference devices, such as high-resolution sensors, to ensure their validity (de Camargo
et al., 2023).

To provide reliable data, the frequency of data acquisition should be selected to compro-
mise between noise minimization and time resolution. During the first week of monitoring at La
Villette, the time interval of 10 sec was too short and produced noised time series (Figure S6).
Later, a setup of three measurements with 10-second intervals every 20 min helped in optimizing
the data quality for the remaining monitoring period (Figure S6). The mean standard deviation
between the three measurements was low for the temperature sensor (0.010 4= 0.004 °C), the 2
pH meters (0.028 + 0.012 for pH-1 and 0.010 4= 0.007 for pH-2) and for the conductivity sensor
(0.004 4 0.001mS - cm™~!). However, the difference between the repeat measurements of the
turbidity sensor was high (42.4 4 43.9 NTU), indicating low repeatability.

As already observed in the laboratory, the two units of the temperature sensor were highly
reliable and accurate. The readings of the Arduino sensor were similar to the readings of the
OTT sensor at both sites (A and B) (Figures 2.9 and S8A). Similarly, Méndez-Barroso et al.

(2020) obtained very good performance results of the DS18b20 temperature sensor.
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FIGURE 2.10 — Conductivity measurement at site A at Bassin de la Villette. Values of the OTT sensors are displayed
in red, and Arduino sensors in blue. Black dots indicate that the sensor has been calibrated, green dots that it has
been cleaned, and gray dots that the unit has been replaced. Replacements were carried out by alternating the two
units of the same sensor every week. (A) From early September 2022 to early January 2023, (B) from May to June
2023, and (C,D) data from (A,B) averaged over 4 h and cleaned by ARIMA.

Field campaigns also confirmed that the pH-1 sensor, although reliable enough to enable
monitoring, was less accurate and stable than the pH-2 meter (Figure S6). The standard deviation
for the pH-1 meter was 0.14 (unit 1) and 0.33 (unit 2), whereas for the pH-2 meter, the deviation
was slightly lower, at 0.10 and 0.22 for each unit, respectively. The OTT sensor was the most
reliable, with a standard deviation of 0.09. Indeed, Demetillo et al. (2019) also identified an
average error of 0.18 for Atlas scientific sensors (which are slightly more costly than the pH-1

sensor) during a two-week test. This indicates the need to find the right balance between the cost
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and the accuracy of the sensor, which will depend on its intended use.

The Arduino conductivity sensors displayed a similar trend compared with the OTT
sensors at both sites (Figures 2.10 and S8B), although in May and June, few measurement errors
could be observed due to soiling. During the spring and summer, regular maintenance is required
due to biofouling as is visible for both the Arduino and the OTT sensors (Figure 2.10B). Data
post-treatment (averaging over 4 h and removal of the outliers with ARIMA model) helped in
providing time series of sufficient quality. Overall, the data obtained from the Arduino sensors
agreed well with the OTT sensors, indicating that the low-cost sensors were effective in providing
usable data. However, for setting an 10T of low-cost sensors, it should be kept in mind that the
reproducibility of the two units of Arduino conductivity sensors was sometimes low (standard
deviation of 0.17 mS-cm~! and 0.02 mS-cm™!, respectively). It should not be forgotten that
this sensor has low accuracy (factory certificate) since it is more suitable for monitoring water
quality in mariculture (Conductivity Meter V2, 2023). Some other sensors are more accurate and
more suitable for freshwater water ; however, they are three times more expensive. For instance,
the SEN0451 sensor from DFRobot displays an accuracy of 0.1 mS-cm~! (Conductivity Meter,
2024; de Camargo et al., 2023; Zhu et al., 2023).

Concerning the turbidity sensor, the readings were highly noised due to the instability of
the sensor and light interference (Figure S7). Hacker (2023) tested for a month the same turbidity
sensor and also identified an instability in the measurement. As noted by Hong et al. (2021),
the cable being too short, the sensor floats at the surface, leading to light interference. Fouling,
as indicated by the gradual increase in NTU values (Figure S7B), triggered the requirement for
regular maintenance.

Finally, the dissolved oxygen was measured over a few days, both by the Arduino sensor
and the PME sensor at site B (Figure 2.11). The two sensors displayed similar trends, although the
variation deviation was slightly greater for the Arduino sensor compared to the PME sensor
(respectively 3.56% and 1.80%). Huan et al. (2020) designed a low-cost dissolved oxygen sensor,
which displayed an average error of 2.47%. Using this sensor, they also observed daily oscillations
like we did, with peaks in the afternoon when the temperature increased. To demonstrate
that low-cost sensors operate properly on site and to help in establishing their accuracy and
reliability, long-term exposure in the field is a recommended procedure (de Camargo et al.,
2023). The low-cost temperature sensor was highly reliable, while the pH, conductivity and

dissolved oxygen sensors gave relatively satisfactory results. Over time, small measurement

118



Chapitre 2

errors tended to appear. This phenomenon was more pronounced for the Arduino sensors than
for the OTT sensors. Similarly, other sensors from DFRobot or Atlas Scientific showed good
stability and effectiveness with small measurement errors (Demetillo et al., 2019; Huan et al.,
2020; de Camargo et al., 2023). Considering the cost of the sensors tested in our study and
their relatively low margin of error, their utilization for continuous measurement in the field
was validated, given regular maintenance to ensure the reliability of the results. The results we
obtained indicate that weekly cleaning and calibration of the Arduino sensors are necessary for
some parameters. The labor cost associated with the weekly maintenance is hard to quantify
since it depends on a variety of factors, such as the installation time, the number of sensors, and

also the sites.
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FIGURE 2.11 — Dissolved oxygen measurements at site B at Bassin de la Villette. Values of the PME sensor are
displayed in red, Arduino sensors in blue, and Arduino temperature sensors in black.

After each calibration, we recommend letting the sensors stabilize for a few hours in
the standard solution before installation in the field. Finally, the turbidity sensor does not
seem suitable for the continuous monitoring of fresh waters. In environmental conditions,
the turbidity sensor quickly becomes soiled by biofilm, and the slightest particle or element
that passes through, such as a leaf, may cause a variation in the readings. Trevathan et al.
(2020) also identified a fast negative impact of fouling (less then 48 h) on signal transmission.
Zhu et al. (2023) showed that even with other brands (TSD-10 and TSW-10 from Amphenol),
the reproducibility appears rather poor for these low-cost turbidity sensors since they are all built
on the same principle. The turbidity sensor should potentially be more suitable for detecting
particular events with significantly high turbidity levels, such as wastewater (Trevathan et al.,
2020; Hakim et al., 2019). The error rate decreased with increasing turbidity (Zhu et al., 2023).
This rate was higher for turbidity levels above 100 NTU (Hakim et al., 2019; Gusri and Harmadi,

119



Chapitre 2

2021).

Based on this sensing device performance, we propose a framework to verify the reliability
and stability and to identify necessary maintenance measurement intervals for each of the sensors
(Figure 2.12). This framework can be generalized to all types of sensors other than those presented
in this study so that they can be verified before installation and data processing. A more detailed

synopsis of the framework is presented in Figure S10.
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FIGURE 2.12 — Framework for testing the reliability of sensors.

4.3.6. LoRa Gateway Performance

Long-range wide-area networks (LoRaWANs) were recently introduced as a promising
low-power technology for several 10T applications, including networks to monitor water qua-
lity (Jiang et al., 2020; Wang et al., 2019a). We analyzed the performance of two different LoRa
gateways (a LoRa Arduino Pro gateway and a LoRa HAT gateway) in their ability to retrieve
data from the end node device and to send them to the server without data corruption and loss.
Both gateways were first tested in a dense urban area (Campus of Vitry, France). The maximum

distance at which the node managed to send data was 200 m for the LoRa Arduino Pro gateway
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and 170 m for the LoRa HAT gateway, which is far below the potential distance announced by

the manufacturer for the Arduino gateway (Figure 2.13).
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FIGURE 2.13 — LoRa gateway performance. Arduino LoRa gateway in pink, LoRa HAT gateway in blue light. (A)
Received signal strength indicator (RSSI), (B) Signal-to-Noise Ratio (SNR).

Sendra et al. (2023) similarly identified a maximum distance of 150 m with the same
LoRa HAT gateway we used. Interference and path loss can occur due to structural obstacles,
such as glass, metallic surfaces or walls, and due to the interference of other electronic com-
ponents (Sendra et al., 2023; Guidara et al., 2021; Zourmand et al., 2019). As a consequence,
the signal propagation is obstructed, resulting in deterioration of the SNR and reduction in the
RSSI levels with the increasing distance. After 100 m, we observed a rapid decline in the signal
quality (RSSI levels) of both gateways, in the zone with the most obstacles. In the zone with
fewer obstacles, the quality remained relatively unchanged between 100 and 200 m. Under 100
m, the LoRa HAT gateway exhibited better performance than the Arduino gateway, while it was
the opposite between 100 and 200 m (Figure 2.13). Using a gateway combining the sx1278
(433 MHz) and ESP8266 modules, Zourmand et al. (2019) also found that the quality signal
decreased above 120 m from the gateway as indicated by the negative SNR (below the noise
floor).

We also assessed the performance of the LoRa gateways with the time interval between
the reception of two successive data (Figure S11). Up to 100 m, the interval between two measu-
rements was short 5.25 + 5.20 min for both gateways, though the LoRa HAT gateway displayed
a better signal quality. Above 150 m, the time interval increased beyond 15 min for the LoRa
HAT gateway, and over 20 min above 200 m for the LoRa Arduino gateway. However, even with
a longer time reception, the quality and quantity of the data were still integral without any loss
or degradation of the data collected. Beyond this distance limit, no data were received by the

LoRa gateways.
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The effect of the environment on the signal quality was tested with the LoRa Arduino
gateway positioned in two different sites at a distance of 50 and 100 m. The first site was
densely built, while the second site (residential area at Vitry, France) presented fewer buildings,
and therefore fewer obstacles. Figure S12A,B show that for site 2, the signal quality was slightly
better with higher RSSI at 50 m. However, there was no significant difference between the two
sites (Wilcoxon test, p = 0.25, n = 72). This result is not surprising since coverage is usually much
lower in urban areas than in open land such as rural areas, reaching up to several kilometers for

the latter (Petrariu et al., 2019).

4.4. Conclusions

Our study demonstrated the suitability of the Arduino sensors (except the turbidity sensor)
for monitoring water quality. In particular, the low-cost temperature sensor performed very well,
as well as the two pH sensors, showing good repeatability and stability in the laboratory and
in the field. However the pH-1 meter requires monthly maintenance, including regeneration of
the sensor to remove any residue on the electrode. The low-cost conductivity sensor gave more
variable results with lower accuracy. Similarly, the dissolved oxygen sensor was satisfying in
terms of data acquisition and in terms of required maintenance. The filling solution should
be changed every month and the membrane every 6 months (depending on frequency of use).
The turbidity sensor is not recommended since it is too unstable and sensitive to external light.
For a reliable low-cost sensing device, a balance has to be struck between cost and sensor
reliability, depending on the sensor’s intended use.

A framework was then proposed to help characterizing and validating the sensing devices.
This flexible framework makes it possible to integrate various sensors, to add or replace sensors
as required, and to create a variety of devices to meet different measurement objectives and
different water matrices. Finally, with a view to having a network of monitoring system, we
tested two LoRa communication modules (LoRa HAT gateway and the LoRa Arduino pro
gateway). Both performed well, with maximum communication distances, respectively, of 170
m and 200 m.

This low-cost monitoring device will be used in networks for the continuous acquisition
of water quality data in a river. The provision of a dense multiprobes network integrated into

an IoT system would enable real-time monitoring with greater precision due to the multitude
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of sensors. Coupling with a real-time anomaly detection system, like a nonlinear cooperative
control algorithm based on game theory (Casado-Vara et al., 2018), would help in improving
the continuous monitoring of surface water and reducing maintenance costs. Further studies are
required to verify this hypothesis. The data collected with the devices will also feed machine
learning models to predict the water quality and set up an alert system for urban bathing
sites. It will also help with rationalizing the sampling strategy during the bathing season to
measure bacterial indicators of fecal pollution. These combined approaches will improve sensor

performance, reduce cost, and accelerate decision-making processes.

Data Availability Statement : This dataset is not yet openly accessible.
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4.5. Appendix
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FiGURE S9 - Site 1 (Campus of Vitry) (A) and site 2 (residential area at Vitry) (B) for the 2 LoRa gateways tests.

128



Chapitre 2

FIGURE S10 — More detailed synopsis of the framework for testing the reliability of the sensors.
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5. Conclusion

Permettre la baignade en riviere est un enjeu a plusieurs niveaux : i) améliorer la qualité
de I’eau, ii) favoriser le cadre de vie des habitants et iii) diminuer, in fine, les risques pour les
futurs baigneurs, incluant dangers physiques, tels que les courants forts, les obstacles submergés
ou les risques li€s aux bateaux et aux infrastructures hydrauliques, nécessitant une vigilance
accrue et le risque microbiologique. Un suivi de la qualité bactériologique est requis par la
directive 2006/7/EC pour autoriser la baignade et assurer une surveillance continue. Dans le
cadre de notre approche cela nécessite de trouver le bon équilibre entre :

- L'utilisation de systemes de surveillance microbiologique de haute qualité comme
ColiMinder, dont le colt est élevé, a des positions stratégiques au niveau de la riviere pour la
zone de baignade.

- L’installation des capteurs physico-chimiques a faible cofit sur un réseau Internet des
Objets pour la prédiction de la qualité microbiologique permettant un suivi en continue des
différents parametres.

- En combinant des modeles d’apprentissage automatique et des capteurs comme outils
de prédiction de la qualité microbiologique et d’alerte, il est possible d’optimiser, tant sur le
plan temporel que spatial, I’effort d’échantillonnage effectué par des opérateurs humains.

Ces interventions sont particulierement nécessaires lorsque le modele ne parvient pas a
estimer correctement la concentration en E. coli, contribuant ainsi a enrichir la base de données
et a améliorer les performances des modeles de prédiction.

Les progres de la technique de surveillance de la qualité de I’eau soulignent I’importance
d’optimiser 1’échantillonnage, car ceci impacte fortement le cofit du suivi de routine (Jiang et al.,
2020). S’ajoute a cela la mise en place d’un réseau de capteurs dont les données collectées
serviront a alimenter des modeles de machine learning pour prédire la qualité de 1’eau et
optimiser les stratégies d’échantillonnage dans les zones de baignade urbaines. Un cadre flexible
a été proposé au niveau de notre étude pour intégrer divers capteurs et créer des dispositifs adaptés
a différents besoins. Notre étude a montré que les capteurs Arduino, a I’exception du capteur
de turbidité, sont adaptés pour surveiller la qualité de I’eau. Le capteur de température a faible
cott et les capteurs de pH se sont révélés fiables, bien que le capteur pH-1 nécessite un entretien
mensuel. Le capteur de conductivité a offert des résultats plus variables, et le capteur d’oxygene

dissous, bien qu’efficace, requiert un entretien régulier. Le capteur de turbidité, en revanche, est
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trop instable et sensible a la lumiere ambiante. Nous avons testé un systeme d’ombrage qui c’est
révélé insuffisant. Il serait intéressant d’explorer 1’utilisation d’un tube opaque pour protéger le
capteur de la lumiere. Corriger I’interférence crée par la lumiere ambiante sur le signal pourrait
constituer une autre piste d’amélioration comme suggéré par Trevathan et al. (2021). Concernant
I’envoi des données, la communication via LoRa nécessite encore des améliorations, notamment
en testant d’autres modules, avant son déploiement pour la surveillance en temps réel de la qualité
de I’eau. En effet, la portée actuelle de communication avec les passerelles testées ne dépasse
pas 200 metres.

Avoir une meilleure représentation des données permettrait d’augmenter la performance
et la fiabilité des modeles pour le développement d’un systeme de surveillance en temps réel et
d’alerte précoce (Jiang et al., 2020). Dans le cadre des méthodes d’apprentissage automatique,
les algorithmes reposent sur 1’hypothese que le jeu de données utilisées pour I’entrainement et
pour le test présentent les mémes caractéristiques (Noam, 2016). La méthode d’apprentissage
par transfert repose sur cette hypotheése. Cependant, nos résultats montrent que transposer
directement a un site un modele entrainé sur un jeu de données d’un autre site ne donne pas
toujours des résultats fiables. Une autre possibilité qui peut étre explorée afin d’améliorer les
performances des modeles de prédictions est de créer un méta-modele regroupant par exemple
2 modeles ayant des bonnes performances de prédictions. En effet, nous avons constaté que
les modeles peuvent €tre complémentaires pour certains parametres. En sélectionnant deux
modeles présentant un bonne performance de prédiction chacun, par exemple, Random forest
et KNN, nous avons observé que pour 32,9% des mesures un des deux modeles permettait
une estimation raisonable de la concentration en E. coli. Toutefois, 1’apprentissage par transfert
peut étre plus optimisé en combinant un méta-modele avec 1’utilisation de larges bases de
données publiques. Explorer d’autres bases de données avec un plus grand jeu de données
permettrait d’augmenter les connaissances en identifiant les similarités avec notre cas d’étude.
Ainsi grace a I’apprentissage par transfert, les connaissances acquises a partir d’un jeu de
données d’entrailnement (source) peuvent étre transférées sur un autre jeu de données (cible)
(Noam, 2016). Cette stratégie peut offrir un avantage car I’entrainement de plusieurs modeles
peut étre gourmand en données et coliteux en temps de calcul. Ainsi, une collaboration a été mise
en place avec le Syndicat Marne Vive pour explorer I’approche d’apprentissage par transfert a
I’aide de base de données internationales pour prédire la qualité microbiologique de la Marne

en utilisant la base de données de la nouvelle z€lande, 3 fois plus grande (Balachandran et al.,
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2022). Les résultats ont montré qu’en combinant les meilleurs modeles obtenus sur les deux
jeux de données pour prédire la qualité de I’eau en Marne, on obtient un modele plus précis,
avec un RPD passant de 1,25 pour le meilleur modele de machine learning initial (entrainé et
testé sur la Marne) a 1,47 pour le métamodele final.

Enfin, comme nous avons pu l’observer a travers les modeles de prédiction appliqués
sur la Marne et la Seine, il existe un défaut de transférabilité d’un modele entrainé sur une
riviere vers une autre. Cette limitation pourrait €tre liée a des différences spécifiques entre les
deux environnements. Ainsi, une meilleure compréhension des sources d’incertitude au niveau
du modele, ainsi qu'une étude approfondie de la dynamique des contaminations microbiolo-
giques, permettrait potentiellement d’améliorer la précision des prédictions et de mieux saisir

la variabilité des résultats entre les différentes rivieres.
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Chapitre 3 : Incertitudes et variabilité des
dynamiques bactériologiques dans la sur-

veillance des eaux de surface

1. Introduction

L’acces a une eau douce de qualité est fondamental pour la santé humaine et I’environ-
nement. Environ 60 a 80% des besoins mondiaux en eau douce sont satisfaits par les eaux de
surface (Bunsen et al., 2021), faisant de la gestion durable des ressources en eau une priorité
de ’agenda 2030 des Nations Unies (Bunsen et al., 2021). Divers services écosystémiques et
besoins sociaux dépendent de la qualité et de la quantité d’eau douce disponible : le soutien de
la faune aquatique et de la biodiversité, I’irrigation, les activités récréatives, ainsi que les usages
industriels (Giri, 2021).

En région parisienne, les activités récréatives en lien avec les eaux douces constituent un
enjeu relativement ancien qui réémerge récemment. En effet, depuis le milieu du XIXe siecle,
de nombreuses piscines municipales ont vu le jour le long des rives de la Seine et de la Marne.
Les Parisiens ont ainsi commencé a profiter de ces espaces pour se détendre et se baigner
(Pardailhé-Galabrun, 1983; Kistemann et al., 2016). Cependant, au début du XXe siecle, en
raison de la mauvaise qualité des eaux, la baignade en Marne a été interdite dans le Val de
Marne en 1970 par un arrété préfectoral (Schaffner et al., 2009; Qin et al., 2011). Au cours des
cinquante dernieres années, 1I’amélioration de la qualité de 1’eau a progressivement mis I’accent
sur la qualité microbiologique, régulée par la directive 2006/7/CE pour les eaux de baignade
(Schreiber et al., 2015). Ce désir politique et sociétal de reconquéte des rivieres urbaines pour
la baignade est de plus en plus pressant en Ile-de-France, tant pour la Seine que pour la Marne,
avec 'ouverture de plusieurs sites de baignade prévue pour 1’été 2025 en héritage des Jeux
Olympiques et Paralympiques 2024.

Dans cette région, les projets de réhabilitation des rivieres et de création de zones de

baignade symbolisent cette volonté de reconquéte. Ces initiatives s’inscrivent dans une démarche
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de préservation des écosystemes aquatiques et visent a restaurer la qualité des eaux, notamment
en réduisant la contamination microbiologique d’origine anthropique, qui constitue une source
majeure de risques pour la santé publique. L’ouverture de sites de baignade en Marne et en Seine
illustre cette dynamique (Schaffner et al., 2009; Qin et al., 2011).

Bien que la qualité de I’eau se soit globalement améliorée en Europe depuis le XXe siecle,
malgré la croissance démographique, cette amélioration est principalement attribuée a la gestion
des sources de pollution ponctuelles, favorisée par les 1égislations européennes (91/271/CEE,
2000/60/CE, 2006/07/CE). Ces législations ont conduit a une meilleure gestion des réseaux
d’assainissement, a la modernisation des stations d’épuration et a une réduction des émissions
polluantes (Mouchel et al., 2020; Whelan et al., 2022). Cependant, les sources de pollution
diffuses demeurent problématiques et encore peu étudiées comparé aux sources ponctuelles,
plus faciles a identifier (Garcia-Armisen and Servais, 2007; APE Etats-Unis, 2022). Or, les
schémas de pluie et de ruissellement peuvent conduire a des déversements d’eaux usées non
traitées dans les eaux de surface (Whelan et al., 2022) et la pollution chimique et microbienne
limite I’utilisation de I’eau en raison des risques sanitaires, impactant ainsi I’ état écologique des
plans d’eau et des rivieres.

L’intégration de I’incertitude dans les modeles de gestion de la qualité de I’eau est cruciale
pour prendre des décisions éclairées sur I’ouverture des zones de baignade. Les évaluations de
la qualité de I’eau, dans le cadre de programmes de gestion des ressources en eau, comparent
souvent les concentrations mesurées d’indicateurs de contamination fécale a des normes de
qualité établies sur la base de risques épidémiologiques (Benham et al., 2006; Gronewold and
Wolpert, 2008). Toutefois, la variabilité méthodologique associée a la quantification des BIF
peut avoir un impact significatif sur les actions de gestion (Griffin et al., 2001; McBride et al.,
2003; Gronewold and Wolpert, 2008). Une meilleure compréhension des sources de variabilité,
y compris celles introduites par les méthodes de mesure et les conditions environnementales, est
nécessaire pour générer des décisions de gestion robustes, telles que 1’ouverture ou la fermeture
des sites de baignade.

La dynamique de dégradation de E. coli apres un événement pluvial ou une pollution
accidentelle est un autre facteur essentiel a considérer. Les modeles utilisés pour évaluer la
qualité de I’eau doivent intégrer des parametres reflétant le taux effectif de perte des BIF
au fil du temps, en tenant compte de divers facteurs environnementaux (Auer and Niehaus,

1993; Ferguson et al., 2003). La modélisation de la décroissance bactérienne, souvent basée
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sur des modeles de décroissance de premier ordre, est couramment appliquée dans les études
sur la décroissance des BIF (également désigné comme un taux de « disparition » ou de
«mortalité ») (Sinton et al., 1999; Noble et al., 2004). Ce taux varie selon différentes conditions
environnementales, telles que I’irradiation solaire et la température de 1’eau ; nous désignerons
donc ce taux comme un « taux de disparition ». Cependant, la variabilité du taux de disparition
des BIF en réponse a d’autres facteurs, y compris la concentration initiale, n’est pas encore bien
comprise (Gronewold et al., 2011). La plupart des études sur la décroissance des bactéries ont
été menées dans des conditions contrdlées en laboratoire ou in situ (Korajkic et al., 2014; Dick
et al., 2010; Tijdens et al., 2008). Il est donc nécessaire d’incorporer aussi une approche qui
prenne en compte 1’effet de la variabilité des différents parametres environnementaux sur le taux
de disparition pour améliorer la précision des prévisions concernant la qualité de 1’eau. Si les
taux de décroissance pour E. coli sont relativement stables d’un pic de pollution a 1’autre pour
un méme site, cela pourrait permettre d’avoir un outil utilisable par les gestionnaires dans le
futur (Dick et al., 2010).

Ainsi, la prise en compte de I'incertitude et de la dynamique bactériologique dans
I’évaluation de la qualité de I’eau est cruciale pour une évaluation précise et fiable des risques
sanitaires. En intégrant ces éléments, il sera possible d’établir des prévisions plus précises
concernant la qualité de I’eau et d’assurer la protection de la santé publique tout en favorisant la

reconquéte des rivieres pour des usages récréatifs (Dick et al., 2010).
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grant par la logique floue l’incertitude de la mesure des
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Résumé : La gestion quotidienne des sites de baignade implique un suivi de la qualité
microbiologique. Or, une incertitude de mesure peut exister au niveau des différentes étapes du
processus, du prélevement jusqu’a I’analyse de 1’échantillon en laboratoire. En effet, la régle-
mentation et les normes laissent une marge de liberté qui peut induire des pratiques différentes
d’échantillonnage et d’analyse.

Dans notre étude, nous avons analysé la variabilité liée a la méthodologie de prélevement
ponctuel et automatique pour la mesure des bactéries indicatrices fécales réglementaires, de
3 indicateurs de sources animales, d’un indicateur de source humaine et de 2 pathogeénes du
genre Campylobacter. Aucune différence significative de concentration en BIF dans les eaux
de surface n’a été constatée en comparant différents modes de prélevement ponctuel depuis la
berge (seau, bécher, pompe), quelque soit le site de prélevement. Les résultats des équipements
de prélevement montraient que les ringages avec I’eau du site préconisés par la réglementation
étaient suffisants pour éviter les contaminations croisées pour les équipements de prélévement
ponctuel des eaux de surface méme lorsque le site précédent était 10 fois plus contaminé. Pour
le préleveur automatique entre deux prélevements d’eau de surface, un nettoyage du systeme

a I’eau stérile suffisait. Par contre, pour les eaux résiduaires, une désinfection a I’eau de Javel
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suivie de 3 ringages a I’eau stérile pouvait s’avérer nécessaire.

Les résultats indiquaient qu’il est recommandé de limiter le temps de stockage de I’échan-
tillon, en privilégiant un transport réfrigéré. Une fois 1’échantillon ensemencé sur le milieu de
culture, le temps minimal d’incubation des BIF (24 h, 48 h, 72 h) présentait une variation inverse
a la concentration de I’échantillon. L’identification et I’estimation de ces sources de variabilité
permettront ainsi la mise en place d’un guide d’échantillonnage pour une surveillance optimale
des sites de baignade.

L’intégration de la logique floue dans 1’évaluation de la qualité de I’eau, notamment
en ce qui concerne les concentrations en Escherichia coli, s’est révélée €tre une approche
efficace pour la gestion des zones de baignade. En combinant des méthodes de défuzzification
appropriées avec des dispositifs de surveillance en temps réel tels que le ColiMinder, il est
possible de classer rapidement et de maniere fiable les sites de baignade, tout en tenant compte
des incertitudes inhérentes aux mesures. Les résultats obtenus montraient une forte concordance
avec les méthodes couramment utilisées par les gestionnaires, offrant ainsi une évaluation plus

nuancée des données et une prise de décision accélérée.

Mots clés : Bactéries indicatrices fécales ; incertitude ; échantillonnage, prélevement,

logique floue

2.1. Introduction

Différentes sources de contamination ponctuelles et diffuses peuvent apporter un flux de
pathogenes au niveau des sites de baignade et ainsi générer un risque sanitaire li€ au contact ou
a I’ingestion des eaux contaminées (Guérineau et al., 2014). En zone urbaine, les rivieres sont
particulierement sujettes a des dégradations de la qualité microbiologique lors des événements
pluvieux qui génerent du ruissellement sur des surfaces contaminées par des déjections animales
et des rejets urbains de temps de pluie pouvant contenir des eaux usées non traitées. Ainsi, les
principales sources de pathogenes d’origine hydrique sont les féces humaines et animales,
provenant d’individus porteurs sains ou malades (Passerat et al., 2011). Les sources animales
typiquement associées aux contaminations fécales des eaux de surface en zone urbaine incluent
les chiens, les chats et les oiseaux aquatiques, dont la présence peut contribuer a augmenter

fortement les quantités en indicateurs bactériens de contamination fécale (Simpson et al., 2002;
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Wright et al., 2009).

Dans le cadre de la directive européenne 2006/7/CE qui porte sur la gestion des eaux
de baignade, la qualité microbiologique des eaux de surface est actuellement estimée a 1’aide
de deux groupes de bactéries, dites bactéries indicatrices fécales (BIF), les Escherichia coli
et les entérocoques intestinaux (EI), dont I’analyse permet d’évaluer la conformité des eaux
aux normes de qualité microbiologique. Il est possible de compléter le diagnostic de I’origine
des sources de contamination en utilisant des bactéries ou des virus spécifiques des sources
humaines ou animales (Devane et al., 2007).

La gestion quotidienne des zones de baignade nécessite donc un suivi régulier de la qualité
microbiologique de I’eau pour limiter les risques sanitaires (OMS, 2018). En cours de saison,
I’ouverture ou la fermeture d’un site de baignade est basée sur la confrontation des mesures de
concentration en BIF a des valeurs seuils suivant ’instruction N° DGS/EA4/2022/168 du 17
juin 2022 relative aux modalités de recensement, gestion et classement des eaux de baignade.
Toutefois, cette prise de décision peut étre rendue délicate lorsque les concentrations mesurées
sont proches des seuils, sachant qu’il existe plusieurs sources d’incertitude sur le prélevement,
le stockage et la mesure des BIF dans les échantillons d’eau de surface. Une surveillance
optimale de la qualité ne peut €tre atteinte que si I’incertitude sur les niveaux de BIF mesurés
est identifiée et qu'un moyen pour la réduire est considéré lors de 1’échantillonnage et de la
mesure. De ce fait, les laboratoires habilités pour le suivi de la qualité des eaux de baignade sont
accrédités et les méthodes d’échantillonnage et d’analyse sont normées. Malgré tout, il subsiste
une incertitude non négligeable qui peut rendre 1’interprétation des résultats délicate. Pour la
gestion quotidienne des sites de baignade, une prise de décision éclairée est nécessaire, souvent
face a une incertitude significative (Brandao et al., 2022). L’hétérogénéité et I'incertitude liées
aux échantillons compliquent cette tiche lorsque la qualité de I’eau est proche d’un seuil, car
des valeurs peuvent chevaucher les valeurs limites réglementaires, créant des doutes quant a leur
conformité (Rabinovici et al., 2004).

En effet, les textes réglementaires et normatifs fournissent un corpus de recommandations
pour le prélevement d’eau de baignade et permettent ainsi d’avoir un référentiel commun pour
I’analyse de la qualité microbiologique de I’eau. Par exemple en France, dans le cadre Européen il
existe un corpus réglementaire traduit en droit francais et des guides produits par les Agences de
I’eau qui donnent des directives sur le prélevement et I’analyse, tels que la directive européenne

2006/7/EC, le guide de prélevement de I’Agence de 1I’Eau Loire-Bretagne (AELB, 2006), ainsi
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que I’ensemble de normes NF EN ISO 19458, FD T 90-521 et FD T 90-523-1. Ce référentiel
contribue a diminuer I’incertitude sur 1’échantillonnage, mais méme avec ces instructions il existe
une certaine liberté d’interprétation et d’adaptation entrainant potentiellement une incertitude.
Ainsi, différents équipements peuvent €tre utilisés lors du prélevement ponctuel : flacon ou
pompe reliés a une perche télescopique depuis la berge ou encore seau lesté lancé depuis un pont
ou une berge (guide FD T 90-523-1). Avec la perche, le prélevement peut s’ effectuer directement
dans le flacon stérile ou par un flacon de prélevement intermédiaire (que nous appellerons bécher)
pour transvaser dans le flacon stérile (guide FD T 90-523-1). De plus, des contaminations croisées
des équipements peuvent avoir lieu entre deux sites consécutifs et des procédures de désinfection
avec des lingettes et/ou de rincage avec 1’eau du site sont prescrites. Plusieurs pratiques sont
aussi constatées sur le terrain quant aux conditions de transport et de stockage des échantillons
avant I’analyse. Ainsi, entre les différents textes francais, la température et le temps de transport
recommandés sont de 5 + 3°C avec un temps de retour au laboratoire le plus rapide et une analyse
au plus tard dans les 24 heures. A cela s’ ajoute des contraintes de terrain et d’ éloignement des sites
qui demandent parfois une adaptation de la part des personnels. L’ ensemencement et la lecture
des milieux comportent également une certaine incertitude liée aux erreurs de manipulation,
a ’homogénéisation de I’échantillon, a I’équipement et aux réactifs. Dans le cadre du suivi
réglementaire, 1’incertitude est minimisée par le fait que des laboratoires accrédités réalisent le
suivi. Par contre, pour les échantillonnages avec les préleveurs automatiques, il n’existe pas de
protocole normé et I’incertitude peut atteindre des valeurs de I'ordre de 15 a 67% (McCarthy
et al., 2008). Lorsque les indicateurs spécifiques de sources humaines ou animales (bactériens
ou viraux) sont suivis, la mesure en laboratoire ne fait pas I’objet de normes (hormis le marqueur
humain HF183 aux USA qui fait I’objet d’'une norme US-EPA 1696.1) et en dehors du guide
MIQE pour I’analyse en PCR quantitative en temps réel (QPCR), il n’y a pas ou peu d’effort de
normalisation ou de tests interlaboratoires (EPA, 2019; Layton et al., 2013; Lane, 2019; Ahmed
et al., 2020).

Mieux définir I’incertitude associée a la surveillance des BIF et des marqueurs bactériens
ou viraux spécifiques de sources de contamination permettra une amélioration des bases scienti-
fiques des normes et des réglementations en vigueur. Intégrer cette notion d’incertitude dans la
prise de décision lors de la gestion quotidienne des sites de baignade est essentiel pour garantir
la sécurité des usagers et prévenir les risques sanitaires. Les décisions liées a la qualité de I’eau

ne se limitent pas a des critéres quantitatifs simples mais intégrent également des éléments
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plus subjectifs qui peuvent rajouter de I’ambiguité. Dans cette optique, Gharibi et al. (2012)
soulignent I’importance d’une approche fondée sur la logique floue qui permet de modéliser
I’incertitude dans 1’évaluation de la qualité de I’eau comme la qualité microbiologique. La lo-
gique floue (Zadeh, 1965) est devenue une approche courante particulierement adaptée pour des
indices environnementaux. Cette approche se base sur une méthodologie robuste, intégrant les
incertitudes associées aux données et aux décisions (Ross, 2005). Elle permet d’incorporer les
réflexions et I’expertise humaine dans les indices, ce qui facilite la gestion d’informations non
linéaires, incertaines, ambigués et subjectives (Gharibi et al., 2012). Un aspect particulierement
délicat, principalement pour les gestionnaires, est que lorsque les valeurs mesurées approchent
la valeur seuil, la prise de décision devient complexe. Dans ces situations, la logique floue offre
un cadre permettant d’évaluer les nuances et de rationaliser le processus décisionnel en tenant
compte de cette incertitude supplémentaire. Quelle que soit la source d’information, elle sera
associée a un certain degré d’incertitude (Ross, 2005).

Dans I’évaluation de la conformité avec une limite de spécification supérieure, des
scénarios typiques émergent lorsque les résultats de mesure et leurs incertitudes sont pris en
compte. Lorsque la valeur mesurée, ajoutée a son incertitude, est clairement au-dessus ou en
dessous de cette limite, la décision est évidente. Cependant, des erreurs peuvent survenir en
raison du chevauchement partiel des bandes d’incertitude autour des limites de spécification
(Brandao et al., 2022). De plus, un article souligne que «le probleme de la prise de décision sous
incertitude est que la majorité des informations que nous avons sur les résultats possibles est
généralement vague, ambigué et autrement floue» (Ross, 2005). Intégrer ces perspectives dans
le cadre de 1’évaluation de la qualité microbiologique des eaux de baignade vise a établir un
cadre de décision robuste qui tienne compte de la complexité et de 1’incertitude inhérentes aux
contextes de baignade. Deux études offrent un éclairage précieux sur I’intégration des méthodes
de décision dans des contextes environnementaux complexes, renforcant ainsi la pertinence de
cette approche (Ross, 2005; Zhou and Chen, 2023).

L’objectif de notre étude est donc de proposer une nouvelle approche de prise de décision
sous incertitude utilisant la logique floue pour aider a la gestion quotidienne des eaux de
baignade. Dans un premier temps, les sources de variabilité seront identifiées et 1’incertitude
associée a 1’échantillonnage dans I’analyse des BIF, ainsi que dans celle de six marqueurs de
contamination fécale d’origine animale et humaine, sera quantifiée. Pour ce faire, nous avons

procédé a une analyse statistique des modalités de prélevement, des protocoles de nettoyage,
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ainsi que de toutes les étapes de transport et de stockage des échantillons, en incluant la recherche
et le dénombrement des BIF. Cette démarche vise a établir une incertitude globale qui facilitera
dans un deuxieme temps la mise en place d’une prise de décision s’appuyant sur une approche de
logique floue. Pour tester 1’efficacité de cette nouvelle approche de classement des échantillons
selon la réglementation francaise pour la gestion quotidienne, nous utiliserons les données
provenant du dispositif de suivi en continu de la qualité microbiologique, ColiMinder, installé
sur plusieurs sites dans la Seine et la Marne en région parisienne (France). Placé en amont d’un
site de baignade, ce type d’équipement permet d’accélérer le processus décisionnel d’ouverture
et de fermeture du site le jour méme, et de rationaliser I’effort d’échantillonnage supplémentaire
avec les analyses réglementaires qui rendront un résultat au plus tot 18 h ou 24 h plus tard
(Angelotti et al., 2022). Cet équipement installé sur berge estime la concentration en BIF a partir

de mesures enzymatiques sur un volume d’eau prélevé et filtré (Cazals et al., 2020).

2.2. Matériel et méthodes

2.2.1. Site d’échantillonnage

Au cours de cette étude, des prélevements d’eau de surface ont été effectués de mai
a octobre sur 4 sites en Ile-de-France (France) entre 2022 et 2023. Ces sites représentent un
gradient de concentrations en BIF allant d’un site de baignade de bonne qualité microbiologique
a des eaux usées non-traitées. Deux sites étaient situés au lac de Créteil (Val-de-Marne, France),
ou les concentrations en BIF étaient 10 fois plus élevées sur le site 2 que sur le site 1. Ces
deux sites lacustres ont fait I’objet de prélevements ponctuels depuis la berge avec diftérents
équipements. Des prélevements moyens sur 24 h a I’aide d’un préleveur automatique Biihler
2000 réfrigéré (Hach) ont été réalisés au pont de Crimée sur I’eau du canal de I’Ourcq au niveau
du second bassin de la Villette (Paris, France) et dans la Marne a Saint-Maur-des-Fossés (Val-
de-Marne). De plus, les eaux brutes en entrée de la station de traitement des eaux usées de Saint-
Thibault-des-Vignes (Seine-Saint-Denis) et les eaux pluviales en amont du bassin de rétention
de Sucy-en-Brie (Val-de-Marne) et au rejet de ’ouvrage cadre du centre urbain de Noisy-le-
Grand (Seine-Saint-Denis) ont également été prélevées pendant 24 h a I’aide d’un préleveur
automatique. Différentes techniques et protocoles ont été testés afin d’étudier la variabilité liée
a la méthodologie de prélevement, de transport, de stockage des échantillons et de mesure des

BIF, des marqueurs de contamination fécale animale et humaine et des pathogeénes du genre
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Campylobacter. Pour les protocoles d’échantillonnage, de lavage, de transport et de stockage
des échantillons, un total de 5 prélevements a été effectué avec chaque équipement au niveau de
chaque site.

De plus, nous avons exploité les résultats entre 2020 et 2023 des prélevements hebdo-
madaires ou bi- hebdomadaires effectués par la Ville de Paris entre 7 h et 12 h au niveau de 3
sites dans la Seine (Pont de I’Alma et Pont de Tolbiac en rive gauche et en rive droite; Paris,
France). Les mesures ont été effectuées selon la méthode de référence NF EN ISO 9308-3 pour
E. coli. Nous avons également utilisé des mesures estivales effectuées entre 2020 et 2023 par le
systeme de suivi automatisé ColiMinder (Vienna Water Monitoring, VWM) au niveau de 2 sites
en Seine (en rive gauche a Pont de ’Alma et Pont de Tolbiac a Paris) mis en place par la Ville

de Paris.

2.2.2. Equipements d’échantillonnage ponctuel depuis la berge

Les eaux de surface du lac de Créteil ont été prélevées dans les 30 premiers cm a 1-
2 m de la berge selon la norme FD T90-523-1. Selon cette méme norme, trois équipements
peuvent étre employés pour le prélevement ponctuel : un bécher associé a une perche (ou canne)
télescopique, une pompe dont le tuyau est associ€ a une perche télescopique et un seau lancé
depuis un pont ou une berge. Ainsi, au niveau des 2 sites du lac de Créteil, ces 3 équipements
ont été testés depuis la berge. Nous avons choisi un milieu lentique pour nous affranchir d’une
trop grande hétérogénéité spatio-temporelle entre chaque prélevement comme dans le cas d’une

riviere. L’analyse de I'incertitude a été réalisée en utilisant I’équation 3.1.

2.2.3. Protocole de nettoyage des équipements d’échantillonnage ponctuel

Il est généralement recommandé d’avoir les mains propres, de nettoyer le matériel de
prélevement, d’utiliser un flaconnage stérile et d’effectuer le prélevement de maniere aseptique,
mais sans plus de précision (norme de prélevement FD T90-521, Directive 2006/7/CE, Arrété
du 19 octobre 2017 sur les méthodes d’analyse pour le contrdle sanitaire des eaux). Le guide des
directions régionales et départementales des affaires sanitaires et sociales de la région Rhone-
Alpes (2006) précise de flamber la canne télescopique sur la partie en contact avec 1’eau ou de
désinfecter avec un produit adapté. Le guide FD T90-523-1 préconise pour la pompe de laisser
couler I’eau le temps nécessaire pour rincer le tuyau avant le prélevement et pour le bécher

intermédiaire de bien le rincer avec 1’eau du site. Sur la base de ces recommandations, nous
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avons testé plusieurs protocoles de désinfection et/ou ringage du bécher de prélevement et du
tuyau de la pompe, en simulant un risque de contamination croisée entre deux sites avec un écart
de contamination d’1 Log;o en concentration de BIF.

Ainsi au lac de Créteil, la contamination croisée a été€ simulée en prélevant d’abord sur
un site peu contaminé (site 1), puis sur un site 10 fois plus contaminé (site 2) et a nouveau
au site 1, en utilisant les mémes équipements ayant subi ou non un protocole de nettoyage.
Trois protocoles de nettoyage ont été testés pour le tuyau de la pompe et pour le bécher : 1)
ringage 3 fois a I’eau du lac avant prélevement, ii) désinfection a I’éthanol et séchage a 1’air ou
1i1) désinfection a I’éthanol puis ringage 3 fois avec I’eau du site de prélevement. L’analyse de

I’incertitude a été réalisée en utilisant I’équation 3.2.

2.2.4. Protocole de nettoyage du préleveur automatique

Les préleveurs automatiques sont utiles pour effectuer des échantillonnages sur un inter-
valle de temps (par exemple un échantillon moyen sur 24 h) ou pour échantillonner un événement
pluvieux au pas de temps ou en fonction d’un débit, ou d’un seuil. Le prélevement peut €tre initié
a un temps donné ou sur des parametres hydrologiques (débit, hauteur d’eau...). Par ailleurs,
le pourcentage d’incertitude ne semble pas dépendre de la concentration en BIF de chaque site
comme il a pu étre démontré sur les rejets pluviaux (McCarthy et al., 2008). Toutefois, une
contamination du systeme de prélevement peut survenir apres 1’échantillonnage en contaminant
les échantillons suivants (Hathaway et al., 2014).

Le systeme de prélevement de ces échantillonneurs équipés d’une pompe péristaltique,
comporte un tuyau d’aspiration, un tuyau d’écrasement, un bol de prélevement, un logement
pouvant accueillir une rosette de 24 flacons d’un litre. Ces éléments peuvent générer une conta-
mination, il est donc nécessaire de bien les nettoyer (Wilson et al., 2024). La réglementation
francaise est assez succincte quant a leur protocole de nettoyage pour I’analyse microbiologique.
Le guide FD T90-523-1 et celui de I’Agence de I’eau Loire-Bretagne ne donnent pas de recom-
mandation sur le nettoyage mais plus sur I’installation du tuyau de prélevement et les conditions
de stockage des flacons de prélévement. L' Institut d’études géologiques des Etats-Unis (USGS)
propose un guide plus détaillé dans lequel il est recommandé, entre chaque prélevement, de
démonter le systeme de prélevement pour autoclaver les flacons et les tuyaux, et, si nécessaire,
d’utiliser une solution de Javel domestique diluée a 5%, suivie de plusieurs ringages a I’eau

désionisée (Wilson et al., 2024). Des blancs de terrain du systeme de prélevement servent de
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contrdle qualité.

Le but de notre expérience est de déterminer s’il existe une contamination résiduelle
apres un prélevement et si le protocole de ringage a I’eau du site programmé sur le préleveur
suffit, ou s’il est nécessaire d’effectuer une désinfection a 1’eau de Javel puis un ringage a
I’eau stérile. Pour ce faire, pour les eaux de surface du canal de I’Ourcq, nous avons comparé
les niveaux de BIF mesurés dans des prélevements ponctuels pris au préleveur automatique
(Biihler 2000 réfrigéré Hach) avant et apres désinfection suivis de rincages a 1’eau du robinet
stérile. Le préleveur automatique est équipé de deux électrodes de remplissage conductrices qui
nécessitent une conductivité minimale de 50 pS/cm pour détecter correctement le niveau de
liquide et gérer les prélevements (Lange, 2012). Or, I’eau distillée, en raison de sa conductivité
tres faible (généralement inférieure a 1 ©S/cm), ne permet pas le bon fonctionnement de ces
électrodes. Pour éviter ces problemes, nous avons utilisé de I’eau du robinet autoclavée pendant
20 minutes a 120°C qui présente une conductivité suffisante. Un prélevement manuel au bécher
directement a coté du tuyau du préleveur représentait la référence avec laquelle les prélevements
al’échantillonneur Hach ont ét€ comparés (avant et apres stérilisation et ringage). En effet, il a été
démontré que lors de prélevements ponctuels par méthode manuelle au bécher et par préleveur
automatique, les concentrations en BIF ne différaient pas significativement (Ferguson, 1994;
Galfi et al., 2014). Le systeéme de pompage (tuyau et bol) du préleveur automatique a été nettoyé
avec I’eau de Javel a 0,5% (degré chlorhydrique) suivi de 3 rincages a 1I’eau du robinet autoclavée
20 min a 120°C. Ces tests ont été effectués 1 a 63 jours apres un prélévement automatique pour
vérifier si une contamination résiduelle persiste entre deux prélevements plus ou moins éloignés
dans le temps (par exemple entre deux événements pluvieux). L’analyse de I’incertitude a été
réalisée en utilisant I’équation 3.2. De plus, des blancs de terrain ont également été réalisés en
prélevant de I’eau du robinet stérile soit apres désinfection suivie de trois rincages a 1’eau du
robinet autoclavée, soit directement apres un prélevement d’eau sur site, ou encore 3 a 10 jours

apres le dernier prélevement.

2.2.5. Protocole de transport et stockage

Selon la directive 2006/7/CE, I’analyse en laboratoire doit €tre effectuée le plus rapide-
ment possible apres prélevement. Cependant, le transport peut parfois prendre du temps suivant
I’éloignement du site d’échantillonnage et la circulation routiere. Selon la norme FD T90-523-1,

I’échantillon doit étre conservé a une température de 5 + 3 °C et I’analyse doit étre effectuée
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au mieux dans les 8 h et au plus tard dans les 24 h. Cependant, le systeme de réfrigération des
échantillons peut dysfonctionner ou ne pas €tre installé en raison des limitations de 1’infrastruc-
ture de la zone d’installation. Ainsi, I’effet de la réfrigération pendant le transport et le stockage
des échantillons a été testé au lac de Créteil sur le site 2 avec un temps de transport de 0,5 het 6
h a 5°C (glaciere) ou a température ambiante (19,2 + 2,4°C), a ’ombre, avec un ensemencement
immédiatement des le retour au laboratoire ainsi qu’apres 24 h de stockage des échantillons au

réfrigérateur a 5°C. L’analyse de I’incertitude a été réalisée en utilisant I’équation 3.2.

2.2.6. Dénombrement des BIF

Afin d’estimer la concentration (exprimée en nombre le plus probable NPP/100 mL), d’E.
coli et des EI, les échantillons ont été ensemencés sur les microplaques MUG/EC et MUD/SF
(BioRad) selon la méthode de référence NF EN ISO 9308-3 pour E. coli et NF EN ISO 7899-1
pour EI. Les microplaques ont été incubées a 44°C pendant 24 a 48 h selon les normes précitées
et le nombre de puits positifs a été dénombré sous lampe UV. Le calcul du NPP/100 mL dans
un intervalle de confiance de 95% a été réalisé a ’aide d’une feuille de calcul Excel® publiée

par Jarvis et al. (2010).

2.2.7. Incertitude analytique et temps d’incubation

Nous avons procédé a une analyse de I’incertitude analytique par ensemencement d’un
méme échantillon sur 5 microplaques différentes représentant 5 réplicats. Pour chaque réplicat,
des dilutions ont été préparées a nouveau, en homogénéisant entre chaque dilution et avant
ensemencement. L’analyse de I’incertitude a été réalisée en utilisant 1’équation 3.1.

Lors du dénombrement des BIF, les normes NF EN ISO 9308-3 et NF EN ISO 7899-1
précisent que la lecture doit étre réalis€e au minimum 36 h et au maximum 72 h apres 1’ense-
mencement. Cependant, dans la pratique, une lecture est souvent faite des 24 h. La variabilité
des concentrations liées au temps d’incubation a été évaluée sur des échantillons représentant un
gradient de contamination : les eaux usées en entrée et sortie de la station de traitement des eaux
usées de Saint-Thibault-des Vignes (échantillon moyen sur 24 h), les eaux de surface du canal
de I’Ourcq (échantillon moyen sur 24 h) et les eaux de surface du Lac de Créteil (échantillons
ponctuels au bécher ou a la pompe). Les microplaques MUG/EC et MUD/SF ont été lues apres
24,48 et 72 h.
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2.2.8. Extraction et quantification de ’ADN

La variabilité liée au prélevement, transport et stockage a également été évaluée pour
des indicateurs bactériens de contamination fécale humaine ou animale (oies bernaches, chiens,
mouettes et goélands), deux especes du genre Campylobacter et pour les bactéries totales. Dans
ce cas, uniquement 2 prélévements sur 5 ont été utilisés. La filtration des différents échantillons
a été réalisée sur des cartouches Sterivex’™ de 0.22 um de porosité (Milipore) qui ont été

TM 4 été ouvert stérilement et le

stockées a -20° C avant extraction de ’TADN. Chaque Sterivex
filtre a été€ découpé en morceaux d’environ 1-2 mm a I’aide d’un scalpel stérilisé, selon Roguet
(2015). Les fragments ont été insérés dans un tube Lysing Matrix E du kit FAST DNA SPIN
KIT for soil (MP Biomedical) pour en extraire ’ADN total selon les instructions du fabricant
modifiées par Roguet (2015). La concentration et la pureté de ’ADN extrait ont été mesurées a
230, 260 et 280 nm avec un spectrophotometre (WPA, BioWave DNA). Puis I’ADN a été stocké

a -20°C en attendant son amplification.

2.2.9. Amplification des marqueurs spécifiques et des pathogénes

Six especes bactériennes ont été utilisées comme marqueurs de contamination fécale
animale et humaine. Pour les marqueurs bactériens suivants, le gene de ’ARNr 16S a été amplifié
et quantifié : Catellicoccus marimammalium (Bacillota) pour les mouettes et goélands (Gull2,
Ryu etal. (2012)); et trois especes du groupe des Bacteroidales pour les chiens (BacCan,Kildare
etal. (2007)), les oies bernaches (CGOF1, Fremaux et al. (2010)), et les humains (HF183, Green
et al. (2014)) . De plus, les pathogenes du genre Campylobacter ont été quantifiés en amplifiant
un fragment du gene hipO codant pour 1’hippurate hydrolase pour C. jejuni et un fragment du
geéne codant pour la peptidase T pour C. lari (He et al., 2010; Vondrakova et al., 2014). En
plus de ces marqueurs, une estimation de la charge bactérienne totale a été réalisée par une
quantification du nombre de copies du gene de ’ARNr 16S (BactQuant, Liu et al. (2012)).

La PCR quantitative en temps réel (QPCR) a été réalisée sur les ADN extraits en utilisant
le thermocycleur CFX96 (BioRad). Un contrdle positif interne (/3-actine) a été ajouté pour
évaluer la présence d’inhibiteurs résiduels selon Wurtzer et al. (2014). Un controle négatif (eau
stérile) a été inclus également lors des amplifications. Pour chaque cycle, des courbes standard en
triple ont été générées (de 10! a 107 copies/uL) en utilisant un plasmide linéarisé ou des gBlocks

contenant la séquence cible. Un coeflicient de corrélation supérieur a 0,995 a été observé pour
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chaque courbe standard de dosage. Les réactions contenaient 1X de iTaq”™ Universal probes
Supermix (Bio Rad), les amorces sens et antisens de la 3-actine et de la cible bactérienne, une
sonde a hydrolyse spécifique de chaque cible, 10* copies/ul ’ADN de (3-actine et 1 uL. ’ADN
matrice pour un volume total de 20 uL. Le tableau S1 montre les séquences des amorces et des
sondes et leur concentration finale. Les réactions ont été soumises a une dénaturation initiale a
95°C pendant 10 min puis 40 cycles de dénaturation a 95°C pendant 20 sec et hybridation et

élongation a 60°C pendant 1 min.

2.2.10. Analyse statistique

Afin d’évaluer I’effet significatif de chaque protocole et technique, une analyse statistique
a été effectuée avec le logiciel R pour les BIF par des tests appariés : de Friedman, de Wilcoxon
ou de Student (R Core Team, 2021). La normalité des données a été vérifiée avec un test de
Shapiro-Wilk. Dans le cas des tests de Wilcoxon ou test t répétés pour tous les échantillons 2
a 2, la correction de Bonferroni a été appliquée. Pour tous les tests statistiques, le niveau de

signification était basé sur 5%.

2.2.11. Analyse et estimation de I’incertitude

L’incertitude représente le manque partiel de connaissance, réduite par une amélioration
de la collecte de données. Afin d’estimer le pourcentage d’incertitude au niveau de la mesure
de la concentration en BIF et de la quantification des indicateurs de sources et des 2 pathogenes
du genre Campylobacter. Une mesure du pourcentage d’erreur relative d’échantillonnage a été
réalisée (Harmel et al., 2016; Esbensen and Wagner, 2014). Pour cela, 3 équations différentes
peuvent étre utilisées en fonction des données a disposition.

Pour plusieurs échantillons :

2 x ecartype(X;)

+ Ylnc = 100 3.1
Jilne moyenne(X;) i G-
Si X, ¢ est la valeur de référence :
X — X,
%Inc = 21 4 100 (3.2)
rf
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Si la valeur de référence est inconnue :

| Xy — X,
moyenne(Xy, Xz)

+ %lInc = * 100 (3.3)

Au niveau de ces formules, %Inc représente le pourcentage d’incertitude, ( X;, X; et
X5) sont des valeurs de concentration d’un échantillon et X, ¢ est supposée étre la vraie valeur

(échantillon de référence).

2.2.12. Prise de décision sous incertitude

Afin de proposer une aide a ’utilisation de la qualification des échantillons en cours
de saison en tenant compte de I'incertitude liée au prélevement et a 1’analyse, nous avons
implémenté un outil d’aide a la décision basé sur la logique floue. Les seuils utilisés sont de
100 et 1800 NPP/100 mL servant au classement des échantillons ponctuels en cours de saison
sur un site de baignade classé (Instruction DGS/EA4/2022/168 du 17 juin 2022 relative aux
modalités de recensement, gestion et classement des eaux de baignade). Pour ce faire, nous
avons utilisé les résultats des prélevements hebdomadaires ou bi-hebdomadaires au niveau de 3
sites en Seine (Pont de ’Alma et Pont de Tolbiac en rive gauche et en rive droite). Au niveau
du pont de Tolbiac, un systeme de mesure en continu ColiMinder avait également été installé
sur la rive gauche et a servi a classer les deux sites rive-gauche et rive-droite. En effet, il n’y
avait pas de différence significative entre les 2 sites avec les mesures réglementaires (Test de
Wilcoxon, p>0.57, n=547). L’intégration de I’incertitude dans la classification de la qualité
de ’eau a été réalisée en appliquant une approche basée sur la logique floue (Ross, 2005).
L’incertitude globale, de 1’échantillonnage a la lecture des milieux de culture, a été calculée
comme la racine carrée de la somme quadratique de I’incertitude sur le nettoyage, le stockage
et la mesure, conformément a la méthode proposée par Brandao et al. (2022). Cette approche
permet d’englober 1’ensemble des incertitudes associées a la mesure de la concentration d’E.
coli obtenue.

Lalogique floue a ensuite été utilisée pour intégrer ces incertitudes dans les valeurs seuils
utilisées en cours de saison, selon I’instruction n°DGS/EA4/2020/111 du 2 juillet 2020 : Bonne
(<100 NPP/100 mL), Moyenne (<1800 NPP/100 mL) et Mauvaise (>1800 NPP/100 mL). Nous
nous sommes focalisés sur le parametre le plus déclassant pour ces sites en Seine, a savoir la

concentration en E. coli (NPP/100 mL). Des ensembles flous ont été définis pour refléter les
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niveaux de qualité avec des sous-ensembles se chevauchant pour représenter 1’incertitude dans
les valeurs seuils. Les fonctions d’appartenance ont été définies a 1’aide de fonctions sigmoides,
permettant d’incorporer un pourcentage d’incertitude associé a chaque sous-ensemble. Chaque
mesure s’est vue attribuer un degré d’appartenance a plusieurs ensembles flous simultanément.
Ensuite, I’inférence floue a été effectuée en utilisant la méthode de défuzzification pour prendre
la décision (Ross, 2005). Une méthode dite de défuzzification a permis de convertir les sorties
floues résultant du moteur d’inférence floue en une valeur numérique non floue. Il existe plusieurs
méthodes de défuzzification, telles que le centre de gravité (COGQG), le bisecteur (BS), la moyenne
des maxima (MOM), le maximum le plus a gauche (LOM) et le maximum le plus a droite (ROM)
(Akkurt et al., 2004; Jantzen, 1999). Parmi ces méthodes, le COG, souvent appelé méthode du
centroide, est la plus couramment utilisée. Cette méthode calcule le barycentre des valeurs
d’appartenance et fournit ainsi une estimation précise de la qualité de ’eau (Ross, 2005). La
méthode du bisecteur (BS) divise 1’aire sous la courbe d’appartenance en deux parties égales
pour estimer le résultat. Quant a la méthode de la moyenne des maxima (MOM), elle prend la
moyenne des points ou la fonction d’appartenance atteint son maximum, tandis que les méthodes
du maximum le plus a gauche (LOM) et du maximum le plus a droite (ROM) sélectionnent
respectivement le premier et le dernier maximum rencontré. Ces méthodes permettent chacune
une approche différente de la défuzzification et ont été toutes testées dans cette étude pour
évaluer la qualité de I’eau, en fonction des criteres flous définis.

Afin d’appliquer les méthodes de défuzzification, nous avons utilisé les données collectées
par le systeme ColiMinder avec la valeur d’incertitude associée. La qualité de I’eau a été évaluée
pour chaque jour en testant la méthode de logique floue sur plusieurs intervalles de temps
permettant de classer la qualité de 1’eau pour le matin (8 h) ou I’aprés-midi (12 h). Nous avons
testé des intervalles de 24 heures (de midi la veille a midi, ou de 8 h la veille a 8 h), des intervalles
de 12 heures (de minuit a midi, ou de 20 h la veille a 8 h) permettant une analyse temporelle plus
fine des variations de la qualité de 1’eau dans les différentes stations de prélevement. De plus,
un intervalle de 4 heures (de 4 ha 8 h et de 8 h a 12 h) comparable a celui utilisé par la Ville de
Paris durant les jeux olympiques a également été testé (Desir, 2024). Un total de 6 intervalles
de temps a été testé.

Les résultats de classification obtenus avec les 5 méthodes de défuzzification mises
en ceuvre sur les données du ColiMinder ont été comparés en utilisant deux approches : 1)

la classe identifiée apres défuzzification a ét€ comparée a la classification des données du
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suivi réglementaire par rapport aux valeurs seuils de gestion en cours de saison (Instruction
n°DGS/EA4/2020/111 du 2 juillet 2020), i1) la classe de défuzzification est comparée au résultat
de la méthode de classification utilisée par la Ville de Paris pendant les Jeux Olympiques 2024.
Cette derniere calcule une moyenne glissante de 4 heures, qui est comparée a celle des 24 heures
précédentes, pour évaluer la dégradation, I’amélioration ou la stabilité de la qualité de 1’eau, et
réalise une classification (Desir, 2024). Ceci a permis de valider I’efficacité de la logique floue
sous incertitude par rapport a la méthode réglementaire dont les résultats ne sont généralement

disponibles qu’apres 36 h d’incubation des microplaques.

2.3. Résultats et discussion

2.3.1. Variabilité liée a I’équipement pour le prélevement ponctuel

Le type d’équipement utilisé (bécher, pompe, seau) pour le prélevement ponctuel depuis
la berge ne semble pas avoir d’impact sur les concentrations en BIF de 1’eau de surface. En
effet, aucune différence significative n’a été observée entre les résultats obtenus avec les trois
systemes, quel que soit le site de prélevement (2 sites du lac de Créteil) et que ce soit pour les E.
coli ou pour les EI (Test de Friedman apparié, n=30, p>0,05, Figure 3.1A). Ce résultat conforte
le fait que le guide FD T 90-523-1 propose ces trois équipements comme options possibles pour
le prélevement. Toutefois, il est recommandé de n’utiliser le seau qu’en dernier recours du fait
de la difficulté a maintenir propre cet équipement. La suite de 1’étude se concentrera donc sur
la pompe et le bécher comme méthode de prélevement. Nos résultats montrent globalement que
les incertitudes sur la mesure des indicateurs étaient similaires entre les équipements, confortant
ainsi la polyvalence du protocole (AELB, 2006). Combinés a une perche, ces équipements
permettent d’effectuer un prélevement a 2 m de la berge et dans les 30 premiers centimetres

(AFNOR). La variabilité estimée pour les deux équipements était la plus faible pour les BIF, le

marqueur Humain HF183 et le marqueur oie CGOF1 (Figure 3.1B).
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FIGURE 3.1 — Comparaison des équipements de prélévement ponctuel depuis la berge au niveau des 2 sites du lac
de Créteil. (A) concentration en E. coli en NPP/100 ml, (B) Pourcentage moyen d’incertitude 1ié aux équipements
et a la variabilité temporelle. La taille des cercles représente 1’écart type du pourcentage d’incertitude.

2.3.2. Répétabilité dans le temps

La mise en oeuvre d’échantillonnages répétés sur un intervalle de temps court permet
d’évaluer une partie de I'incertitude liée a I’échantillonnage que ’on nomme la répétabilité. Si
I’intervalle de temps est plus long, il est possible alors d’évaluer I’incertitude temporelle de la
qualité de I’eau. Dans la littérature, il est rapporté une incertitude moyenne de répétabilité pour
E. coli de £(23 + 16)%, pour un intervalle de 1 minute d’échantillonnage ponctuel avec des
flacons plongés dans I’eau de riviere (Pendergrass et al., 2015; Harmel et al., 2016). Dans notre
étude, I'incertitude liée a la variabilité temporelle (toutes les 10 minutes) a été estimée avec
I’équation 3.3 pour le bécher de prélevement et la pompe utilisés au site 2 du Lac de Créteil.
Pour les deux équipements, I’incertitude était relativement similaire quel que soit I’indicateur
microbien (Figure 3.1B). L’incertitude moyenne des deux équipements était respectivement pour
E. coli de £(40 £ 40)% et pour les EI de £(74 £+ 59)%. Cette disparité entre BIF a également été
remarquée par une étude antérieure Jin et al. (2004), qui a montré que I'incertitude temporelle
était plus élevée pour les entérocoques intestinaux que pour les coliformes fécaux, a la fois en
surface et en profondeur dans la colonne d’eau du lac d’eau saumatre Pontchartrain (USA). Du

fait que les EI sont plus résistants. Ils peuvent ainsi mieux survivre dans divers environnements

(Alm et al., 2003).
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2.3.3. Protocole de nettoyage
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FIGURE 3.2 — Pourcentage d’incertitude pour I’estimation d’E. coli (A) et des différents marqueurs (B) par rapport
a I’échantillon référence lors des différentes étapes du protocole de nettoyage du bécher et du tuyau de la pompe
pour les équipements manuels (M) au niveau du site 1 du lac de Créteil et avec le préleveur automatique (A) a La
Villette et a Saint-Maur-des-Fossés.

2.3.3.1. Equipements pour les prélevements ponctuels

Au cours des campagnes de prélevement, une contamination croisée peut avoir lieu d’un
site a I’autre et les protocoles de nettoyage des équipements sont relativement peu détaillés dans
les textes réglementaires, normes et guides. La stratégie mise en oeuvre a donc été d’estimer
I’incertitude liée au nettoyage des différents équipements disponibles pour le prélevement manuel
depuis la berge. Pour cela nous avons utilisé le site 1 du lac de Créteil qui présente une
concentration moyenne en E. coli de 164 + 102 NPP/100 mL et le site 2 avec une concentration
moyenne en E. coli de 853 £ 1070 NPP/100 mL. L’ analyse du pourcentage d’incertitude a montré
qu’apres un prélevement par un site plus contaminé (site 2), I'incertitude du prélevement sur
le site 1 moins contaminé était en moyenne pour E. coli de 30 + 24% et pour les EI de 81 +
90%. Un rincage de 1’équipement 3 fois avec 1’eau du site ou une désinfection a I’éthanol sans
rincage suffisait pour diminuer I’incertitude (Figure 3.2A). La combinaison de la désinfection
avec le ringage triple a 1’eau du site réduisait 1’écart type de I’incertitude pour E. coli (31 +
11%) (Figure 3.2A), pour les EI (34 + 34%) et pour le marqueur humain HF183 (de 313 +
503% a 222 + 189%) (Figure 3.2B). Cependant, aucune différence significative n’a été constatée
pour les 2 BIF entre le protocole sans ringage et le protocole avec désinfection et rincage (Test
de Wilcoxon, p=0.677 pour E. coli, p=0.288 pour les EI, n=20). En ce qui concerne les autres

indicateurs bactériens, les protocoles de désinfection et de lavage ne modifiaient pas I’incertitude
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moyenne (Figure 3.2B). Cependant, pour le marqueur canin BacCan une trés grande incertitude
était observée apres la stérilisation (3314 + 4825%).

Globalement les résultats indiquent, qu’entre des sites avec des concentrations d’environ
1 Log,o d’écart en BIF, un ringage 3 fois avec I’eau du site est suffisant quelque soit I’équipement
utilisé. Ce résultat est conforme au guide de prélevement de I’Agence de I’eau Loire-Bretagne
(AELB, 2006). 11 est également recommandé de nettoyer le bécher et la perche avec une lingette
désinfectante dans les normes et guides, mais ce protocole ne peut pas s’appliquer a I'intérieur
du tuyau de la pompe. Ainsi procéder a une étape de désinfection de I’intérieur et extérieur
du tuyau a I’éthanol et rincage peut €tre une alternative afin de réduire I’incertitude liée a la
contamination du tuyau de prélevement de la pompe. Il faudrait toutefois vérifier qu’il en va de
méme avec des sites qui ont un écart de qualité microbiologique plus élevé.

2.3.3.2. Préleveur automatique

L’échantillonnage ponctuel réglementaire est généralement effectué a des dates fixes
écartées d’une semaine a un mois, au mieux il peut étre réalisé une fois par jour, mais pendant
la semaine de travail (Burnet et al., 2021). De ce fait, des événements polluants de court terme
peuvent ne pas €tre échantillonnés (Burnet et al., 2021). Les échantillonneurs automatiques
peuvent alors étre utilisés pour échantillonner sur 24 h ou a I’événement un échantillon composite
ou des échantillons discrets multiples (Wilson et al., 2024). Le protocole de nettoyage des lignes
de prélevement des préleveurs automatiques recommandé par I’'USGS (Wilson et al., 2024) est
relativement lourd puisqu’il nécessite un démontage et nettoyage en laboratoire. Nous avons
donc testé si une désinfection a 1I’eau de Javel et des ringages directement sur le terrain étaient
suffisants, a 1’aide d’un préleveur automatique installé au canal de 1’Ourcq a la Villette, et
en Marne a Saint-Maur-des-Fossés. Les concentrations en BIF sur les deux sites différaient
légerement puis la concentration moyenne en E. coli était respectivement de 266 + 142 NPP/100
mL pour I’Ourcq et de 616 £ 500 NPP/100 mL pour la Marne. Quel que soit le temps écoulé
depuis la derniere utilisation du préleveur automatique, les résultats ont montré que 1’utilisation
sans nettoyage supplémentaire autre que la purge automatique donne des niveaux de BIF qui
ne différaient pas significativement des prélevements effectués apres une stérilisation et trois
rincages du préleveur a I’eau du robinet stérile, ni des valeurs de référence par échantillonnage
manuel, malgré une faible augmentation de I’incertitude (de 40 + 46% avant stérilisation et
rincage a 63 + 32% apres stérilisation et ringage pour E. coli par exemple) (Test de Wilcoxon

apparié, n=16, p>0,05, Figure 3.2B). De méme, dans notre étude, I’étape de stérilisation et
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rincage s’accompagnait d’une augmentation de I’incertitude pour les autres marqueurs (Tableau
S2 et S3). Cependant, une incertitude plus faible entre + 7 a 9% pour les concentrations en BIF
a été mesurée dans les eaux d’un rejet pluvial (McCarthy et al., 2008). Nos résultats étaient
probablement liés a des résidus d’eau de Javel dans les tuyaux et le bol de prélevement qui
généraient pour certains essais une sous-estimation des concentrations en BIF. Ces résultats
indiquent que pour les eaux de surface avec des concentrations faibles en BIF, un rincage de la
ligne de prélevement a I’eau du robinet autoclavée serait suffisant méme apres plusieurs semaines

sans utilisation du préleveur.
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FIGURE 3.3 — Blancs de terrain apres prélevement d’eau de surface au Bassin de la Villette (BV) et en Marne a
Saint-Maur-des-Fossés (M) et d’eau résiduaire a I’ouvrage cadre du Centre Urbain (CU) et au bassin de rétention de
Sucy-en-Brie (SB). Le symbole représente une comparaison des blancs par rapport a 1’échantillon du site prélevé
avant le blanc.

Par contre, comme le montre la figure 3.3, pour les eaux résiduaires, une €tape de
décontamination de la ligne de prélevement était nécessaire, surtout pour I’analyse des BIF.
En effet, les blancs de terrain (eau du robinet autoclavée) apres un prélevement d’eau de rejet
pluvial montraient une concentration résiduelle élevée de 35000 + 16000 NPP/100 mL pour les
eaux pluviales en entrée du bassin de rétention de Sucy-en-Brie et de 1090 + 410 NPP/100 mL
au rejet de I'ouvrage cadre du Centre Urbain de Noisy-le-Grand. Aprés décontamination a la

Javel et rincage a 1’eau du robinet stérile, une diminution supplémentaire d’environ 0.5 a 1 Log;
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(Figure 3.4A) de la contamination résiduelle en BIF était observée dans les blancs terrains. Bien
qu’il restait encore 2 a 3 Log;o de BIF dans les blancs, I’impact de cette contamination résiduelle
pouvait étre considéré négligeable sur des échantillons d’eau résiduaires qui présentaient des
concentrations en E. coli entre 2.5 et 4.7 Log;o /100 mL. Le prélevement d’un échantillon trés
contaminé en BIF (6.3-6.4 Log;o NPP/100 mL) avait entrainé une contamination croisée 10
fois supérieure sur 1 a 3 prélevements successifs d’un échantillon de concentration plus faible
(4,6-4,9 Log1o NPP/100 mL), et ceci malgré la purge automatique de la ligne de prélevement
(Galfietal., 2014). Ces contaminations résiduelles du systeme de prélevement peuvent entrainer
un biais lorsque 1’étude vise a analyser la dynamique temporelle des concentrations en BIF
pendant un événement pluvieux. Dans notre étude, cette contamination croisée s’atténuait de
moiti€ lorsque 7 jours s’étaient écoulés entre les prélevements (500 £ 200 NPP/100 mL) au
rejet de 'ouvrage cadre du Centre Urbain de Noisy-le-Grand. Par contre, pour des eaux de
ruissellement d’un parking en entrée et sortie de filtre de roseaux plantés, une contamination
<1% dans le tuyau du préleveur apres 7 jours secs a été constatée dans une étude précédente

(Hathaway et al., 2014).
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FIGURE 3.4 — Blancs de terrain aprés décontamination et ringage du préleveur au bassin de rétention de Sucy-en-
Brie. Le symbole représente une comparaison des blancs par rapport a I’échantillon du site prélevé avant le blanc.

En ce qui concerne les autres marqueurs bactériens, une contamination résiduelle de
la ligne de prélevement a été observée pour les blancs lorsque les eaux de surface étaient

prélevées préalablement, principalement pour le marqueur humain HF183 et les bactéries totales
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BactQuant (Figure 3.3). Les résultats étaient aléatoires, parfois la désinfection était efficace
(blancs terrains négatifs) comme pour les marqueurs canin et aviaires. La désinfection permettait
également une diminution de I’incertitude sur la mesure des marqueurs spécifiques pour les
échantillonnages de rejets pluviaux (Figure 3.4B).

Il ne faut pas oublier de prendre en compte I’influence de la longueur et de I’inclinaison
du tuyau de prélevement qui peut se contaminer du fait d’un volume mort d’eau qui reste a
I’intérieur malgré la purge automatique (Galfi et al., 2014; Hathaway et al., 2014). En effet, une
incertitude moyenne plus faible (1.7%) avait été mesurée lorsque le tuyau était incliné, alors
qu’elle était de 5.5% avec un tuyau droit (Hathaway et al., 2014). La longueur du tuyau (1,5
vs 5 m) ne semblait pas influencer la contamination croisée lors d’un passage d’un échantillon
trés contaminé (6.3-6.4 Log;o NPP/100 mL) a un échantillon moins contaminé (4,6-4,9 Log;
NPP/100 mL) (Galfi etal., 2014). Il est donc important de privilégier une installation du préleveur
automatique proche du bord et en hauteur, comme il est recommandé dans les guides FD t90-
523-1 et de I’agence de I’eau Loire-Bretagne. La désinfection terrain suivie de 3 rincages a
I’eau stérile couplée a une installation adéquate, conduit donc a diminuer I’incertitude liée a la

contamination résiduelle de la ligne de prélevement.

2.3.4. Protocole de transport et stockage

5

-50-

% d'incertitude pour l'estimation d'E. coli

-100-
6H Froid 24H Froid 6H Ambiant 24H Ambiant

FIGURE 3.5 — Pourcentage d’incertitude pour I’estimation d’E. coli par rapport a I’échantillon référence en fonction
du temps (6 h ou 24 h) et de la température de stockage les 6 premieres heures a 5°C (froid) ou a température
ambiante (ambiant).

Pour évaluer I’incertitude liée aux conditions de température durant le transport et le

stockage des échantillons, des prélevements manuels ont été effectués avec la pompe et la
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perche au niveau du site 2 du lac de Créteil, avec une concentration moyenne en E. coli de
353 + 233 NPP/100 mL et en EI de 568 + 882 NPP/100 mL (n=5). Pour les deux groupes de
BIF (respectivement E. coli et El), aucune différence significative n’a été observée entre les
échantillons transportés a température ambiante ou a 5°C, que les analyses aient été réalisées
apres 6 h ou 24 h (Test t apparié, p>0.06, p>0.18, n=36, Figure 3.5). Toutefois, a 24 h le
pourcentage de perte des BIF était 1égerement plus élevé avec un stockage les 6 premicres
heures a température ambiante (67 £ 21% pour E. coli et 57 + 22% pour EI) qu’avec un stockage
toutle temps a 5°C (55 £26% pour E. coliet 31 £ 13% pour EI). Les résultats sont pas tout a fait en
concordance avec une étude antérieure qui a montré que jusqu’a 24 h le stockage des échantillons
d’eau pluviale a température ambiante ne constitue pas un facteur significatif de variation de
la concentration en E. coli (McCarthy et al., 2008). Toutefois, a 5°C, une faible décroissance
au cours du temps a été rapportée par Harmel et al. (2016). Pour une période de stockage de
24 h a 10-15°C d’eau douce et marine, 1’existence d’une réduction de la concentration en E.
coli de 28% en moyenne a été démontrée (Crane and Moore, 1986). De plus, cette variabilité
est dépendante du niveau de contamination de 1’échantillon (Ferguson, 1994). En effet, pour
les échantillons de riviere relativement contaminés (coliformes fécaux 2,7 a 3,9 Log;o NPP/100
mL), la concentration ne différait pas entre un stockage froid pendant 9 h ou 18 h. Par contre,
pour une riviere 10 fois moins contaminée, une variation de 0,1 Log;, de la concentration en
coliformes fécaux était visible entre les deux durées (Ferguson, 1994). Toutefois, aucune analyse
statistique n’avait ét€ menée dans cet article.

En ce qui concerne le marqueur d’ADN total (BacQuant), la variabilité était la plus faible
avec 6 h de stockage a 5°C (Tableau S2) et pour le marqueur humain HF183, le profil de variabilité
était relativement similaire a celui des BIF (Figure S1). Par contre, une plus grande variabilité
a été observée avec les marqueurs aviaires (CGOF1 et gull2) pour le stockage a température
ambiante, I’incertitude étant la plus élevée au-dela de 6 h qui se traduit par une décroissance de
ces marqueurs (Figure S1). Pour le marqueur canin, il est plus délicat de conclure car il n’a été
détecté que lors d’une seule campagne. Une décroissance apres 6 h a 5°C a été observée, alors
qu’apres 24 h a 5°C, la concentration était élevée (Tableau S3).

Les résultats de notre étude montrent donc que le transport a température ambiante peut
entrainer une forte variabilité des concentrations en BIF, ainsi que les autres marqueurs fécaux
bactériens si la mesure n’est pas effectuée avant 24 h. ’ensemble de ces résultats indique qu’il est

recommandé de limiter le temps de stockage a moins de 6 h, en privilégiant un transport a 5°C.
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Ceci apporte une précision et un éclairage sur les textes réglementaires, normes et guides francais
qui recommandent pour le transport de placer les échantillons dans une enceinte réfrigérée a
5 + 3°C au maximum pendant 24 h, a 1’abri du rayonnement solaire (NF EN ISO 19458). Le
guide FD T90-523-1 précise que pour les échantillons de riviere, la température doit étre de 4 +
2°C pendant <8 h au mieux et dans les 24 h au plus. L’analyse doit avoir lieu le jour méme de
préférence et au plus tard dans les 24 h s’il existe une impossibilité géographique (Arrété du 19

octobre 2017).

2.3.5. Impact du temps d’incubation sur la lecture

Pour la mesure des BIF, les Normes NF EN ISO 9308-3 et NF EN ISO 7899-1 spécifient
un temps d’incubation de 36 a 72 h et une lecture a 36 h. Cependant, une lecture des 24 h est
souvent pratiquée pour la surveillance des eaux de baignade. Afin de savoir quel est I’impact du
temps d’incubation sur I’incertitude de la mesure des BIF, nous avons comparé les lectures a 24,
48 et 72 h sur une large gamme d’échantillons provenant de 4 sites. La gamme de concentrations
moyennes en E. coli s’étendait de 1,56.10> NPP/100 mL (site 1 du Lac de Créteil) a 7,77.10°
NPP/100 mL en entrée de la station de traitement des eaux usées de St-Thibault-des-Vignes.
L’ensemble des résultats indiquait que plus la concentration au niveau d’un site était faible,
plus le temps d’incubation nécessaire avant une stabilisation de la lecture était long. Ainsi, par
exemple, a St-Thibault-des-Vignes la lecture était stable dés 24 h d’incubation (Test de Wilcoxon
et test t apparié, p>0,05, n=12) alors que pour le site 1 du Lac de Créteil une différence
significative était observée entre les 3 temps d’incubation (Test de Friedman, n=177, p=0,02).
En effet, les tests microbiologiques sont souvent moins précis pour des échantillons complexes.
Par exemple, les résultats faux positifs pour la mesure d’E. coli atteignent 4% dans 1’eau de pluie
mais jusqu’a 40% dans les eaux usées (McLain et al., 2011). Cependant, il faut étre vigilant que
d’autres micro-organismes non ciblés ne se développent pas dans ces microplaques au-dela de
48 h d’incubation a 44°C (Ndione, 2022). Sachant que la lecture a 24 h peut générer une sous-
estimation pour certains échantillons, il s’agit donc d’un compromis entre rapidité et exactitude
du résultat. Or, pour la gestion d’un site de baignade, connaitre le résultat le plus tot possible est
crucial. La méthode NPP ColiLert (IDEXX) peut offrir une alternative intéressante a la méthode
par microplaque puisqu’elle permet une lecture en 18 h pour E. coli (ISO 9308-2 :2012) et en

24 h pour les entérocoques intestinaux (certification NF Validation du test Enterolert®-E).
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2.3.6. Synthese globale des incertitudes

Type d'eqmpements (M)

Mouectic Chien C jejum Huomam
128 + 130 % 174+ 143 % 168 £ 130 % 698+ 45 %

Stérilisation + Ringage

E. col

Stockage 6H a froid

E. coh El Ohe Mouette Chien C. jejum Humain 165
213+23% 15£30% 234+ 261 % 44+31% 100 % 62 % 37Tx13% 65£531%

FIGURE 3.6 — Schéma récapitulatif de I’analyse de I’incertitude pour 1I’ensemble des indicateurs fécaux analysés ;
en noir (équipements manuel), en vert (préleveur automatique) ; en bleu (tous les équipements).

La figure 3.6 récapitule I’ensemble des pourcentages d’incertitude li€s au prélevement, au
transport et au stockage des échantillons. Afin de limiter I’incertitude globale liée au prélevement,
nos recommandations sont les suivantes pour le prélevement manuel depuis la berge :

- privilégier le bécher ou la pompe associés a une perche télescopique depuis la berge ou
un bateau.

- un rin¢age a I’eau du site est généralement suffisant pour des écarts de concentration en
BIF d’environ 1 Log;, pour les eaux de surface. Toutefois, pour des écarts de concentration plus

élevés, une désinfection préalable du bécher ou du tuyau de prélevement permettra de réduire

160



Chapitre 3

I’incertitude liée aux contaminations croisées.

- réaliser des blancs de terrain avec de I’eau stérile.

Pour les préleveurs automatiques, les recommandations sont les suivantes :

- limiter la longueur du tuyau de prélevement et favoriser une inclinaison.

- la purge automatique n’est pas suffisante pour éviter les contaminations croisées, un
rincage a I’eau du robinet stérile de la ligne de prélevement est toutefois suffisant pour des eaux
de surface peu contaminées. Pour les sites trés contaminés ou pour les eaux résiduaires il est
nécessaire de procéder a une désinfection a la Javel a 5% comme recommandé par I’USGS
(Wilson et al., 2024), suivie d’a minima trois ringcages a I’eau du robinet stérile.

- limiter le stockage dans le préleveur a 24 h maximum, et privilégier une embase
réfrigérée ou I’ajout de pains de glace dans le logement des flacons. En cas d’impossibilité, les
échantillons pourront €tre a température ambiante tant que le préleveur est a ’ombre a I’ extérieur
ou a I'intérieur du réseau.

Une fois 1’échantillon collecté, leur transport et leur stockage doivent, idéalement, étre
limités a moins de 6 heures avec un stockage a 5 + 3°C. Au-dela de 24 heures ou a température
ambiante, une variabilité accrue des résultats a été observée, notamment pour les marqueurs
animaux et humains.

Il est également crucial de connaitre I’incertitude associée aux méthodes analytiques,
car celles-ci peuvent avoir un impact sur I'incertitude finale a prendre en compte. Les erreurs
liées a la mesure de la qualité de I’eau peuvent étre attribuées a plusieurs facteurs, notamment la
méthode de mesure, les dilutions en série, et la distribution hétérogéne des microorganismes dans
le volume prélevé, les réactifs et équipements, les erreurs humaines (Harmel et al., 2016). Un
temps d’incubation de 36 ou 48 heures est recommandé pour stabiliser les résultats de lecture des
microplaques. Pour les BIF, nous avons estimé une incertitude analytique de 31% [IC95% 26 : 35]
pour E. coli et 45% [IC95% 35 : 56] pour les EI par les méthodes miniaturisées en microplaques.
Chaque étape de dilution augmente I’incertitude, surtout avec des faibles concentrations (Harmel
etal., 2016). Pour les quantitray Colilert (IDEXX), I’incertitude rapportée dans la littérature est
de 22 + 15% (McCarthy et al., 2008). De plus, Tiwari et al. (2016) ont montré que la méthode
Colilert-18 et 1a méthode en microplaque ISO 9308-3, avaient un taux de concordance supérieur
a 90%, la concentration estimée par les deux méthodes n’étant pas significativement différente.
Pour les estimations par PCR quantitative (QPCR), I’incertitude peut €tre estimée en s’appuyant

sur une étude comparative qui rapporte une incertitude de 67% pour E. coli et 27% pour EI dans
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un premier essai inter-laboratoire, contre 25% pour E. coli et de 21% pour EI dans un second
essai (Noble et al., 2010). De méme, une incertitude sur la quantification par qPCR d’E. coli
a estimé des valeurs inférieures a 25% (Bergeron et al., 2011). Concernant I’incertitude liée a
la mesure des BIF par le systeme online ColiMinder, une analyse a été menée en laboratoire
par Eau de Paris avec des échantillons de la Seine, ce qui a permis d’estimer une incertitude
de 14% (n=10) avec un nettoyage automatique entre les échantillons prélevés successivement
(Loiodice, 2024). Au niveau de la littérature, une incertitude analytique sur E. coli avec le
systeme ColiMinder a été estimée a 6% en laboratoire a 22% en terrain (Cazals, 2019).

Enfin pour la détection par qPCR des marqueurs spécifiques de sources humaines et
animales, une répétabilité de la mesure (coefficient de variation) a été estimée a <5% pour
le marqueur aviaire Gull2, <6% pour le marqueur humain HF183 et <3% pour le marqueur
canin BacCan lors d’essais intra-laboratoire (Ebentier et al., 2013). Dans cette méme étude
inter-laboratoires, la répétabilité entre laboratoire était estimée a <20% pour le marqueur Gull2,
<10% pour le marqueur HF183 et <6% pour le marqueur BacCan. En effet, les especes et souches
bactériennes peuvent réagir différemment, selon leur métabolisme et les conditions de stress au
moment de 1’analyse (Sutton, 2011). Ces éléments sont essentiels a considérer pour interpréter

les résultats.

2.3.7. Incertitudes retenues pour E. coli

Pour aider a la prise de décision lors de la gestion active des sites de baignade, nous
avons pris comme un cas d’utilisation la concentration en E. coli car ce parametre est le plus
déclassant pour la gestion journaliere des rivieres franciliennes telle que la Seine ou la Marne
(Mouchel et al., 2020). Ainsi pour les mesures avec le systtme ColiMinder en Seine (Ville
de Paris), le calcul de I’incertitude globale a regroupé 1I’ensemble des incertitudes rapportées
dans la figure 3.6. Ainsi ’incertitude analytique de 14% estimée par Eau de Paris (Loiodice,
2024) qui comprend 1’étape de nettoyage automatique entre les échantillons, I'incertitude sur
les mesures qui sont réalisées rapidement sans stockage. Cette incertitude ayant été évaluée en
laboratoire, une incertitude temporelle de 40% a également été incluse (Figure 3.7). L’incertitude
globale qui a été retenue était donc de 42%. Pour les analyses réglementaires d’E. coli, le guide
technique FD T 90-521 est le référentiel suivi par les équipes de prélevement de la Ville de
Paris. Une incertitude de 12% a été retenue pour la stérilisation et le rincage des équipements,

une incertitude de 23% liée au stockage a froid et analyse le jour méme et une incertitude
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analytique de 31% (Figure 3.6). Au total cela représentait une incertitude globale de 40%
(Figure 3.7). Des coefficients de variations allant de 0.9 a 7.2% pour le systeme ColiMinder, et
de 12.4 a2 34.0% pour la mesure avec les quantitray Colilert IDEXX) sur des mesures repliquées
6 fois ont été rapportés dans la litérature (Burnet et al., 2019). Des coefficients de variation
allant de 31 a 105% ont été estimé dans une étude antérieure pour la méthode de mesure en
microplaque (NPP) (Servais et al., 2005). En effet, les méthodes basées sur le NPP peuvent
présenter des incertitudes qui dépassent 30% du fait de la probabilité de distribution du nombre
le plus probable (Gronewold and Wolpert, 2008). Considérant ces valeurs de la litérature, nos

estimations pouvaient donc étre considérées raisonnables.

Site d'échantillonnage : E. coli

e e ]
< Temporelle e

40+40%

échantillonnage
échantillonnage successif (M) successif (A)
Contamination Stérlisation + Ringage
40 + 46 % 63 £ 32 %

/Contamlnatlon\ /ngage N I,-’ Stérilisation \ Sterilisation + Rincage
\_30£24% J\31£11%/\ 38+28% / 12+15%
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( BHafod T\ /BHaT ambiante \ / 24Hafroid \ /24HaT ambiante
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FIGURE 3.7 — Schéma récapitulatif de 1’analyse de 1’incertitude pour E. coli, en bleu les incertitudes sur les
équipements automatiques pris en compte pour les mesures obtenues avec le systtme ColiMinder et en vert les
incertitudes sur les équipements manuels pris en compte pour les mesures ponctuelles en culture * : (Bergeron
et al., 2011; Noble et al., 2010).
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2.3.8. Intégration de I’incertitude dans la prise de décision

En France, pour la gestion quotidienne d’un site de baignade, la qualité microbiolo-
gique instantanée d’un prélevement est qualifiée suivant des valeurs seuils de I’instruction
n°DGS/EA4/2022/168 du 17 juin 2022 relative aux modalités de recensement, gestion et clas-
sement des eaux de baignades. Ces valeurs seuils sont basées sur un rapport de ’AFSSET de
septembre 2007 (Duboudin et al., 2007) et s’appliquent sur un site de baignade classé par une
Agence Régionale de la Santé (ARS). Elles sont utilsées en cours de saison pour aider les ges-
tionnaires a décider de I'ouverture ou la fermeture du site de baignade. Pour les eaux douces,
ces seuils sont de 100 et 1800 NPP/100 mL, afin de catégoriser I’échantillon en qualité bonne,

moyenne ou mauvaise.
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FiGure 3.8 — Fonction d’appartenance avec la logique floue. En vert : qualité bonne, en Bleu : qualité moyenne, en
rouge qualité mauvaise et les traits noirs représente les seuils réglementaires.

Lors de la décision, les gestionnaires vont classiquement comparer la valeur mesurée de
I’échantillon ponctuel a la valeur seuil, sans tenir compte de son incertitude sur la détermination
du NPP la plupart du temps (Sylvestre et al., 2020), pour décider si I’échantillon est conforme
avec une ouverture de la baignade (méthode de référence 1). Dans le cas de la Ville de Paris,
pour la prise de décision de tenue des épreuves de nage ou triathlon lors des Jeux Olympiques,
I’historique des mesures du systeme ColiMinder a été pris en compte sur une fenétre de 4 h
précédant le matin (méthode de référence 2). En vue d’améliorer ce processus de prise en compte

de I’historique des données des systeémes de mesure en temps réel ou quasi réel, nous proposons
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d’utiliser la logique floue pour intégrer d’une part I’incertitude sur la mesure et d’autre part
I’historique des données précédant le matin. Nous avons testé 6 intervalles de temps allant de 4
a 24 h. Nous avons comparé les résultats de classification obtenus, avec ceux obtenus en mettant
en oeuvre les méthodes de référence 1 et 2 utilisées par les gestionnaires.

TABLE 3.1 — Pourcentage de vrais positifs pour les 5 méthodes de défuzzification par rapport aux 2 méthodes de
référence (méthode 1 et méthode 2), (NC) non classé avec la méthode par la Ville de Paris pendant les JOP 2024.

Intervalle Méthode de COG | MOM| LOM | ROM | BS NC
d’analyse référence
1 81 79 79 79 78 0
[12h - 12 h] 2 30 31 31 31 27 51
1 80 80 80 80 77 0
(8h:8h] 2 31 31 31 31 28 53
1 77 77 77 77 77 0
[0'h: 12 h] 2 30 32 32 32 27 51
1 78 77 77 77 77 0
(20h -8 h] 2 31 30 30 30 29 53
1 77 77 77 77 75 0
[4h:8h] 2 29 29 29 29 28 53
1 78 78 78 78 76 0
(8012 h] 2 32 32 32 32 32 52
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FIGURE 3.9 — Comparaison de la méthode du (A) centre de gravité (COQG) et de (B) moyenne des maxima (MOM)
pour les mesures réglementaires au niveau des 3 sites avec une classification utilisant I’intervalle de 24 h de midi a
midi. La couleur représente la classe d’appartenance et I’axe des abscisses représente la méthode de défuzzification.
Le trait noir épais représente le seuil réglementaire et les traits fins représentent 1’ incertitude associée au seuil pour
les analyses ponctuelles.

Apres fuzzification pour déterminer les probabilités d’appartenance aux 3 classes de

qualité, pour I’étape de défuzzication qui permet de classer les valeurs mesurées, nous avons
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test€ 5 méthodes de calcul (COG, MOM, LOM, BS et ROM). Nous avons classé I’ensemble
des mesures réglementaires du suivi estival sur la Seine de 2020 a 2023. Les 3 méthodes
(MOM, LOM et ROM) présentaient les mémes résultats de classification. Aucune différence
significative n’est observée pour les 5 méthodes de défuzzification aprés comparaison des
classifications avec la (méthode de référence 1) et la (méthode référence 2) (Test de Khi2
d’ajustement, p<0.001, n=154). Toutefois, en ce qui concerne le pourcentage de vrais positifs,
apres comparaison aux méthodes de référence 1 ou 2, pour les différents intervalles de temps
analysés, la méthode BS présentait des pourcentages de vrais positifs similaires ou 1égerement
plus faibles (Tableau S1). De plus, I’emploi d’une des méthodes des maxima (MOM, LOM et
ROM) pour la défuzzification entrainait des classements trés incohérents pour certains jours,
avec des échantillons trés contaminés classés comme étant de qualité "bonne" (Figure 3.9).
Le centre de gravité qui donnait des résultats corrects a €té ainsi retenu comme méthode de
défuzzification. En effet, parmi les méthodes de défuzzification, le calcul du centre de gravité
est I'un des plus utilisés (Mahabir et al., 2003).

La méthode de défuzzification (COG) retenue générait en moyenne 78 + 2% de vrais
positifs communs avec la méthode de référence 1 et 30 £ 1% avec la méthode de référence 2.
Il faut noter que la méthode de référence 2 classait en moyenne 52 + 1% des valeurs comme
incertaines. La logique floue est particulierement adaptée pour traiter des données aux connais-
sances tres variables, vagues ou incertaines, permettant ainsi un flux d’information logique,
fiable et transparent depuis la collecte des données jusqu’a leur utilisation dans des contextes
environnementaux (Icaga, 2007). Pour les différents intervalles de temps analysés, les résultats
étaient statistiquement similaires, la majorité (entre 87 et 97%) des mesures €taient classées de
la méme maniere (Test de Khi? d’ajustement, p<0.001, n=154). Ces résultats indiquaient qu’au
pont de ’Alma et Tolbiac, les 6 intervalles de temps donnaient la méme classification. Il y avait
majoritairement (72%) des mesures classées selon la méthode de référence 1 comme étant de
qualité moyenne. Parmi celles-ci, une large proportion (entre 84 et 90%) de ces mesures était
attribuée par la méthode de logique floue a la classe de qualité moyenne. De méme, entre 52
et 57% des valeurs au-dessus de 1800 NPP/100 mL (classe mauvaise, selon la méthode de
référence 1) étaient classées en qualité mauvaise par la méthode de logique floue. Le processus
de logique floue utilise une approche simple basée sur des regles pour résoudre des problemes
de contrdle car capable d’intégrer différents types d’observations de qualité (Elmas, 2003; Icaga,

2007).
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FIGURE 3.10 — Comparaison de la classification des données du systeéme ColiMinder avec la logique floue pour les
mesures réglementaires d’E.coli (Log;o NPP/100 mL) au niveau des 3 sites (2 : pont de Tolbiac rive droite, 3 : pont
de Tolbiac rive gauche, 11 : pont de I’Alma) en utilisant différents intervalles de temps (A) midi a midi (B) 8 ha 8
h (C) minuit a midi (D) 20h a8 h (E) 4 h a 8 h (F) 8 h a midi. La couleur représente la classe d’appartenance. Les
traits noirs épais représentent les seuils réglementaires de 1800 NPP/100 mL et de 100 NPP/100 mL et les traits
fins représentent I’incertitude associée a la mesure manuelle.
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La logique floue permet d’obtenir des informations plus précises en utilisant une forme
continue. Cela est particulierement pertinent dans le contexte de 1’évaluation de la pollution de
I’eau, ou il est crucial de considérer la variabilité et la complexité des données (Icaga, 2007).
En effet, en fonction de la variabilité spatio-temporelle, des sources de contamination en amont
du site, des conditions environnementales et des caractéristiques du site, mais également de la
position du ColiMinder par rapport au site, I’intervalle de temps a prendre en compte peut étre
variable (Quilliam et al., 2011; Rossi et al., 2020; Briciu-Burghina et al., 2019). L’avantage
de cette approche pour classer les futurs sites de baignade est qu’elle permet de lisser sur
plusieurs heures et de prendre en compte 1’historique plutdt qu'une mesure ponctuelle, tout
en associant I'incertitude sur la mesure. Cette méthode permet aussi une prise de décision
objective pour des valeurs proches de la valeur seuil. Utiliser cette approche combinée avec des
mesures en temps (quasi) réel acquises par des appareils de surveillance de haute qualité, comme
ColiMinder, permet ainsi une classification rapide et fiable. Un systeme ColiMinder a été utilisé
pour surveiller des eaux récréatives a quatre emplacements le long de rivieres (Makris et al.,
2023). Cette méme €tude a observé des relations spécifiques entre 1’activité enzymatique et les
niveaux de contamination par E. coli, indiquant que la surveillance en ligne pourrait constituer
un complément aux méthodes de laboratoire traditionnelles, surtout en cas de contamination
élevée ou lors de déversements combinés (Makris et al., 2023). Cela ouvrirait la voie a une
évaluation encore plus complete et précise des problemes de pollution, en renforcant la capacité
de la logique floue a modéliser des systemes complexes et a gérer les incertitudes inhérentes aux

données environnementales.

2.4. Conclusion

Nos résultats présentent 1’originalité de ne pas se limiter a I’analyse de I’incertitude de
la mesure des BIF et d’évaluer d’autres marqueurs bactériens spécifiques de sources ou en-
core des pathogenes, contrairement a de nombreux articles scientifiques traitant uniquement
de I'incertitude de la mesure des BIF. L’analyse de ’incertitude au niveau de la mesure de la
concentration en BIF et d’autres marqueurs bactériens montre globalement que les équipements
manuels €étaient statistiquement similaires, confirmant la flexibilité des protocoles d’échantillon-
nage. Pour le protocole de nettoyage que ce soit pour le prélevement automatique ou ponctuel, la

désinfection ne semblait pas nécessaire pour les eaux de surface avec des concentrations allant
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de 45 a 3800 NPP/100 mL, un simple rincage a 1’eau du site ou a I’eau stérile n’entrainant pas
de contamination croisée entre sites avec des écarts de concentration de 1 Log,(. Par contre, en
ce qui concerne les eaux résiduaires, une désinfection était nécessaire, mais 1I’eau de Javel a 0,5
% n’était pas toujours suffisante. Toutefois, il est possible de la réaliser sur le terrain sans avoir a
démonter I’équipement et le ramener au laboratoire pour stériliser. Il serait nécessaire d’utiliser
une solution de Javel plus concentrée puis de veiller a bien rincer I’équipement. En ce qui
concerne le stockage et le transport des échantillons, une sous-estimation de la concentration en
BIF a été observée pour les échantillons transportés et stockés a température ambiante lorsque la
mesure était réalisée 24 h plus tard. Enfin, le temps d’incubation de I’ensemble des échantillons
avant lecture des microplaques dépend de la concentration de 1’échantillon. Ce temps pouvant
étre réduit a 24 h sur les eaux fortement contaminées. De plus, s’ajoute a cela une incertitude
liée a la méthode d’analyse qui doit €tre prise en compte.

L’ensemble des résultats pourrait aider a 1I’écriture d’un guide pratique d’échantillonnage
en complément des normes et réglementations sur le prélevement. Un tel guide aurait pour but de
permettre une harmonisation du suivi de la qualité des eaux de surface par les différents acteurs.
Par ailleurs, il est aussi important de considérer I’intercalibration des méthodes de mesure entre
les laboratoires d’analyses lorsque des résultats acquis par différents acteurs sont agrégés pour
réaliser des études de séries temporelles longues ou lorsque des études sont menées a 1’échelle
du bassin versant, ou a I’échelle régionale, ou nationale. En effet, il a été montré que le coeflicient
de variation entre des mesures d’E. coli réalisées par 49 laboratoires différents sur 2 aliquots
d’un mé€me échantillon pouvait atteindre 119 a 128% (Bremser et al., 2011).

L’intégration de la logique floue dans 1’évaluation de la qualité de I’eau, notamment a
travers la concentration en E. coli, s’est révélée €tre une approche efficace et objective pour
la prise de décision en matiere de gestion des baignades. En combinant des méthodes de
défuzzification adaptées et des appareils de surveillance en temps réel comme le ColiMinder,
il est possible de classer rapidement et avec fiabilité les sites de baignade, en tenant compte
des incertitudes associées aux mesures. Les résultats montrent une forte concordance avec les
méthodes couramment utilisées par les gestionnaires tout en permettant une évaluation plus
nuancée des données et une prise de décision plus rapide. Il serait intéressant de tester cette
approche avec les entérocoques intestinaux qui constituent un indicateur pertinent dans les eaux
cotieres (EPA, 2019). Cette approche offre une réponse proactive aux enjeux de pollution de

I’eau, améliorant ainsi la sécurité et la qualité des activités récréatives en milieu aquatique urbain.
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En outre, I'utilisation de la logique floue pour I’évaluation de la pollution de 1’eau pourrait non
seulement améliorer la précision des informations obtenues, mais également fournir une méthode
robuste pour intégrer divers aspects de la qualité de 1’eau, ce qui est essentiel pour des décisions
éclairées en matiere de gestion environnementale.
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2.5. Annexe

TABLE S1 — Liste des amorces et des sondes utilisées lors de la qPCR pour la recherche de marqueurs fécaux
animaux et humains, des bactéries totales et des Campylobacter. La séquence et la concentration finale pour chaque
amorce sens (F) et antisens (R), et pour la sonde TagMan (P) sont présentées dans le tableau.

Cible Séquence 5’'—-3’ finale
(uM)
BacCan F GGA GCG CAG ACG GGT TTT 0,2
BacCan R CAA TCG GAG TTC TTC GTG ATA TCT A 0,2
BacCan P FAM-TGG TGT AGC GGT GAA A-TAMRA-MGB (life tech) | 0,1
Gull2 F CTT GCA TCG ACC TAA AGT TTT GAG 0,1
gull2 R GGT TCT CTG TAT TAT GCG GTA TTA GCA 0,2
gull2 P FAM-ACA CCT GGG TAA CCT CAG A - BHQ1 0,2
CGOF1 F GTA GGC CCT GTT TTA AGT CAG C 0,2
CGOF1 R AGT TCC CGC TGC CTT GTC TA 0,2
CGOF1 P FAM - CCG TGC GGT CCT GAC ACA CTT GGA - BHQ1 0,2
B-actine F GCAAGAGGGAGGAGAAGGACAGAGT 0,05
[-actine R CAAAGAGGGAGGAGAAAGGAAGT 0,05
[-actine P HEX-CCCCCTCCTACTGCTCCACCCGAAAATG-BHQI1 0,05
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FIGURE S1 — Pourcentage d’incertitude pour I’estimation des différents marqueurs bactériens par rapport a I’échan-
tillon référence en fonction du temps (6 h ou 24 h) et de la température de stockage a 5°C (froid) ou a température
ambiante (ambiant).

TABLE S2 — Incertitude sur la collecte des échantillons pour les E. coli, les Entérocoques intestinaux, HF183 et les
bactéries totales (BacQuant).

Parameter EC EI BacQuant HF183
Temporelle 40+£40 | T74+£59 83+ 12 99 + 69
Type équipement (M) 57£30| 99+70 84 + 67 98 +45
Préléevement successif (M) | 30 + 24 81 £90 8322 £ 16566 313 +£503
Rincage (M) 3111 34 +34 6107 £ 12112 222 + 189
Stérilisation (M) 38+28 | 90+ 187 | 1232802 + 2040662 | 95 + 118
Ringage + Stérilisation (M) | 12 + 15 31 £31 7002 + 13922 74 + 33

Prélévement successif (A) | 40+46 | 986 £ 917 40352 + 65554 54 + 38

Ringage + Stérilisation (A) | 63 +32 | 848 + 1474 15114 + 41487 80 + 26

Stockage 6 h froid 23 +£23 15 +£30 27+7 37+£23
Stockage 6 h ambiant 22+16 31+12 40 + 28 19+ 17
Stockage 24 h froid 55+£26| 31+13 45 + 35 29+19
Stockage 24 h ambiant 67 £21 57T +£22 65 £ 53 51+14
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TABLE S3 — Incertitude dans la collecte des échantillons des marqueurs BacCan (Chien), CGOF1 (Oie), Gull2
(Mouette et Goéland) et le pathogene C. jejuni.

Parameter BacCan CGOF1 Gull2 C. jejuni
Temporelle 119 + 96 125 £ 85 151 + 66 173 + 37
Type équipement (M) 174 + 143 45 +90 128 +130 | 168 £ 118
Prélévement successif (M) 428 + 581 NA 137 + 64 50
Ringage (M) 71 £42 NA 164 £ 112 100
Stérilisation (M) 3314 + 4825 NA 40 £ 51 NA
Rincage + Stérilisation (M) 132 £ 19 NA 90 = 17 100
Préléevement successif (A) 78 £42 NA 81 +43 NA
Rincage + Stérilisation (A) 85+23 NA 120 + 55 NA
Stockage 6 h froid 100 234 £ 261 44 + 31 62
Stockage 6 h ambiant NA 602 £582 | 1339 +2109 | 75+35
Stockage 24 h froid 92 44 + 44 104 + 18 100
Stockage 24 h ambiant NA 174 £ 135 | 151 +183 100
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Résumé : Dans le cadre de 1’ouverture de sites de baignade en Marne et en Seine, il a
été observé que, par temps de pluie, les seuils réglementaires pour le classement des baignades
sont souvent dépassés dans ces deux rivieres. Des modélisations exponentielles inverses ont
permis d’estimer un taux de disparition et trois indicateurs de résilience. L’analyse du taux de
disparition estimé a partir des mesures réglementaires pour E. coli a révélé des valeurs de 0,44 +
0,35 jr~! en Marne et de 0,47 + 0,32 jr~! en Seine. De plus, une analyse des mesures effectuées
avec le dispositif ColiMinder a été réalisée en Seine avec des intervalles de mesure variant de
2 a 24 heures, et a révélé une sous-estimation de la résilience et de la résistance a mesure que
I’intervalle augmente. Cette tendance est particuliecrement marquée avec un intervalle de 24
heures, ot une différence significative a été observée. Le taux de disparition ainsi que 1’analyse
de la résilience estimés a partir des mesures réglementaires étaient similaires pour les diftérentes
stations étudiées sur la Seine et la Marne. Ce qui n’exclut pas la possibilité de généraliser a
I’ensemble des sites en région parisienne. De plus, la simulation d’un rejet en Marne a permis
d’estimer un taux de mortalité pour E. coli de 0,97 * 0,48 jr—!. Ces paramétres pourront
alimenter des modeles hydrodynamiques pour la gestion des futurs sites de baignades en Marne.

Mots clés : baignades, riviére urbaine, sources, contaminations, feces d’animaux,

pluies, E. coli, taux de décroissance, taux de disparition
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3.1. Introduction

Depuis quelques décennies, la reconquéte des zones de baignade est devenue une priorité
dans de nombreuses régions d’Europe, en réponse aux aspirations croissantes des citoyens pour
des activités de loisir en plein air et une meilleure qualité de vie (Kistemann et al., 2016; Schreiber
et al., 2015). Dans un contexte de prise de conscience environnementale, la qualité des eaux de
baignade a fait ’objet de mesures réglementaires strictes, encadrées par la directive européenne
2006/7/CE, qui vise a protéger la santé publique en garantissant la qualité microbiologique des
eaux destinées a la baignade.

Ainsi, en Tle-de-France, une volonté marquée de réouvrir I’acces aux rivieres urbaines est
observée, notamment pour la Marne et la Seine, afin de permettre a nouveau la baignade (Bou-
leau et al., 2024). Toutefois, I’'urbanisation de ce territoire génere des risques sanitaires forts en
raison de contaminations d’origine domestique et industrielle, y compris les micro-organismes
pathogenes d’origine hydrique, émanant des diverses sources fécales. Les principales sources
de contamination fécale dans les rivieres urbaines incluent les rejets des stations d’épuration,
les rejets des réseaux d’assainissement pluvial, les dysfonctionnements des réseaux d’assainis-
sement, les habitations mal raccordées, les rejets des embarcations, ainsi que les déjections
animales (Passerat et al., 2011; Droppo et al., 2009; Guérineau et al., 2014). Il y a également
les sources diffuses le long de la riviere, notamment celles issues du ruissellement lors des
précipitations, lessivant les surfaces urbaines et transportant divers contaminants chimiques et
microbiologiques. A cela s’ajoute les événements de remise en suspension des sédiments liés au
débit et au transport fluvial (Kay et al., 2008; Devane et al., 2020; Wuijts et al., 2022b; Droppo
et al., 2011; Garcia-Armisen and Servais, 2009; Fries et al., 2008). Bien que 1’application de
la réglementation en Europe ait permis une amélioration de la qualité des eaux de surface, les
sources diffuses restent problématiques, et les événements pluvieux exacerbent les risques de
déversement d’eaux usées non traitées (Whelan et al., 2022).

La directive européenne 2006/7/CE, concernant la gestion de la qualité des eaux de
baignade, vise a protéger, préserver et améliorer la qualité de I’environnement en continu ainsi
qu’a protéger la santé humaine. Du point de vue de cette directive, le suivi de la qualité micro-
biologique des eaux de baignade est actuellement quantifié a I’aide des bactéries indicatrices
fécales (BIF). La concentration en Escherichia coli, espece membre du microbiote intestinal des

humains et animaux homéothermes, est couramment utilisée comme indicateur de la contami-
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nation fécale des eaux. Sa présence est associée aux risques de gastro-entérites liés a des agents
pathogenes d’origine hydrique, notamment dans les eaux de baignade (Lucas and Servais, 2016).

La distribution et le devenir des bactéries, présentes dans les feces ou dans un rejet du
réseau d’assainissement, dans les eaux de surface dépend généralement de la dilution du rejet
par la riviere, de la dispersion des bactéries dans la colonne d’eau, de leur taux et vitesse de
sédimentation et de leur taux de mortalité (Davies et al., 1995; Cho et al., 2010). Des modeles
transport-dispersion sont utilisés pour mieux comprendre les mécanismes de transport et de
propagation des BIF en prenant en compte les processus d’advection, dispersion, sorption,
sédimentation, resuspension et de mortalité (Jalliffier-Verne et al., 2017). Les BIF peuvent soit
persister dans I’environnement, soit disparaitre rapidement et leur survie dépendra de I’espece
mais également de leur exposition a diverses influences environnementales (Devane et al., 2018;
Korajkic et al., 2019). La capacité de survie des BIF est due probablement a des facteurs qui
permettent, par exemple, a E. coli de survivre et/ou de croitre a I’extérieur de 1’hote tels que
la température et la matiere organique (Ishii and Sadowsky, 2008). Des études ont montré que
la disparition des BIF est causée par un certain nombre de facteurs environnementaux, dont la
température, la matiere organique, la lumiere du soleil et le microbiote aquatique (prédation
par les protozoaires et métazoaires, compétition bactérienne et lyse virale) (Davies et al., 1995;
Korajkic et al., 2019). De plus, il a également été démontré que 1’association avec les sédiments
améliore la capacité de survie d’E. coli dans le milieu aquatique, di a la présence de maticre
organique et de nutriments (Zimmer-Faust et al., 2017; Korajkic et al., 2019). Les sédiments
servant potentiellement d’habitat secondaire (par rapport a I’intestin des especes endothermes),
peuvent alors représenter une source de BIF de par leur remise en suspension (Devane et al.,
2018; Petersen and Hubbart, 2020). Toutefois, il existe peu d’études sur les facteurs impactant la
survie des BIF dans les habitats secondaires (eau, sédiments, sols) et les connaissances souvent
basées sur quelques expériences en laboratoire limitent la capacité a quantifier et prédire I’impact
de ces processus sur les variations de concentrations en BIF dans la colonne, sous différentes
conditions climatiques (Petersen and Hubbart, 2020).

La dynamique temporelle et spatiale des BIF pendant et aprés un événement polluant
reste encore mal comprise, notamment durant les pollutions de court terme affectant la qualité
de I’eau de la baignade pendant moins de 72 heures selon 1’agence francaise de sécurité sanitaire
de I’environnement (Duboudin et al., 2007). Par exemple, lors d’un incident sur le réseau ou lors

d’un événement pluvieux, le pollutographe montre que la concentration en BIF s’éléve apres une
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phase de latence, atteint un pic, puis décroit pour revenir proche de la ligne de base antérieure
a I’événement de pollution (Stumpf et al., 2010; Tornevi et al., 2014; Oliver et al., 2015).
Habituellement, le terme utilisé pour évaluer la diminution des concentrations en BIF au sein
d’un événement polluant est le taux de décroissance (Gronewold et al., 2011; Nakhle et al., 2021;
Passerat et al., 2011; Beaudeau et al., 2001; Korajkic et al., 2014). Ce taux exprime généralement
la réduction des concentrations, influencée par les mécanismes de mortalité microbienne, liés a
la prédation par des bactériovores, la lyse virale, ainsi que par I’exposition a la lumiere solaire et a
la température (Passerat et al., 2011; Nakhle et al., 2021; Servais et al., 2007a). D’autres termes,
comme le taux d’inactivation (Gronewold et al., 2011; Carneiro et al., 2018; Blaustein et al.,
2013; Noble et al., 2004), et le taux de survie (Ogorzaly et al., 2010; Carneiro et al., 2018) ont
été également employés au niveau de la littérature pour des expériences réalisées en laboratoire
ou in situ en riviere, généralement pour évaluer I'impact d’un ou de plusieurs parametres.
Lors de I’estimation des taux de décroissance par expérimentation in situ, les microcosmes le
plus souvent utilisés sont des bouteilles ou des sacs a dialyse immergés dans I’eau de surface
(Ahmed et al., 2015; Maraccini et al., 2016). Par rapport aux bouteilles, les sacs a dialyse offrent
I’avantage de permettre 1’échange d’eau et de nutriments entre I’intérieur du sac et la riviere,
tout en retenant les cibles microbiennes (Mattioli et al., 2017; Maraccini et al., 2016). Ces
expériences en microcosmes, si elles sont plus réalistes que les expériences en laboratoire, ne
permettent pas néanmoins d’évaluer les apports ni la dilution des contaminants en amont, ni
I’effet de la sédimentation.

Sur un site donné, la dynamique temporelle observée lors d’un événement polluant dans
les bases de données de suivi de la qualité de I’eau va résulter des caractéristiques hydrologiques
de la riviere, de phénomenes physiques de dilution, de dispersion, de sédimentation et de
transport, combinés au taux de décroissance des bactéries. Des termes comme le taux de
disparition (Servais et al., 2007a; Schultz-Fademrecht et al., 2008) ou taux de perte (Schultz-
Fademrecht et al., 2008) ou taux de dissipation (Xiao et al., 2024) sont le plus souvent employés
pour quantifier la perte observée de BIF au fil du temps sur un site donné et qui résulte de 1’action
combinée de divers processus présentés au niveau de la figure 3.1 (Servais et al., 2007a; Devane
et al., 2007; Carneiro et al., 2018). Le taux de disparition peut étre défini comme le taux auquel
les bactéries sont éliminées et disparaissent au cours du temps (Gronewold et al., 2011; Servais
et al., 2007a; Schultz-Fademrecht et al., 2008). Nous avons choisi pour la suite de notre étude,

d’utiliser les termes de taux de mortalité pour la décroissance mesurée lors des expériences en
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mésocosmes et de taux de disparition pour la décroissance observée dans les données de qualité
de I’eau collectées en riviere.

Les taux de mortalité et de disparition sont généralement estimés en ajustant une équation
exponentielle aux concentrations bactériennes mesurées au fil du temps dans les expérimenta-
tions ou lors d’un suivi temporel 2 un méme site de la riviere. Cette équation est exprimée
comme une cinétique de décroissance de premier ordre (Nakhle et al., 2021; Geeraerd et al.,
2005; Gronewold et al., 2011). Ce modele mathématique est privilégié, étant souvent appliqué
dans les études de décroissance des BIF. Il constitue une base solide pour suivre la diminution
de la concentration dans le temps. L'estimation des taux de décroissance des BIF est cruciale
pour nourrir les modeles hydrodynamiques utilisés pour la prédiction des concentrations en BIF
sur les zones de baignade. Par défaut, des valeurs issues de la littérature sont souvent utilisées
dans les modeles déterministes, car les parametres de décroissance sont rarement évalués ex-
périmentalement. Or, ceci introduit une forte incertitude sur les concentrations prédites, car les
taux de décroissance utilisés peuvent fortement affecter la prédiction (Eregno et al., 2018).

Une mesure complémentaire a la décroissance de la contamination est le calcul de la
résilience et de la résistance du site face aux perturbations polluantes, ce qui permet d’évaluer la
vulnérabilité d’un site ou d’un écosysteme (Imani et al., 2021; Xiao et al., 2024). La résistance
est la capacité d’un systeme a résister a une perturbation et la résilience est largement interprétée
comme la capacité d’un systeme a absorber et supporter, puis a se rétablir rapidement apres
une perturbation (Mirauda et al., 2021). Il existe une diversité d’explications associées a la
notion de résilience, souvent définie de maniere vague. Cependant, pour établir une théorie
utilisable dans différents domaines, il est crucial de partir de définitions précises et d’offrir
une comparaison mathématique des diverses mesures de résilience (Krakovska et al., 2024).
La résilience de la qualité de I’eau est définie comme la capacité des systemes aquatiques a se
rétablir aprés une détérioration de la qualité de I’eau due a un événement polluant (Xiao et al.,
2024). Pour une pollution fécale, cette capacité de résistance ou de résilience va dépendre de
I’intensité de la pollution, du taux de décroissance des BIF mais également des caractéristiques
hydromorphologiques du site et du bassin versant. L’ estimation de la résilience offre une approche
robuste pour la prise de décision en matiere de gestion de la qualité de 1’eau mais reste encore
peu utilisée (Mirauda et al., 2021). Les indicateurs de résilience permettent d’évaluer I’impact
des pollutions pluviales, offrant ainsi des outils précieux pour I’évaluation de la qualité de I’eau

dans les zones étudiées (Noble et al., 2004). Plus le taux de décroissance ou de disparition est

177



Chapitre 3

élevé, le temps de retour est court et I’amplitude de variation est faible, plus la résilience du
systeme aquatique est forte (Xiao et al., 2024; Krakovska et al., 2024).

Dans ce contexte, nous avons souhaité établir une approche qui englobe une estimation
de ces différents aspects de la dynamique temporelle des concentrations en BIF. Cette approche
combine de I’expérimentation in sifu avec des sacs a dialyse pour déterminer le taux de mortalité
(Figure 3.1), avec I’ utilisation des données de suivi microbiologique réglementaire et des données
de suivi en temps quasi réel par le systtme ColiMinder pour estimer le taux de disparition
et le niveau de résistance et de résilience sur des sites contrastés (Figure 3.1). Les taux de
décroissance ont été quantifiés par modélisation de la diminution des concentrations en E. coli a
I’aide de courbes exponentielles inverses. La Marne et la Seine ont été investiguées pour savoir
si les mémes taux pouvaient étre appliqués sur les deux fleuves franciliens. En effet, il existe
encore peu de données disponibles pour ces deux rivieres en région parisienne. Les modeles
actuellement utilisés (Prose, Telemac) pour prédire les concentrations en E. coli dans ces deux
rivieres se basent généralement sur les données expérimentales de taux de décroissance en
présence et absence de broutage par les protozoaires qui sont disponibles pour la Seine et la
Marne (Servais et al., 2007b), et alternativement sur des taux de disparition qui ont été estimés
a partir de données issues d’une unique campagne d’échantillonnage sur la Marne (Van et al.,
2022). Notre étude vise a procurer des outils et des données pour la gestion des baignades qui
devraient s’ouvrir a 1’horizon 2025 en Seine et en Marne, en se focalisant sur I’estimation des
taux de décroissance et de disparition et sur I’analyse de la résistance et de la résilience d’E.
coli, qui reste le critere le plus déclassant pour la gestion journaliere de ces deux rivieres en

Ile-de-France (Lucas et al., 2020; Mouchel et al., 2020).
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FIGURE 3.1 — Facteurs pouvant avoir un effet sur la dynamique des concentrations en BIF dans les bases de données
de suivi in situ (bleu), et sur la mortalit€ des BIF mesurées lors des I’expérimentations in situ (rouge) et en

laboratoire (vert).

3.2. Matériels et Méthodes

3.2.1. Sites d’étude en riviere

L’ étude s’est focalisée sur 6 sites en région parisienne (France) : 3 sites en Marne (SMV1,
SMV10 et SMV 14) et 3 sites en Seine (pont de I’Alma, pont de Tolbiac rive droite, Tolbiac rive
gauche) (Figure 3.2). Les sites en Marne ont été sélectionnés car ce sont des candidats pour
I’ouverture de baignade en 2025, vu leur qualité microbiologique et leur facilité d’aménagement
(Noury et al., 2018) et parce qu’ils représentent des situations contrastées. En ce qui concerne
la Seine, les sites ont été sélectionnés du fait de la présence d’un systeme ColiMinder en amont
et qu’il s’agissait de sites suivis par la Ville de Paris pour les épreuves des Jeux Olympiques et

Paralympiques 2024.
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FIGURE 3.2 — Schéma des sites étudiés.

3.2.2. Bases de données

La base de données du Syndicat Marne Vive regroupe les données des mesures bactério-
logiques et physico-chimiques réalisées de début juin a mi-septembre les années 2015, 2017 a
2022, une a deux fois par semaine sur la Marne. Les données ont été mesurées par Eurofins en
2015 et par le laboratoire départemental des eaux du Val de Marne de 2017 a 2022. Les échan-
tillons ont été€ prélevés selon la norme francaise FD T 90-523-1, les mesures microbiologiques
ont été réalisées selon les méthodes normalisées francaises NF EN ISO 9308-3 pour E. coli. Les
mesures physico-chimiques ont été réalisées selon les méthodes normalisées francaises, NF EN
27888 pour la conductivité électrique, NF EN 872 pour matieres en suspension (MES). Pour la
pluviométrie, les données ont été fournies par les réseaux de pluviometres des Conseils dépar-
tementaux du Val-de-Marne (stations CHAM?23 et MAIS32), de la Seine-Saint-Denis (station
NE-17) et de la Ville de Paris (station PL14). Pour le site SMV 14, les prélevements ont été
réalisés en 2015 en rive gauche (Maisons-Alfort) puis en rive droite (Saint-Maurice) pour les
années suivantes. Le débit a la station de Gournay-sur-Marne a été obtenu a partir de la Station
hydrométrique - F664 0001 04 sur le site HydroPortail (https ://hydro.eaufrance.fr/stationhydro/).

La base de données de la Ville de Paris regroupait les mesures effectuées de début-juin
a fin-septembre sur la période 2015-2023, de maniere hebdomadaire ou bi-hebdomadaire sur
la Seine (France). En 2015 et de 2018 a 2023 les échantillonnages au pont de Tolbiac ont

été effectués en rive droite (RD), et de 2017 a 2023 en rive gauche (RG). Pour le pont de
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I’Alma, les échantillonnages ont été réalisés entre 2017 et 2023. Les mesures microbiologiques
et physico-chimiques ont été réalisées par le laboratoire d’Eau de Paris selon les méthodes
normalisées francaises NF EN ISO 9308-3 pour E. coli, NF EN ISO 7027-1 pour la turbidité,
et NF EN 27888 pour la conductivité électrique. Les données pluviométriques ont été obtenues
a partir du réseau de pluviometres de la Ville de Paris (stations PL1 et PL5). Le débit au
pont d’Austerlitz a été obtenu a partir de la station hydrométrique F700 0001 03 sur le site
HydroPortail (https ://hydro.eaufrance.fr/stationhydro/).

Nous avons en plus utilisé les données du systetme automatisé ColiMinder (Vienna
Water Monitoring, VWM) au niveau de 2 sites en Seine en rive gauche (Pont de I’Alma entre
2020 et 2023 et Pont de Tolbiac RG entre 2021 et 2023 ; Paris, France). Les analyses ont été
réalisées toutes les 2 heures. Les données pluviométriques ont été obtenues a partir du réseau
de pluviometres de la Ville de Paris (stations PL1 et PL5).

A partir de ces bases de données, une sélection des données a été réalisée sur deux
critéres : 1) uniquement les concentrations en E. coli mesurées a minima deux fois par semaine
entre juin et septembre pour les bases de données avec suivi réglementaire et ii) uniquement des
événements pluvieux isolés qui génerent une pollution, suivis de 3 jours de temps sec (données
réglementaires et ColiMinder). Pour les données réglementaires, les événements pluvieux retenus
devaient inclure une premiere analyse bactériologique le lendemain de la pluie ou le dernier jour
de pluie (concentration initiale), suivie par au moins 3 jours de temps sec incluant a minima
un prélevement pendant cette période, ceci afin d’observer et de modéliser la diminution des
concentrations en E. coli.

A partir de ces événements sélectionnés dans les deux bases de données, la concentration
initiale correspond a la premiere mesure de concentration pour 1’événement pluvial, tandis que
la concentration en temps sec est celle observée apres trois jours de temps sec. Le taux de

disparition ainsi que les parametres de résilience et de résistance ont ensuite été calculés.

3.2.3. Expérimentation in situ

La vitesse de mortalité d’E. coli a été étudiée a 1’aide de sacs a dialyse. Cette expérience
simule un rejet de station d’épuration dans la Marne, afin de calculer le taux de mortalité des
E. coli. Cette expérience a été réalisée du 27 mai au ler juin 2019 a quelques metres en amont
du site SMV14. Les autorisations ont été obtenues aupres de Voies Navigables de France pour

I’acces au site et I’installation des systemes expérimentaux dans la Marne. Un total de 18 L
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d’eau de la Marne au droit du rejet de I’usine de traitement des eaux usées Marne Aval (Syndicat
Intercommunal d’Aménagement de I’Agglomération Parisienne) a été collecté au seau, dont 10
L ont été autoclavés 20 min a 120°C afin d’étre utilisés comme controle. Les sacs a dialyse
Spectra/Por®1 (seuil de coupure de 6 a 8 kD) ont été remplis avec environ 180 ml d’eau du
rejet autoclavé ou non. Les sacs ont ensuite été fermés a I’aide de pinces et attachés par du fil
de péche a des cagettes en plastique de 32 cm x 28 cm. Les cagettes lestées ont été placées a
environ 10-20 cm sous la surface et arrimées a la berge a 1’aide d’une corde. Deux traitements
ont été réalisé€s en cinq exemplaires pour 4 pas de temps (n=30) : (1) eau autoclavée, (2) eau du
rejet pure (non diluée). Les échantillons ont été collectés a quatre moments différents : apres 24
h (T1), 48 h (T2) et 72 h (T3). Les sacs a dialyse ont été collectés le matin entre 10 et 11 h et
placés dans des sacs plastiques scellés, partiellement remplis d’eau de la Marne provenant du

site de prélevements et placés dans une glaciere pour le transport jusqu’au laboratoire.

3.2.4. Quantification des BIF

Pour les expériences in situ, les densités (NPP/100 mL) en E. coli dans I’eau du rejet
autoclavée et pure a TO et I’eau contenue dans chaque sac a dialyse (T'1 a T3) ont été ensemencées
sur les microplaques MUG/EC (BioRad) selon la méthode de référence NF EN ISO 9308-3 pour
E. coli. Le calcul du NPP/100 mL dans un intervalle de confiance de 95% a été réalisé a
I’aide d’une feuille de calcul Excel proposée par Jarvis et al. (2010). Elle fournit également
un indicateur de rareté qui permet de détecter des incohérences dans les comptages obtenus
pour I’ensemble des dilutions. La turbidité (Turbidimetre Hach),la conductivité et le pH (sonde

multiparamétrique Eutech) ont été mesurés dans les échantillons d’eau a T2 et T3.

3.2.5. Modélisation de la dynamique temporelle apres une pluie

[’analyse de la décroissance bactérienne s’effectue par une estimation de la vitesse de
diminution des concentrations en E. coli 4 1’aide d’un modéle exponentiel inverse. A partir des
données mesurées expérimentalement, des suivis de qualité microbiologique réglementaire aux
6 sites, ou des suivis en Seine avec le systéme ColiMinder, la constante de cinétique des courbes
de décroissance des différents événements sélectionnés a été déterminée empiriquement avec
un modele linéaire exponentiel. En utilisant ce parametre cinétique déterminé, les courbes de
décroissance ont été modélisées pour générer des valeurs prédites par le modele pour chaque

événement sélectionné. Ces valeurs servaient ensuite a déterminer avec un modele log-linéaire
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les taux de mortalité a partir des expériences, et les taux de disparition a partir des données de

suivi en Marne et en Seine et des données du systeme ColiMinder. L’ensemble des étapes de
modélisation ont été effectuées sous R (R-Core-Team, 2018).
3.2.5.1. Modélisation exponentielle inverse

A partir des valeurs de la constante de cinétique, des tableaux contenant les valeurs

prédites de concentration pour chaque événement pour les 6 sites (issues de la base de données

réglementaires) et pour les 2 sites équipés du ColiMinder, ainsi que pour les expériences in situ

ont été générés en modélisant la courbe de décroissance a 1’aide d’une équation exponentielle

inverse d’ordre 1 (Gronewold et al., 2011; Geeraerd et al., 2005).

eKls

1+ e Kit (eFiS — 1)

C(t> = (CO - Cres)-eiKlt ( ) + Cres (3.4

Cette équation utilise la constante de cinétique (K;, en jr_;), I’épaulement (S, en jr),
la concentration initiale (Cy, en NPP/100 mL), la densité de la population (C,.s, en NPP/100
mL) et le temps (t, en jr) comme données d’entrée (Geeraerd et al. (2005), équation 1). K;
est une inconnue qui est estimée de maniere empirique en utilisant les données mesurées des
concentrations en BIF au cours du temps. Dans la suite de notre étude, I’outil de modélisation
de la décroissance de Geeraerd et al. (2005) a été utilisé pour établir des modeles log linéaire en
prenant en compte la population résiduelle (C,.;) et ’épaulement S. La plupart des études sur
la modélisation de la décroissance bactérienne n’incluent pas la période de latence (S) lors de
la modélisation. Or cette derniere peut exister, dii a I’état de la population microbienne ou a un
artéfact expérimental (Mattioli et al., 2017; Brooks and Field, 2016).

Pour chaque site, une courbe moyenne des courbes modeles a été réalisée. Pour cela,
les données des courbes modeles et les valeurs mesurées ont été exprimées en pourcentage
(de maniere a avoir a t0 un pourcentage de 100% puis une décroissance au cours du temps).
Les courbes moyennes ont été réalisées avec un intervalle de confiance de 95% (R-Core-Team,
2018). Par la suite, les données prédites pour chaque événement ont servi a estimer les valeurs
de taux de disparition ou de taux de mortalité (K5 - pente des modeles).

3.2.5.2. Estimation des taux de mortalité et de disparition

Le taux de mortalité/disparition (K5) a été calculé en utilisant un modele linéaire expo-

nentiel. K, représente un taux de décroissance qui peut correspondre au taux de mortalité d’une

méme population de BIF dont les concentrations évoluent dans le temps, et qui est déterminé
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dans les expériences (Korajkic et al., 2014; Carneiro et al., 2018; Passerat et al., 2011). K, peut
aussi représenter un taux de disparition dans le cas de la modélisation d’une série temporelle
d’un suivi de qualité réalisé€ sur un site de baignade. Le taux K, est exprimé en unités de temps,

généralement en jr!.

3.2.6. Indicateurs de résilience et de résistance

La résilience et la résistance désignent la capacité des systemes aquatiques a se transfor-
mer, s’adapter et se maintenir face a des perturbations, telles que des épisodes de pollution de
courte durée (Xiao et al., 2024; Krakovskd et al., 2024). En ce qui concerne la qualité de I’eau
d’une riviere, la résilience ou la résistance peut étre quantifiée en comparant les concentrations
observées lors d’un événement de pollution a celles enregistrées dans des conditions normales
(Xiao et al., 2024). Dans le cas de notre étude, les temps secs (minimum 3 jours apres une
pluie) ont été considérés comme des conditions normales, et les événements pluvieux comme
des perturbations.

Au niveau de notre étude, nous avons utilisé 3 parametres :

- Le temps de retour (7o) est I'un des indicateurs les plus couramment utilisés pour
I’analyse de la résilience (Nakhle et al., 2021; Ogorzaly et al., 2010; Carneiro et al., 2018;
Xiao et al., 2024; Schultz-Fademrecht et al., 2008; Noble et al., 2004). Il représente le temps
nécessaire pour atteindre une réduction de 90% des concentrations initiales en E.coli, indiquant
le retour a un état proche de 1’équilibre, soit les concentrations par temps sec.

- L'amplitude de récupération (AV,,,ss) représente I’amplitude de changement entre la
concentration initiale au pic de pollution et celle mesurée en période de temps sec apres la
perturbation. Elle est également exprimée en pourcentage de différence. Ce parametre permet
de mesurer I’ampleur de la récupération apres une pollution (Krakovska et al., 2024).

- Uamplitude de variation de la pollution (AV,,.:) quantifie I’écart des concentrations en
E. coli entre le pic de pollution (concentration dite initiale pour la mesure de décroissance) et le
temps sec précédent chaque événement pluvial analysé. Exprimée en pourcentage de différence,
ce parametre permet de mesurer la capacité d’un systeme a résister et I’ampleur des changements

subis par la qualité de I’eau suite a une pollution (Krakovsk4 et al., 2024; Mirauda et al., 2021).
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3.2.7. Traitements statistiques

Toutes les analyses statistiques ont été réalisées a 1’aide du logiciel R (V3.5.1, (R-Core-
Team, 2018). Les tests de Kruskal-Wallis ou de Friedman (appariés) étaient suivis de tests
post-hoc (tests de Wilcoxon multiples par paire). Les p-valeurs des comparaisons par paires ont
été ajustées avec une correction de Bonferroni. Pour 1’analyse de variance, le test post-hoc HSD
de Tukey a été utilisé. Afin de déterminer les parametres qui peuvent influencer les valeurs K,
et les 3 parametres de résilience ou de résistance obtenues pour chaque événement a partir des
données réglementaires mesurées en Seine et en Marne et des données du systeme ColiMinder,
des modeles linéaires ont été réalisés en utilisant des parametres physico-chimiques, hydro-
métérologiques et bactériologiques (turbidité, conductivité, température, pluviométrie cumulée
sur I’événement avant prélevement (48 h), débit, concentration initiale en E. coli), station de
mesure). Les données de pluviométrie ont été testées sous forme quantitative (mm cumulés),
mais ont également été discrétisées en deux catégories : pluie faible (<10 mm cumulés) (Islam
et al., 2017) et pluie élevée (>10 mm cumulés) (Gebremichael et al., 2014).

Les variables colinéaires ont d’abord été éliminées apres calcul du facteur d’inflation de
la variance pour tester la multicolinéarité (librairies usdm, MASS et leaps). La température et la
conductivité, en raison de leur colinéarité, n’ont pas été retenues. La turbidité a été testée pour
chaque modele, mais n’a pas été identifiée comme un parametre significatif du modele. Elle a
été écartée lors du processus de validation du modele linéaire final.

Sur les variables retenues, une vérification de la distribution des données quantitatives
a été effectuée a I’aide des diagrammes quantiles-quantiles (librairies fitdistrplus et car). Nous
avons appliqué différentes méthodes de modélisation, notamment les modeles linéaires simples
(Im), les modeles linéaires généralisés (glm), ainsi que les modeles linéaires mixtes (Imm) et les
modeles linéaires généralisés mixtes (glmm), afin de prendre en compte a la fois les effets fixes
et aléatoires entre les sites. Une sélection du modele le plus significatif a été réalisée en utilisant
la méthode descendante et en se basant sur le critére d’information d’Akaike (AIC, librairies
Ime et car) suivie par une validation du modele en vérifiant la distribution et I’indépendance des
résidus (Zuur et al., 2009). Pour I’ensemble des analyses statistiques, le seuil de significativité a

été fixé a 5%.
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3.3. Résultats

3.3.1. Détermination du taux de mortalité

Pour I’expérience in situ proche du site SMV14 en Marne, les modeles linéaires ex-
ponentiels utilisés pour le calcul de la constante de cinétique sur chaque réplicat séparément
(1,17 + 0,58 jr~!, n=5) étaient non significatifs (p > 0,06) avec un r> moyen de 0,98 + 0,01.
Cependant, en regroupant I’ensemble des réplicats, le modele s’ajustait de maniere significative
aux données (n=5, p < 0,001). Le modele de décroissance présenté en figure 3.3 a ensuite permis

1

I’estimation du taux de mortalité (Ky) d’E. coli, avec une valeur moyenne de 0,97 + 0,48 jr—",

soit une décroissance apres plus d’un jour.

60 100
|

Pourcentage enE. coli

20

| | | | | | |
1.0 15 20 25 30 35 40

Temps (jours)
FIGURE 3.3 — Courbe modélisant la décroissance (ligne noire) avec les valeurs obtenues par expérimentation en sac

a dialyse pour le dénombrement des E. coli avec I’eau du rejet. Les valeurs mesurées lors de 1’expérimentation sont
représentées par des carrés rouges.

Lors de I’analyse de la mortalité d’E. coli en Marne a proximité du site de baignade
potentielle SMV 14, les contrdles (eau de rejet autoclavée) étaient restés stériles, montrant ainsi
que les sacs a dialyse étaient étanches. De plus, les mesures de pH et de conductivité étaient
similaires entre 1’eau de la Marne et I’intérieur des sacs a dialyse, montrant que le systeme était

bien semi-ouvert (Tableau 3.1).
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TABLE 3.1 — Valeurs des parametres physico-chimiques de 1’eau de la Marne et de 1’eau contenue dans les sacs a
dialyse mesurés lors du 2éme et 3eme jours de I’expérimentation in situ.

Date  de | Eau/Traitement | pH Conductivité | Turbidité | Concentration
préleve- (S/cm) (FTU) initiale
ment (NPP/100
mL)

Marne 8,19 558 30,24 412
28me jour Rejet 8,06 560 5,11 120000

Rejet autoclavé 8,19 568 13,13 0

Marne 8,07 550 5,71
3eme jour Rejet 8,01 556 6,96

Rejet autoclavé 8,15 552 7,75

3.3.2. Dynamique de disparition d’E. coli en riviére

Une variabilité interannuelle a été observée sur la saison de baignade de juin a septembre

en ce qui concerne la pluviométrie (Tableau 3.2). De méme, il existait une hétérogénéité spatiale

sur la Seine a Paris et ’aval de la Marne depuis Gournay-sur-Marne a la confluence avec la

Seine. Globalement, les étés les plus pluvieux étaient 2017 (188 a 303 mm cumulés, et 42 a 66

jours de pluie), 2021 (288 a 382 mm soit 42 a 63 jours de pluie), et 2023 (204 a 299 mm de

pluie, et 32 a 44 jours de pluie) (Tableau 3.2).

TABLE 3.2 — Nombre de jours de pluie et pluviométrie (mm) cumulée durant la période estivale (ler juin - 30
septembre) chaque année a Paris et sur 1’aval de la Marne, en fonction des pluviometres les plus proches de chaque
station de prélevement.

Année SMV 1 SMV 10 SMYV 14 Alma Tolbiac
Nb de jours | Cumul | Nb de jours | Cumul | Nb de jours [ Cumul | Nb de jours [ Cumul | Nb de jours [ Cumul
2015 40 186 20 111 20 140 29 160 37 177
2016 46 171 42 188 58 127 38 112 39 131
2017 66 303 42 193 40 188 57 226 58 389
2018 33 244 32 192 42 175 20 130 26 139
2019 31 210 29 168 28 168 22 82 23 119
2020 38 181 38 197 44 171 35 136 37 145
2021 54 382 51 363 63 303 42 288 43 310
2022 42 197 41 217 38 184 35 158 40 242
2023 42 299 35 225 37 204 36 250 34 240

Cette variabilité a permis de pouvoir sélectionner un ensemble d’événements pluvieux

entre 2 et 42 mm de pluie cumulée, suivis au minimum par 3 jours de temps sec, associant

une décroissance en E. coli. Pour la base de données réglementaires, ont été sélectionnés 33
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événements en Marne (12 au site SMV1, 11 au site SMV10 et 10 au site SMV14) et 13 en Seine
dont 5 au pont de ’Alma, 5 au pont de Tolbiac en RD et 3 en RG. Pour la base de données du
dispositif ColiMinder, ont été retenus 13 événements pluvieux au pont de ’Alma et 21 au pont
de Tolbiac. L’ensemble des pluies sélectionnées se caractérise d’une part par 54% de pluie <10
mm et 46% de pluie >10 mm pour les mesures réglementaires, et d’autre part par 62% de pluie
<10 mm et 38% de pluie >10 mm pour les analyses avec le systtme ColiMinder.

3.3.2.1.  Caractéristiques des événements sélectionnées

3.3.2.1.1. Caractéristiques des données réglementaires

Une variabilité interannuelle a été observée au niveau de chaque site (SMV1, SMV10,
SMV 14 et pont de Tolbiac RD et RG) (Test de Kruskal-Wallis, p<0,001, p<0,001, p<0,001,
p<0,023, p<0,002, n=293, n= 274, n=286, n=208, n=187), a I’exception du pont de I’Alma qui
ne présentait pas de différence significative entre les années (Test de Kruskal-Wallis, p=0,058,
n=180). Ces données montraient que les années 2018 et 2021 se démarquaient par des concen-
trations E. coli élevées en Marne, et les concentrations de I’année 2020 étaient particulicrement
plus basses (Tableau 3.3). Ainsi, en Seine, cette différence entre années était la plus marquée
au pont de Tolbiac RG entre 2018 et 2020, avec un niveau de contamination le plus faible en
2020 (Test post-hoc, p=0,003, n=187, Tableau 3.4). En Marne, une plus grande variabilité in-
terannuelle était observée entre les différentes années (Tableau 3.3). Les concentrations en 2021
étaient significativement plus élevées que les autres années pour les 3 sites (Test de Kruskal-
Wallis suivi de tests post-hoc, p<0,002 pour tous les sites et les années, n=853) a 1’exception
du SMV1 pour lequel les concentrations ne différaient pas entre 2021 et 2023 (Test post-hoc,
p=1,000, n=78). Ces concentrations élevées en 2021 correspondaient au fait que les cumuls de
pluviométrie en 2021 étaient les plus élevés (Tableau 3.2). En 2018, des concentrations nette-
ment élevées ont été constatées de Gournay-sur-Marne a la confluence avec la Seine, atteignant
une moyenne de 8708 + 4416 NPP/100 mL a SMV1 (Tableau 3.4) en raison d’un incident sur le
réseau d’assainissement a I’amont de SMV1 (Tests post-hoc, p<0,001, n=293).

Pour I’ensemble des événements sélectionnés dans les bases de données réglementaires
de la Seine et la Marne, la concentration en E. coli augmentait apres la pluie et dépassait le
seuil de qualité suffisante de 1800 NPP/100 mL (instruction N°DGS/EA4/2020/111 du 2 juillet
2020) dans 69% des pluies sélectionnées. Au niveau de la Marne, 63% des pluies sélectionnées
ont dépassé le seuil de 1800 NPP/100 mL alors qu’au niveau de la Seine, 84% des pluies ont

dépassé ce seuil.
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TaBLE 3.3 — Concentrations en E. coli en NPP/100 mL durant la période estivale par année et par site en Marne

selon le suivi réglementaire.

[Année| SMV1 | SMV10 | SMV1d |
2015 | 950+ 1759 | 15122825 | 637 %833
2017 | 1119 %2080 | 2599 = 2444 | 580 % 1227
2018 | 8708 + 4416 | 3927 + 6046 | 2182 % 3531
2019 | 1316 %2362 | 1222 %1533 | 421419
2020 | 786+ 1246 | 1493 %835 | 434£373
2021 | 1813 %1962 | 5903 = 4371 | 3462 + 1900
2022 | 779802 | 2566 %2192 | 586 %667
2023 | 1595 + 2317 | 1843 £2156 | 881 & 1568

TABLE 3.4 — Concentrations en E. coli en NPP/100 mL durant la période estivale par année et par site en Seine

selon le suivi réglementaire.

| Année | Alma | Tolbiac RD | Tolbiac RG |

2015 — 4380 + 3622 -

2017 1750 £ 2276 — 14224 + 18055
2018 3079 + 8862 | 4965 + 8619 6690 + 9836
2019 1825 £ 4016 | 4568 + 7123 4476 + 7858
2020 710 + 954 1910 £ 3105 2210 + 4478
2021 5733 £ 11218 | 5436 + 8083 | 7737 + 10665
2022 4190 + 8546 | 6778 £ 12096 | 6096 + 11340
2023 1292 + 1914 | 2275+ 3274 4140 + 8408

Les concentrations moyennes de temps sec avant les événements pluvieux étaient statis-

tiquement similaires entre les différents sites, a I’exception entre les sites SMV10 et SMV 14,

la concentration moyenne étant la plus faible a SMV 14 (Test de Kruskal-Wallis, suivi des tests

post-hoc, p=0,041, n=22, Tableau 3.5). Chaque pluie était associée a une augmentation signi-

ficative de la concentration par rapport au temps sec précédant (Test de Wilcoxon apparié,

p<0,001, n=46, Tableau 3.5). Les pics de contamination étaient statistiquement similaires entre
les différents sites pour chaque épisode de pluie (Test de Kruskal-Wallis, p=0,196, n=46, Tableau
3.5). Une diminution significative de la concentration en E. coli était ensuite constatée durant les
3 jours de temps sec suivant chaque pluie (Test de Wilcoxon apparié, p<0,001, n=46, Tableau
3.5). En ce qui concerne les concentrations 2 partir du 3°™ jour de temps sec aprés la pluie, une
différence significative a été constatée également uniquement entre SMV10 et SMV 14 (Test de

Kruskal-Wallis suivi de tests post-hoc, p=0,031, n=22).
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TABLE 3.5 — Concentrations en E. coli en NPP/100 mL par site pour les événements sélectionnés (temps sec avant
la pluie (avant), concentration initiale au pic de pollution (pic) et temps sec apres la pluie (apres).

Site Avant Pic Aprés

Alma 643 +268 5366 + 3895 1121 + 164
Tolbiac RG | 1502 +742 | 18910 + 14053 | 1883 + 586
Tolbiac RD | 1543 + 1967 | 15619 + 17577 | 1793 + 3336

SMV1 1080 £ 1679 | 6334 +6918 | 360 + 2507
SMV10 1192 + 850 | 7278 +£10214 | 1511 £756
SMV14 488 + 437 3990 + 5698 260 + 341
3.3.2.1.2.  Caractéristiques des données de I’analyseur ColiMinder

L’analyse des mesures en E. coli par le systtme ColiMinder durant toute la période
estivale (de juin a septembre entre 2020-2023), montre une contamination significativement
plus élevée en 2022 comparé aux autres années, que ce soit au pont de I’Alma ou au pont de
Tolbiac (Tableau 3.6), a I’exception de 2021 et 2022 au pont de Tolbiac dont les concentrations
en E. coli ne sont pas significativement différentes (Test de Kruskal-Wallis, p<0,001, n=6625 et

4681 respectivement pour les deux sites, suivi de tests post-hoc, p>0,340).

TABLE 3.6 — Concentrations en E. coli en NPP/100 mL estimées par I’analyseur ColiMinder durant toute la période
estivale par année et par site

| Année | Alma | Tolbiac |
2020 560 + 104 —

2021 4897 + 2580 5036 + 4156
2022 9285 + 10402 | 18497 + 18436
2023 3836 + 4080 7543 + 5047

Pour I’ensemble des événements pluvieux sélectionnés dans la base de données du
systeme ColiMinder, la concentration en E. coli augmente apres la pluie et dépasse le seuil de
qualité suffisante de 1800 NPP/100 mL (selon I’instruction N°DGS/EA4/2020/111 du 2 juillet
2020 pour la gestion en cours de saison) dans 79% des pluies sélectionnées. Un total de 69% des
pluies sélectionnées dépassait ce seuil au niveau du pont de ’Alma et 85% au niveau du pont de
Tolbiac.

Avant la pluie par temps sec, la concentration en E. coli était en moyenne de 525 + 288
NPP/100 mL au pont de I’Alma et de 937 + 960 NPP/100 mL au pont de Tolbiac, et les deux sites

ne différaient pas significativement (Test de Wilcoxon, p=0,456, n=34). L'événement pluvieux
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entrainait une augmentation significative de la concentration en E. coli quel que soit le site (Test
de Wilcoxon apparié, p<0,001, n=34). Le pic de concentration au niveau des 2 sites présentait
des concentrations moyennes statistiquement similaires (39769 + 71990 NPP/100 mL au pont de
I’Alma et 35334 + 38322 NPP/100 mL au pont de Tolbiac) (Test de Wilcoxon, p=0,178, n=34).
Une diminution significative de la concentration était observée ensuite pendant les 3 jours de
temps sec suivant la pluie (Test de Wilcoxon apparié, p<0,001, n=34). La concentration moyenne
en E. coli le 3°™ et le 4°™ jour apres I’événement pluvieux était de 1226 + 2067 NPP/100 mL
au pont de I’Alma et 1275 + 1466 NPP/100 mL au pont de Tolbiac.

3.3.2.2.

3.3.2.2.1.

Estimation du taux de disparition
Taux de disparition estimés avec les bases de données réglemen-
taires
Quelque soit le site en Seine ou en Marne, les modeles exponentiels permettant une esti-
mation du taux de disparition n’étaient significatifs que pour 24% des événements sélectionnés
(Tableau 3.7). En effet, il y avait généralement 2 a 5 mesures par événement et les modeles
les plus significatifs ont été observés pour des événements avec des mesures successives avec
au minimum un intervalle de 24 h. La constante de cinétique (K;) a été calculée pour chaque
événement pluvial sélectionné et chaque site. Les résultats ont montré que les valeurs de la

constante de cinétique étaient comprises entre 0,18 et 1,55 jr~—! (Tableau 3.7).

TaBLE 3.7 — Constante de cinétique (K1, j7~!) obtenues par le modéle linéaire exponentiel (p-valeur et R2), le taux
de disparition (Ks, j~~1!). Moyenne # écart type ou [Min : Max]. p-valeur significative (S), non significative (NS)
au seuil 0,05. NA non applicable.

’ Site K, p-valeur R? K,
SMV1 (n=12) 0,60 + 0,31 | S(2) NS(7) NA(3) [0,027 : 0,401] | 0,89 £ 0,13 | 0,36 + 0,32
SMV10 (n=11) 0,76 + 0,51 NA(3) NS(8) [0,054 : 0,256] 0,87 +0,15 | 0,46 £ 0,49
SMV14 (n=10) 0,78 £ 0,22 | S(2) NS(7) NA(1) [0,010 : 0,388] | 0,82+ 0,18 | 0,49 + 0,22
Alma (n=5) 0,82 £ 0,46 S(3) NS(2) [0,002 : 0,498] 0,81 £0,21 | 0,52 £ 0,50
Tolbiac RD (n=5) | 0,73 £ 0,31 S(2) NS(3) [0,001 : 0,245] 0,77 £0,23 | 0,44 £ 0,23
Tolbiac RG (n=3) | 0,60 £ 0,19 S(2) NS(1) [0,004 : 0,059] 0,88 +0,12 | 0,43 £0,12

Les courbes modeles ont ainsi pu €tre obtenues pour chaque événement observé et ont

permis d’affiner la valeur du taux de disparition. Un intervalle de confiance a 95% a été estimé

pour chaque courbe moyenne (Figure 3.4).
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FIGURE 3.4 — Courbe modele moyenne (ligne rouge) ajustée aux concentrations relatives en E. coli pour chaque
site. (A) site SMV1, (B) site SMV 10, (C) site SMV 14, (D) pont de I’Alma, (E) pont de Tolbiac RD et (F) pont de
Tolbiac RG. Les valeurs mesurées relatives exprimées en pourcentage de la concentration initiale sont représentées
en bleu, les intervalles de confiance a 95% des courbes sont représentés en gris.
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FIGURE 3.5 — Comparaison des taux de disparition (j7 ') entre les 6 sites.

Pour I’ensemble des événements, le taux de disparition ne variait pas significativement
d’un site a I’autre (Test de Kruskal-Wallis, n= 46, p=0,69, Figure 3.5). En effet, le taux était tres
proche entre les différents sites, il était le plus faible 2 SMV1 (0,36 + 0,32 jr 1) et le plus élevé

au pont de I’Alma (0,52 + 0,50 jr—1). Cela indiquerait une vitesse de disparition relativement
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similaire au niveau des 6 sites analysés que ce soit en Seine (0,47 + 0,32 jr~!) ou en Marne
(0,44 £ 0,35 jr Y.
3.3.2.2.2. Taux de disparition estimés avec les données du ColiMinder

La constante de cinétique (K;) a été calculée pour chaque événement pluvial sélectionné
en utilisant les données mesurées toutes les 2 h. Les modeles étaient validés avec une p-valeur
<0,05, sauf pour 2/13 modeles au pont de I’Alma et 4/21 modeles au pont de Tolbiac. Les valeurs
K, étaient estimées entre 0,26 et 37,72 jr~* (Tableau 3.8). Les taux de disparition estimés étaient
en moyenne de 5,50 + 9,50 jr‘l(entre 0,12 et 30,53 jr~') pour le pont de ’Alma et de 5,39 +
7,94 jr~1 (entre 0,09 et 34,82 jr~1) pour le pont de Tolbiac.

TABLE 3.8 — Constante de cinétique (K, jr 1) dérivées du modele linéaire exponentiel (p-valeur et R2) et estimation
du taux de disparition (Ks, jr~1). Moyenne # écart type ou [Min : Max]. p-valeur significative (S), non significative
(NS) au seuil 0,05.

Site et intervalle K, p-valeur R? K,

Alma2h (n=13) | 6,25+9,81 | S(11) NS(2) [<0,001 : 0,250] | 0,71 + 0,25 | 5,50 9,50
Tolbiac 2 h (n=21) | 6,05 + 8,44 | S(17) NS(4) [<0,001 : 0,280] | 0,79 + 0,22 | 5,39 + 7,94

3.3.2.2.3. Intervalle de temps minimum entre chaque mesure

Afin de savoir quel est I’effet du nombre de mesures sur la capacité du modele a estimer
correctement les taux de disparition, différents intervalles de temps entre deux mesures (2 h, 4
h, 6 h, 8 h, 12 h et 24 h) ont été testés. Il est attendu que le modele sera moins significatif au fur
et a mesure que I’intervalle de temps entre les mesures augmente, mais s’agit-il d’une relation
continue ou existe-t-il un seuil ? Lobjectif était de déterminer si une mesure réglementaire par
jour est suffisante pour suivre et modéliser la décroissance bactérienne apres un événement
pluvieux. La constante de cinétique (K ) a été calculée pour chaque pluie sélectionnée et chaque
intervalle de temps analysé. Les résultats ont montré que le pourcentage de modeles significatifs
diminue fortement de 81% et 85% (pour les ponts de Tolbiac et de I’Alma respectivement) a 2
h d’intervalle, pour atteindre seulement 5 et 15% lorsque I’intervalle était de 24 h (Tableau S1).
Ceci indique que plus I’intervalle entre les mesures est réduit, meilleure est I’estimation de la
constante de cinétique. Le nombre d’heures entre chaque mesure avait un impact significatif sur

les constantes de cinétique K; (Test de Friedman, p<0,010, n=204, Tableau S1).
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FIGURE 3.6 — Comparaison des taux de disparition (jr 1) selon I’interval de temps entre 2 mesures (de 2 h a 24
h) pour E. coli pour les ponts de I’Alma et de Tolbiac. Les barres horizontales et les lettres (a, b, ¢) regroupent les
intervalles sans différence significative.

A la suite des modélisations effectuées pour chaque événement, le taux de disparition a été
calculé pour chaque intervalle de temps analysé. L’ intervalle de temps impactait significativement
le calcul du taux de disparition (Test de Friedman, p<0,010, n=204, Figure 3.6). Toutefois, aucune
différence significative n’a été détectée pour les intervalles allant de 2 h a 8 h (Test post-hoc,
p=0,182, n=68). Pour I'intervalle de 12 h, les taux de disparition étaient significativement plus
faibles que ceux estimés pour les intervalles de 2 h a 6 h (Test post-hoc, p=0,004, n=68). Enfin,
pour I’intervalle de 24 h, les taux de disparition étaient significativement plus faibles que ceux
estimés avec tous les autres intervalles (Test post-hoc, p<0,001, n=68). Les taux de disparition
estimés avec une mesure par jour (24 h) étaient en moyenne de 1,04 £ 1,00 jr—! (entre 0,13 et
3,22 jr~1) pour le pont de I’Alma et de 1,44 + 0,98 jr—* (entre 0,10 et 3,15 jr~1) pour le pont
de Tolbiac (Tableau S1). Ces résultats suggerent une diminution significative de I’estimation du
taux de disparition a partir d’un intervalle de 12 h. Une ou deux mesures par jour sembleraient
donc insuffisantes pour estimer correctement le taux de disparition.

De plus, lorsque les données du dispositif Coliminder étaient analysées avec un intervalle
de 24 h, le taux de disparition moyen de 1,29 + 0,99 jr~! estimé en Seine était significativement
supérieur a celui estimé avec les mesures réglementaires de 0,47 + 0,32 jr~! (Test de Wilcoxon,

n=47, p<0,01).
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3.3.2.3. Impact des conditions environmentales sur les taux de disparition

Différents modeles ont été testés afin de déterminer les parametres influengant les taux
de disparition, que ce soit avec la base de données réglementaires ou les données estimées par le
systeme ColiMinder pour un intervalle de 2 h. Le tableau 3.9 présente les résultats du meilleur
modele sélectionné.

TABLE 3.9 — Relation entre les facteurs environnementaux (site, concentration enkE. coli initiale au pic de conta-
mination en NPP/100 mL, pluviométrie cumulée de 1’événement en mm et taux de disparition d’E. coli) en jr—!.
Les p-valeurs (p) sont indiquées pour chaque parametre, les interactions significatives et le modele global. NA : les

parametres non retenus, Im : modele linéaire, Imm : modele linéaire mixte.

| Base de données | ColiMinder | Reglementaire |

Effectif 28 46

2 0,51 -0,60

p-valeur globale 0,001 0,008

p Intercept 0,001 <0,001
p Pluviométrie 0,009 NA

p Concentration initiale 0,005 0,005
p Site 0,042 NA
p Interaction Pluviométrie-Concentration 0,018 NA
Modele Im Imm

Pour la base de données réglementaires, le modele linéaire mixte incluant les sites en
effet aléatoire (1?=-0,60, p=0,008, n=46), montre que les taux de disparition sont significative-
ment influencés par la concentration au pic de pollution (p= 0,005). Cela indique que plus la
contamination est élevée pendant la pluie, plus la vitesse de disparition des E. coli est ensuite
lente.

Pour la base de données ColiMinder, le modele linéaire significatif (1= 0,51, p=0,001,
n=28) incluait la pluviométrie (discrétisées en pluies < ou > a 10 mm), la concentration initiale au
pic de pollution et le site (respectivement, p=0,009, p=0,005, et p=0,042). De plus, I’interaction
entre la pluviométrie et la concentration initiale en E. coli était également significative (p <0,018).
Que ce soit avec les données réglementaires ou les données ColiMinder, les résultats soulignent
I’importance de tenir compte des caractéristiques spécifiques a chaque site dans 1’analyse, de

méme que la concentration en E. coli au pic de pollution.
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FiGURE 3.7 — Courbes modeles moyennes (ligne rouge) de la variation temporelle des concentrations relatives en
E. coli pour les pluies >10 mm, selon le site. (A) Alma 2 h, (B) Alma 24 h, (C) Tolbiac 2 h et (D) Tolbiac 24 h. Les
concentrations en E. coli relatives exprimées en pourcentage de la concentration au pic de pollution sont en bleu,
les intervalles de confiance a 95% sont représentés en gris.

Afin d’identifier si ’intensité de la pluie influe fortement sur le taux de disparition
pour les données obtenues par le systeme ColiMinder, les pluies ont été subdivisées en deux
catégories : faibles (<10 mm cumulés) et les pluies élevées (>10 mm cumulés). Les courbes
modeles, ajustées aux suivis au cours du temps des E. coli (concentrations relatives par rapport
au pic de pollution, exprimées en %) apres une pluie, ont été tracées pour chaque épisode pluvial

sélectionné (Figure 3.7 et 3.8).
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FIGURE 3.8 — Courbes modeles moyennes (ligne rouge) de la variation temporelle des concentrations relatives en
E. coli pour les pluies <10 mm pour chaque site.(A) Alma 2 h, (B) Alma 24 h, (C) Tolbiac 2 h et (D) Tolbiac 24
h.Les concentrations en E. coli relatives exprimées en pourcentage de la concentration au pic de pollution sont en
bleu, les intervalles de confiance a 95% sont représentés en gris.

3.3.3. Résilience et résistance

Une analyse de la résilience et de la résistance des sites a été effectuée en estimant 3
parametres : le Ty, et les amplitudes de variation de la pollution et de la récupération apres le
pic de pollution.

3.3.3.1. Estimation de la résilience et de la résistance avec les mesures régle-
mentaires

Aucune différence significative n’a été€ observée entre les sites de la Marne et de la
Seine au niveau du Ty, et des amplitudes de variation de la pollution et de la récupération
(Anova, p=0,660 pour le Ty, p=0,465 pour I’amplitude de pollution, p=0,355 pour I’amplitude
de récupération, n=46). La résilience était donc similaire entre les deux rivieres, avec un Tyy de
3,50 £ 1,43 jr en Seine et de 3,68 + 1,18 jr en Marne, avec amplitude moyenne de récupération
respectivement de 77 £ 19% et 73 £ 18% (Anova, n=46, respectivement p=0,102, p=0,444,
Tableau 3.10). La résistance était également similaire avec une amplitude moyenne de pollution

de 75 £ 18% en Seine et de 83 + 12% en Marne (Anova, n=46, p=0,662, Tableau 3.10).
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TABLE 3.10 — Valeurs moyennes du temps de retour (Tyg, jr) et des amplitudes de variation de la pollution (AV 4yant,
%) et de récupération (AV ,p,¢s, %) lors des campagnes réglementaires en Seine et en Marne.

| Site | Too G1) | AVauane (%0) | AV gprss (%) |
SMV1 411154 | 75+20 68 + 22
SMV10 373+£1,68 | 70+21 69 + 19
SMV 14 3,12+0,78 | 81+12 82+ 11
Alma 332145 | 79+16 70 + 25
Tolbiac RD | 346+122 | 82%12 78 + 14
Tolbiac RG | 3,87 +0,94 | 90 +4,18 87 +7

3.3.3.2. Intervalle de temps minimum entre chaque mesure

Un effet significatif de I’intervalle de temps entre deux mesures par le systeme ColiMinder
(2h,4h,6h,8h, 12 het 24 h) a été observé, que ce soit pour le Ty, I’amplitude de variation
de la pollution ou I’amplitude de récupération apres la pluie (Kruskal-Wallis, p<0,001, p<0,001,
p<0,001, n=204) (Tableau 3.11). La différence était significative entre I’intervalle de 24 h et les
intervalles de 2 h a 8 h pour le Ty, (Test post-hoc, p<0,011, n=68, Tableau 3.11). Cela indique
qu’une mesure par jour est insuffisante pour bien évaluer la résilience et la résistance des sites.
En effet, le Ty moyen variait de 1,58 + 1,29 jr a 1,18 + 1,04 jr (respectivement pour les ponts
de I’Alma et de Tolbiac) lorsque I’intervalle était de 2 h. Il augmentait a 1,96 + 0,79 jret 1,56 +
0,62 jr (respectivement pour les ponts de I’Alma et de Tolbiac) lorsque I’intervalle est de 24 h
(Tableau 3.11). De plus, le temps de retour pour un intervalle de 24 h toutes stations confondues
(1,71 £ 0,71 jr), était significativement plus faible lorsqu’il était estimé avec les données du
systeme ColiMinder comparé aux estimations avec les mesures réglementaires (3,50 + 1,43 jr)
(Test de Student, n=47, p<0,01).

Pour I’amplitude de variation de la pollution, une différence significative a ét€ observée
entre I’intervalle de 2 h avec les intervalles de 8 h a 24 h et aussi entre ’intervalle de 4 h et les
intervalles de 12 h et de 24 h (Test de Kruskall-Wallis suivi de tests post-hoc, p<0,027, n=68,
Tableau 3.11). Avec un intervalle de 2 h, le pourcentage moyen de variation entre le temps sec
avant la pluie et le pic de contamination était 75 + 23% et 86 + 19% (respectivement pour les
ponts de I’Alma et de Tolbiac) et avec un intervalle de 24 h il présentait des valeurs moyennes de
70 + 28% et 84 + 20% (respectivement pour les ponts de I’Alma et de Tolbiac) (Tableau 3.11).

L’intervalle de 24 h sous-estimait significativement 1’amplitude de récupération apres
la pluie, (test de Kruskall-Wallis suivi de tests post-hoc, p<0,045, n=68). Le pourcentage de

récupération était en moyenne de 77 + 22% (Pont de I’Alma) et de 86 + 20% (pont de Tolbiac)
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avec I’'intervalle de 2 h, alors qu’il était de 74 + 22% (pont de ’Alma) et 84 + 22% (pont de
Tolbiac) avec un intervalle de 24 h (Tableau 3.11).

TABLE 3.11 — Valeurs moyennes du temps de retour (7o) et des amplitudes de variation de la pollution (AV,,qn¢) et
de récupération (AV,pr4s) en fonction de I’intervalle de temps entre chaque mesure lors des campagnes ColiMinder
en Seine.

T90 .I') AVammt (070) AVa rés (070)
Intervalle Alma \(J Tolbiac Alma | Tolbiac Almap | Tolbiac
2h 1,58 +1,29 | 1,18 +1,04 | 75+23 | 86 +19 | 77+22 | 86 +20
4 h 1,52+ 1,18 | 1,07 +£0,93 | 74+24 | 86 +19 | 76 +24 | 87 + 18
6h 1,39+0,85 1092 +0,66 | 73+26 | 85+20 | 77+21 | 87 +18
8h 1,52+1,08 | 1,17+0,82 | 72+26 | 84 +22 | 76 +23 | 86 + 19
12 h 1,80+£0,97 | 1,28+ 0,81 | 73+26 | 83+22 | 75+24 | 85+22
24 h 1,96 +£0,79 | 1,56 +£0,62 | 70+28 | 84 +20 | 74 +22 | 84 +22

Nous allons nous focaliser par la suite sur I’intervalle de 2 h pour les données obtenues
avec le systeme ColiMinder car il permettait une estimation plus précise des métriques. Globa-
lement, ces résultats indiquent une résilience en moyenne plus faible au pont de Tolbiac ainsi
qu’une amplitude de récupération 1égerement plus élevée, avec un temps de retour moyen plus
lent. Cependant, aucune différence significative n’a été observée entre les deux sites pour les
3 métriques analysées (Test de Wilcoxon, p=0,320 pour le Tyy, p=0,256 pour I’amplitude de
pollution, p=0,246 pour I’amplitude de récupération, n=34, Tableau 3.11).

3.3.3.3. Impact des conditions environnementales sur la résilience et la ré-
sistance des sites en Seine et en Marne

Différents modeles linéaires ont été testés, afin de déterminer les parametres environne-
mentaux influencant les 3 métriques de résilience et de résistance que ce soit avec la base de
données réglementaires ou les données du systeme ColiMinder avec une acquisition toutes les
2 h. Le tableau 3.12 présente les résultats du meilleur modele sélectionné pour chaque base de
données.

Pour la base de données réglementaires, les modeles expliquent faiblement la variation des
métriques, avec des r2 compris entre 0,10 et 0,23. Le modele significatif expliquant les variations
du temps de retour (Tyy) (n=46, p=0,029) comportait la pluviométrie (catégories < et > a 10
mm) (p=0,030). Pour I’amplitude de variation de la pollution, le modele était significatif (n=46,
p<0,001). L’effet du débit était une tendance (p=0,058), avec une interaction significative entre le
débit et la concentration initiale au pic de pollution (p<0,001). Pour I’amplitude de récupération

apres la pluie, le modele le plus significatif (n=46, p=<0,001) comportait la concentration initiale
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TABLE 3.12 — Relation entre les facteurs environnementaux (débit en m3 /8), site, concentration en E. coli initiale
au pic de contamination en NPP/100 mL, pluviométrie et taux de disparition d’E. coli en jr~!). Les p-valeurs
sont indiquées pour chaque parametre, les interactions significatives et le modele global. NA : les parametres non
retenus, Im : modele linéaire, glm : modele linéaire généralisé, @ : pluviométrie en catégories, ® : pluviométrie
cumulée de I’événement en mm.

Base de données Réglementaire ColiMinder

T90 ‘ AV;want ‘ A‘/aprés T90 ‘ AV;want ‘ A‘/apres
Effectif 46 46 46 34 34 34
2 0,10 0,23 0,17 0,56 0,42 0,45
p globale 0,029 <0,001 | <0,001 | 0,002 <0,001 | <0,001
p intercept <0,001 | 0,072 0,322 0,108 0,274 0,158
p débit NA 0,058 NA 0,894 NA NA
p pluviométrie 0,030 | NA 0,146* | 0,061¢ | 0,005 | 0,006°
p concentration initiale NA <0,001 | 0,038 0,001 <0,001 | <0,001
Site NA NA NA 0,121 NA NA
p Interaction débit-site NA NA NA 0,360 NA NA
p Interaction débit- | NA 0,032 NA 0,002 NA NA
concentration
p Interaction concentration- | NA NA NA 0,046 NA NA
site
p Interaction pluviométrie- | NA NA NA NA 0,001 0,001
concentration
Modele Im glm glm glm glm glm

au pic de pollution (p= 0,038), contrdlée par la pluviométrie en cumul (non significatif, p=0,140).

Pour les données ColiMinder mesurées toutes les 2 h, les modeéles montraient un meilleur
ajustement pour les 3 métriques (r? variant de 0,42 a 0,56) par comparaison aux données
réglementaires. Pour les 3 parametres analysés, les modeles globaux étaient significatifs (n=34,
p=0,002 pour le Tyy, p<0,001 pour I’amplitude de pollution, p<0,001 pour I’amplitude de
récupération). Le Ty, était significativement influencé par la concentration initiale au pic de
pollution (p=0,001) et tendait a €tre influencé par la pluviométrie (p=0,061), les interactions
entre le débit et la concentration initiale au pic de pollution (p=0,002) et entre la concentration
initiale et le site (p=0,046) étant significatives. Concernant les amplitudes de récupération, le
modele final montrait des contributions significatives de la concentration initiale (p<0,001)
et de la pluviométrie (p=0,006), avec une interaction significative entre ces deux parametres
(p=0,001).

Ces résultats soulignent I’importance de la pluviométrie (parfois en cumul et parfois en
catégories) et de la concentration initiale comme facteurs clés dans la dynamique de résilience

et de résistance d’E. coli, renforcée par les interactions avec d’autres variables. Ces résultats
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sont confirmés avec les deux bases de données.

3.4. Discussion

Ces dernieres décennies, des efforts importants ont été déployés pour améliorer la qua-
lité des cours d’eau (Kistemann et al., 2016) et 1'Tle-de-France n’y fait pas exception avec la
construction d’infrastructures (bassins de rétention, stations de dépollution des eaux pluviales),
I’amélioration des réseaux, la résolution de mauvais branchements, le raccordement des bateaux
et la désimperméabilisation (Bouleau et al., 2024). Ces efforts ont bénéficié de la volonté poli-
tique d’organiser a Paris les Jeux Olympiques et Paralympiques (JOP) en 2024 et de 1’ouverture
envisagée de plusieurs baignades urbaines sur les bords de la Seine et de la Marne a 1’hori-
zon 2025 en héritage des JOP (Noury et al., 2018). Selon la directive baignade 2006/7/CE, le
classement d’un site de baignade nécessite un suivi de 4 ans de la qualité microbiologique et
d’établir un profil de baignade. Notre étude vient en complément en déterminant la dynamique
de décroissance d’E. coli en Seine et en Marne lors d’événements polluants en vue d’aider
a mieux comprendre la dynamique temporelle des pollutions microbiologiques sur des sites
emblématiques (JOP, futures baignades) et de fournir des parametres pour la modélisation des
pollutions. Il existe encore peu d’études sur la décroissance d’E. coli en Ile-de-France dans la
Seine et la Marne (Passerat et al., 2011; Menon et al., 2003; Servais et al., 1999; Van et al.,
2022). Notre étude élargit cette analyse en incluant des données provenant de différents sites en
Seine et en Marne et en comparant la dynamique mesurée a 1’aide du dispositif ColiMinder a
celle obtenue avec les suivis réglementaires par culture. Par ailleurs, grace a la fréquence élevée
des mesures du systeme ColiMinder, nous avons pu analyser I’effet du nombre de mesures sur

I’estimation des taux de disparition.

3.4.1. Taux de disparition et temps de retour

La disparition d’E. coli dans les milieux aquatiques résulte de I’action combinée de
divers parametres environnementaux li€s d’une part a I’hydrologie et I’hydromorphologie de
la riviere (dilution et diffusion des effluents, sédimentation et resuspension des bactéries dans
le sédiment) et d’autre part liés a la capacité de survivre et de croitre des bactéries dans cet
habitat secondaire (prédation, compétition, stress physiologique, épuisement ou disponibilité de

nutriments et des sources de carbone, rayonnement solaire, température) (Barcina et al., 1997;
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Dick et al., 2010; Carneiro et al., 2018; Korajkic et al., 2014; Mattioli et al., 2017; Brooks
and Field, 2016). Les bactéries d’origine fécale dont I’habitat primaire est le tube digestif
des organismes homéothermes, une fois rejetées dans la riviere vont y subir des conditions
environnementales favorables ou défavorables qui peuvent entrainer une mortalité ou une perte
de capacité a croitre, toutefois certaines populations peuvent éventuellement s’acclimater et
survivre voire croitre dans les sédiments, les végétaux et les biofilms (Liu et al., 2006; Passerat
et al., 2011; Gonzales-Siles and Sjoling, 2016). Nos résultats quant aux taux de mortalité et de
disparition sont dans la gamme des taux rapportés dans la littérature. Ainsi un taux d’inactivation
de 0,672 £ 0,11 jr~! a été mesuré pour E. coli avec une eau de riviere subissant des rejets d’eaux
usées (Blaustein et al., 2013). Une autre étude a identifié un taux de mortalité en laboratoire
de 0,72 jr‘l (Servais et al., 2007b). Ces taux sont proches du taux de mortalité de 0,97 +
0,48 jr~! estimé par les expériences dans les sacs a dialyse disposés au site SMV 14 (Marne).
La comparaison avec la littérature peut toutefois €tre un exercice difficile car les conditions
expérimentales different. Les taux de disparition mesurés sur le méme site SMV 14 avec les
données de suivi réglementaire étaient relativement plus rapides (0,49 + 0,22 jr—1). Ceci est
cohérent car d’autres facteurs que la mortalité entrent en jeu dans la disparition, incluant la
dilution du rejet, la dispersion, 1’advection et la sédimentation des bactéries (Jalliffier-Verne
etal., 2017). En effet, quand une certaine quantité d’un contaminant est rejetée dans une riviere,
il est transporté en aval par le mouvement de 1’eau et continuellement mélangé et redistribué
dans I’eau. Ce processus dépend des caractéristiques hydrologiques et hydrodynamiques du bief
de la riviere, et donc de la géométrie et de la morphométrie de la riviere qui vont déterminer
la vitesse et la turbulence du courant (Rowiriski et al., 2022). Ainsi, notre analyse statistique a
montré que la riviere et la pluviométrie impactaient significativement les taux de disparition.
Passerat et al. (2011) ont constaté qu’une estimation prenant en compte la "dilution + mortalité
+ sédimentation" permettait de mieux modéliser les concentrations en E. coli dans les eaux de
la Seine. Cette approche suggere que la sédimentation joue un rdle notable dans le sort des BIF
attachées dans les eaux affectées par le déversement d’eaux pluviales. Nos résultats suggerent
également un taux de disparition et un temps de retour similaires en Seine (respectivement de
0,47 £ 0,32 jr~! et de 3,50 + 1,43 jr) et en Marne (respectivement de 0,44 + 0,35 jr‘l et de
3,68 + 1,18 jr) avec I’analyse des données réglementaires. Une étude menée sur les coliformes
fécaux a estimé un taux de disparition moyen de 0,428 jr~! dans les eaux de riviere (Chigbu

et al., 2005). I1 convient cependant de noter que ces deux parametres ne sont pas directement
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comparables, étant donné que E. coli est une bactérie qui fait partie des coliformes fécaux. Il a
également ét€ montré que des eaux de mémes catégories présentaient une inactivation d’E. coli
similaire (Blaustein et al., 2013). L’ensemble de ces résultats n’exclut donc pas la possibilité de
généraliser la valeur moyenne du taux de disparition obtenue a I’ensemble des sites de baignades
potentielles avec des profils de baignade similaires permettant de fournir un parametre utile pour

les modeles hydrodynamiques.

3.4.2. Comparaison des bases de données

On ce qui concerne le dispositif ColiMinder, nous avons pu constater qu’a partir d’un
intervalle de 24 heures (soit une mesure par jour) qu’il y avait un biais significatif dans 1’esti-
mation du taux de disparition, du temps de retour et des amplitudes de variation de pollution et
de récupération. En effet, le temps de retour minimal était de 1,92 h pour un intervalle de 2 h,
celui-ci augmente a 18 h avec un intervalle de 24 h. Cela indique que pour les sites en Seine, il
faudrait au minimum deux mesures par jour pour pouvoir bien suivre la disparition d’E. coli dans
la riviere afin de pouvoir bien évaluer la résilience d’un site. Une étude antérieure sur la Seine
a mesuré une décroissance des BIF par mortalité et sédimentation de 66% apres un rejet urbain
de temps de pluie intense (39 mm) qui a entrainé le déversement du déversoir d’orage de Clichy
(Passerat et al., 2011). Nos propres résultats indiquent une forte capacité de résilience avec un
retour rapide voire tres rapide a des concentrations de temps sec pour certains des événements
analysés. Nos résultats montrent bien que pour 91% des événements sélectionnés, les pollutions
étaient de court terme, c’est a dire affectant la qualité de I’eau moins de 3 jours selon la définition
de I’agence francaise de sécurité sanitaire de 1I’environnement (Duboudin et al., 2007).

Les résultats obtenus avec les deux bases de données n’étaient pas totalement en accord,
mais ceci peut s’expliquer d’une part par le fait que la régularité et la quantité des données
différaient entre les données du systeme ColiMinder toutes les 24 h, et les données réglementaires
pas systématiquement mesurées tous les jours. De plus, le dispositif ColiMinder mesure 1’activité
de la -D-glucuronidase, donnant une estimation indirecte mais rapide des concentrations en E.
coli. Cette méthode vise toutes les bactéries cibles, qu’elles soient cultivables, non cultivables
ou mortes, ainsi que les enzymes libres (Cazals et al., 2020; Garcia-Armisen and Servais, 2009).
Par contre, la méthode ISO 9308-3 de culture en microplaques quantifie les bactéries cultivables
et viables qui sont thermotolérantes et possedent la S-D-glucuronidase, avec une estimation

statistique basée sur la loi de Poisson (Cazals et al., 2020; Garcia-Armisen and Servais, 2009).
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Ces différences méthodologiques peuvent conduire a des écarts dans les résultats. Les méthodes
de culture sous-estiment souvent le nombre de bactéries dans des environnements fortement
contaminés en raison de la diminution de la quantité d’enzyme par bactérie cultivable. De ce
fait, dans ce type d’échantillon, il existe une fraction plus importante des BIF a I’état viable
mais non cultivable (Carneiro et al., 2018). En effet, il a été constaté une diminution du ratio
enzyme/E. coli lorsque la contamination devenait plus importante (Garcia-Armisen and Servais,
2009; Cazals et al., 2020).

Avec suffisamment de données (3 a 4 points de mesure par événement pluvial), nos
modeles exponentiels étaient significatifs, donc 1’estimation des taux de disparition et des taux
de mortalité faite peut étre considérée comme valide dans ce cas. Toutefois, I'utilisation des
données acquises en temps quasi réel montre que 1’évaluation des taux de disparition en utilisant
les données réglementaires peut €tre biaisée. En effet, il est nécessaire d’avoir a minima 2 a 3
mesures par jour durant un événement pluvial et les jours qui suivent pour estimer les taux de
disparition de maniére précise. Un plan d’échantillonnage de 1 prélevement par jour entraine
donc un biais, avec des valeurs de taux de disparition jusqu’a 3 fois plus faibles comparées a
une mesure toutes les 2 a 8 h. Le dispositif ColiMinder est donc particulierement adapté pour le
suivi en quasi temps réel, et permet une observation fine des dynamiques rapides comme celles

observées en temps de pluie lors des orages d’été.

3.4.3. Pics de pollution

Les valeurs seuil européennes pour le classement des baignades et les valeurs guides pour
la gestion quotidienne, sont souvent dépassées dans les rivieres fortement urbanisées comme la
Marne et la Seine, en particulier lors des fortes précipitations (Kistemann et al., 2016; Bouleau
et al., 2024). Durant ces événements pluvieux, les rejets de microorganismes provenant des
sources de pollution fécale ponctuelles ou diffuses augmentent considérablement (Ahmed et al.,
2018). En effet, les précipitations entrainent le transfert de la contamination fécale du sol aux
cours d’eau (Jardé et al., 2018). De plus, par temps de pluie, les réseaux d’assainissement
peuvent déborder et apporter des eaux usé€es non-traitées (Passerat et al., 2011), entrainant une
augmentation des concentrations en BIF dans les eaux de surface pouvant dépasser jusqu’a
100 a 1000 fois les concentrations de temps sec (Salmore et al., 2006; Krometis et al., 2007).
Ainsi, les mesures bactériologiques réalisées en Seine et en Marne au niveau des 6 sites ont

montré qu’apres une pluie, une augmentation de la concentration en E. coli était constatée
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par rapport au temps sec pouvant aller jusqu’a 22 fois en Seine et 32 fois en Marne et méme
plus de 100 fois avec le dispositif ColiMinder. Ainsi le rejet d’eau usée non traitée durant les
temps de pluie (déversoirs d’orage, by-pass des stations d’épuration, mauvais branchements dans
les réseaux séparatifs) contribue fortement a la dégradation de la qualité des eaux de surface
(Cyterski et al., 2022). La remise en suspension des sédiments dans les rejets pluviaux et les
eaux de ruissellement lors d’événements pluviaux peut également contribuer a 1’augmentation
des concentrations en BIF au niveau des eaux de surface urbaines (Lee et al., 2006; Wu et al.,
2009). Cette augmentation rapide était suivie d’une diminution dans les 2 a 3 jours apres la
pluie. Au niveau de notre étude, au bout de 3 jours, une diminution de la concentration de 34 a
95% en Seine et de 33 & 96% en Marne a été constatée avec les mesures réglementaires, et pour
les mesures avec le dispositif ColiMinder de 29 a 99% (mesures toutes les 2 h) et de 27 a 99%
(mesures toutes les 24 h). L'impact de la pluie sur la qualité microbiologique de la riviere peut
étre variable, ce qui se traduit par une large variabilité parmi les pics de concentration mesurés.
En effet, nous avons observé des amplitudes de variation de la pollution allant de 24 a 97% des
valeurs de temps sec précédant la pluie pour différents événements sélectionnés dans la base
de données réglementaires. Les données du dispositif ColiMinder donnaient des amplitudes de
pollution de 31 a 100% pour les mesures toutes les 2 h et de 26 a 100% pour les mesures
toutes les 24 h. Cette variabilité de I’amplitude de pollution était partiellement expliquée par
la pluviométrie, avec une forte significativité pour les estimations avec les données du systeme

ColiMinder.

3.4.4. Temps et niveau de récupération apres la pollution

La résilience de la qualité de I’eau d’une riviere est liée a sa capacité a absorber 1’apport
en polluants (perturbation) et a rapidement restaurer ou améliorer la qualité de 1’eau au cours
du temps (Park et al., 2025). Il existe encore peu d’études qui s’intéressent a la résilience de la
qualité de I’eau dans les rivieres, et celles-ci se focalisent la plupart du temps sur des polluants
chimiques, les pollutions microbiologiques étant rarement prises en compte (Hoque et al., 2012;
Li et al., 2016; Mirauda et al., 2021; Park et al., 2025). Nous avons abordé la résistance et
la résilience des sites potentiels de baignade ou d’organisation d’événements sportifs dans les
rivieres franciliennes sous 1’angle de la réponse "écologique" des systemes aux perturbations
(Mirauda et al., 2021), a I’aide de 4 métriques : le taux de disparition qui mesure une facette de

la résilience du systeme face a la pollution, I’amplitude de pollution qui mesure la robustesse du

205



Chapitre 3

systeme, le temps de retour qui mesure la rapidité de récupération, et I’amplitude de récupération
qui mesure la capacité a revenir a 1’équilibre antérieur. Dans la littérature, il est rare que différents
aspects de la résilience soient mesurés concernant la qualité de 1’eau (Park et al., 2025). Nous
avons aussi testé I'impact de plusieurs facteurs hydrométéorologiques et physico-chimiques
sur les métriques de la résilience. Ainsi, les temps de retour et I’amplitude de récupération
étaient expliqués partiellement par les hauteurs de pluie (en particulier avec les données du
systeme ColiMinder), tout comme les taux de disparition. En effet, les rivieres sont des systemes
dynamiques dont la qualité dépend de relations complexes entre les caractéristiques du bassin
versant et la variabilité du climat. De plus, le niveau de pollution atteint (concentration initiale au
pic de pluie) avait aussi un impact sur le temps de retour 7y, et sur I’amplitude de récupération (en
particulier pour les métriques estimées avec les données du systeéme ColiMinder). Il est donc clair
que le niveau de dégradation de la qualité conditionnait la capacité de retour au niveau de base
avant la pollution. Des interactions avec le débit ou la concentration au pic de pollution étaient
significatives. Ces interactions doivent €tre prises en compte pour mieux comprendre et prédire
la dynamique des contaminants dans les systemes aquatiques impactés par les rejets d’effluents
(Carneiro et al., 2018). Il serait également intéressant d’inclure des caractéristiques du bassin
versant telles que 1’'usage des sols, la densité de population, le taux d’imperméabilisation, le
nombre de rejets et leurs volumes déversés, car ces variables influencent les apports en pollution
fécale (Paule-Mercado et al., 2016).

Pour les données réglementaires, le temps de retour 7y, était en moyenne de 87 + 32 h
tous sites confondus, et pour les données issues du systeme ColiMinder I’estimation du 7y était
en moyenne de 31 + 22 h en Seine pour les mesures toutes les 2 h. Ces temps de retour étaient
situés le plus souvent dans la limite de 72 h ce qui est spécifié par la directive 2006/7/EC pour la
gestion des pollutions temporaires. Toutefois, il est noté que certaines pollutions (notamment sur
les stations SMV1 et SMV10), pouvaient durer plus de 72 h. Il est donc recommandé de vérifier
le niveau des E. coli avant la réouverture. Les mesures rapides basées sur la PCR quantitative,
ou sur les mesures enzymatiques peuvent compléter les mesures réglementaires effectuées sur
des échantillons collectés apres la pluie. De plus, la modélisation et les systeémes de suivi en
temps quasi réel ou réel (comme le ColiMinder, ou les capteurs de fluorescence 3D) peuvent
alors aider a avoir une gestion réactive en cas de pluie ou d’incident sur le réseau (Burnet et al.,
2019; Offenbaume et al., 2020; Angelotti de Ponte Rodrigues et al., 2024).

Cette approche de la résilience permet de mieux prendre en compte les contaminations
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microbiennes dans une riviere face a des perturbations aléatoires comme les rejets de temps
de pluie, en focalisant sur la dynamique et la variabilité des changements de concentration en
BIF. Cette approche sur 1’adaptabilité du site de baignade offre un cadre conceptuel pour le
gestionnaire qui peut ainsi prendre en compte la vulnérabilité du site de baignade face aux
événements polluants. Ces résultats pourront également alimenter les modeles déterministes qui
sont développés en Marne et en Seine pour prédire la contamination des eaux de surface, comme
le modele ProSe (Poulin et al., 2013) ou le modele Telemac (Van et al., 2022) pour la gestion

active des futurs sites de baignade.

3.5. Conclusion

L'ouverture de sites de baignade en Marne et en Seine nécessite une mise en place et une
gestion des futurs sites. Une fois I’ouverture des sites, il faudra une gestion active de la pollution
par un suivi in situ automatisé ou semi-automatisé, couplé a des modeles prédictifs. L’ analyse
des jeux de données de la Ville de Paris et du Syndicat Marne Vive (suivi réglementaire et
systeme ColiMinder) a permis de développer une évaluation de la résistance et de la résilience
de plusieurs futurs sites de baignade ou de sites ayant servi pour les JOP 2024. Cette approche
dynamique a démontré la robustesse et I’adaptabilité de ces sites face aux événements polluants
temporaires li€s au temps de pluie. Les résultats des campagnes de mesure ont montré que
le site SMV14 était tres réactif avec un temps de retour relativement court, permettant une
réouverture au bout de 75 h en moyenne (entre 56 et 94 h selon I’événement pluvial), ce qui est
quasi conforme avec la directive 2006/7/CE (fermeture des baignades 72 h apres une pollution
ponctuelle) suivi par le pont de ’Alma avec un temps de retour moyen de 80 h (entre 36 et
117 h selon I’événement pluvial). Par contre, pour SMV 10, des apports importants en amont
(rejet de I'usine de traitement des eaux usées Marne Aval qui n’était pas encore équipée de
la désinfection, nombreux rejets pluviaux polluants en amont) semblent contribuer a dégrader
la qualité de ce site en temps sec comme en temps de pluie, ce qui explique les amplitudes
moyennes de variation de la pollution 1égerement plus faibles (Petrucci and Vaury, 2018). En
Seine, le temps de retour calculé avec les données du systeme Coliminder est beaucoup plus
faible (2 a 80 h). Cet équipement permet un suivi toutes les 2 h et donc avec une détermination
plus précise du temps nécessaire pour un retour a une qualité de temps sec. Le suivi en temps

réel permettrait au gestionnaire d’adapter ses fermetures et réouvertures a chaque pluie et ainsi
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de maximiser les ouvertures sur la saison. En effet, une étude a montré que pour les plages du
lac Michigan, 12% du temps, les fermetures des plages n’étaient pas nécessaires, ce qui pouvait
potentiellement représenter une perte de 1274 a 37030 dollars par jour (Rabinovici et al., 2004).
Avoir un suivi avec des résultats dans la journée permettrait d’éviter ce probleme.

Cette étude a permis d’apporter une analyse de la mortalité et de la disparition d’E.
coli dans les rivieres franciliennes. D’autres analyses complémentaires pourraient enrichir ces
résultats. En effet, I’analyse de la dynamique de différents indicateurs comme les entérocoques
intestinaux et des indicateurs de sources de contamination (humaine et animales) pourrait repré-
senter une approche complémentaire intéressante afin de comparer la résistance et la résilience
des sites avec différents marqueurs. En effet, une diminution plus élevée des entérocoques in-
testinaux dans la Seine apres un rejet du déversoir d’orage de Clichy dans la Seine (région
parisienne) a été constatée dans une étude antérieure (Passerat et al., 2011). Une étude qui a
comparé le taux de décroissance d’E. coli a celui du marqueur humain HF183 a montré que
le temps de retour du marqueur humain était plus élevé qu’E. coli, sans que cette différence
soit significative (Dick et al., 2010). Il serait aussi intéressant de calculer la résilience des sites
pour quelques pathogenes ou marqueurs humains viraux, car ils n’ont slirement pas la méme
dynamique temporelle en Seine que les BIF. Un indicateur de résilience multimétrique pourrait
étre proposé, intégrant plusieurs microorganismes a I’instar des index de résilience développés
pour la pollution chimique.
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3.6. Annexe

TaBLE S1 — Valeurs moyennes de la constante de cinétique (K1, jr 1) obtenues par le modele linéaire exponentiel
(p-valeur et R2) et le taux de disparition Ky en jr~!. Moyenne + écart type ou [Min : Max]. p-valeur significative
(S), non significative (NS) au seuil 0,05.

Station et intervalle K, p-valeur R? K,

Alma 2 h (n=13) 6,25 £9,81 | S(11) NS(2) [<0,001 : 0,250] | 0,71 £0,25 | 5,50 £ 9,50
Alma 4 h (n=13) 4,24 £5,28 | S(11) NS(2) [<0,001 : 0,370] | 0,75 +£0,26 | 3,51 £4,84
Alma 6 h (n=13) 4,09 +£5,48 | S(9)NS4) [<0,001 :0,280] | 0,78 +£0,23 | 3,39 +5,44
Alma 8 h(n=13) 3,48 £+4,39 | S(6) NS(7) [<0,001 : 0,330] | 0,64 £0,29 | 2,90 + 4,39
Alma 12h (n=13) | 2,27 +2,82 | S(2)NS(11) [<0,001 : 0,500] | 0,79 0,19 | 1,88 + 2,85
Alma 24 h (n=13) 1,39 £ 0,89 | S(2) NS(11) [<0,001 : 0,440] | 0,86 +£0,16 | 1,04 £ 1,00
Tolbiac 2 h (n=21) 6,05 £ 8,43 | S(17) NS(4) [<0,001 : 0,280] | 0,79 £0,22 | 5,39 £ 7,94
Tolbiac 4 h (n=21) 5,52 +£5,70 | S(13) NS(8) [<0,001 : 0,550] | 0,75 +0,23 | 4,61 £5,40
Tolbiac 6 h (n=21) 4,88 +4,39 | S(12) NS(9) [<0,001 : 0,740] | 0,69 £0,30 | 4,30 £ 4,47
Tolbiac 8 h(n=21) 3,35 +£2,58 | S(10) NS(11) [<0,001 : 0,790] | 0,82 + 0,15 | 2,89 + 2,57
Tolbiac 12 h (n=21) | 2,71 £2,06 | S(0) NS(21) [0,060 : 0,770] | 0,73 £0,29 | 2,42 + 2,08
Tolbiac 24 h (n=21) | 1,76 £0,82 | S(1) NS(20) [0,020:0,710] | 0,79 £0,24 | 1,44 + 0,98
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4. Conclusion

La gestion de la qualité des eaux de surface dans des régions fortement urbanisées,
comme 1’'Tle-de-France, pose des défis complexes liés 2 la variabilité temporelle et spatiale de
la contamination microbiologique et aux incertitudes associées aux méthodes de mesure. La
directive 2006/7/CE a établi des normes spécifiques pour les eaux de baignade, mais leur appli-
cation nécessite de mieux comprendre la dynamique des bactéries indicatrices fécales, comme
E. coli, et les facteurs environnementaux influencant leur décroissance. Une approche plus pré-
cise, tenant compte de cette variabilité, permettrait non seulement de renforcer la robustesse
des décisions de gestion (ouverture/fermeture des sites de baignade) mais aussi de soutenir les
efforts de reconquéte des rivieres pour des usages récréatifs.

Notre étude offre une analyse intégrée de la dynamique spatiale et temporelle des indi-
cateurs de qualité microbiologique des eaux de riviere, en explorant a la fois les incertitudes
liées a la méthodologie dans des contextes variés et en fournissant des outils pour I'intégration
de cette incertitude dans la prise de décision mais également par 1’analyse du processus de
décroissance et de disparition d’E. coli. Une harmonisation des pratiques d’échantillonnage et
d’analyse permettrait de réduire les incertitudes et d’améliorer la comparabilité des données,
notamment grace a ’intégration de la logique floue et de dispositifs de suivi en quasi temps
réel comme le systeme ColiMinder. Ces outils facilitent une prise de décision plus réactive et
nuancée afin de savoir le jour méme s’il faut ouvrir ou fermer la baignade.

Nous avons mis en évidence la pertinence des taux de disparition pour une compréhension
plus approfondie de la dynamique d’E. coli dans la Seine et la Marne. Les résultats montrent
des variations significatives des temps de retour selon les sites, soulignant I’'impact des apports
en amont et des rejets ponctuels, mais également de 1’interaction entre différents parametres sur
cette évolution temporelle suite a un événement pluvial impactant la qualité microbiologique.
L’ approche expérimentale, couplée a des suivis en temps réel ou quasi-réel sur le terrain, offre
des perspectives intéressantes pour optimiser la gestion des baignades, en particulier dans des
conditions de pollution apres une pluie.

L’analyse de marqueurs bactériens ou viraux supplémentaires, incluant des indicateurs
fécaux spécifiques de sources de contaminations humaines ou animales et des pathogenes,
pourrait enrichir la compréhension des dynamiques des différents marqueurs microbiens et de

la résilience des sites de baignade face a une pollution microbienne ponctuelle. Ces données
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contribueraient a une évaluation plus globale et a une gestion renforcée de la qualité des eaux
en milieu urbain.

En tenant compte des taux de disparition d’E. coli et de la position du systeme de mesure
en continu (Coliminder) par rapport au site de baignade et du débit de la riviere, il est possible de
définir des intervalles temporels de prise de décision adaptés a chaque site. Par exemple, sur un
site avec un temps de retour rapide et un débit élevé, un intervalle de mesure d’E.coli de quelques
heures peut €tre pertinent pour capturer une dynamique représentative de la qualité de 1’eau.
Cet intervalle tient compte du temps nécessaire pour que 1’eau atteigne la zone de baignade par
rapport a la position du ColiMinder. En combinant ces informations dans un modele de logique
floue, les décisions de gestion peuvent étre ajustées en fonction des caractéristiques spécifiques
de chaque site, garantissant ainsi une meilleure précision dans I’évaluation des risques et la

protection de la santé publique.
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Ce travail a permis de mettre en lumiere les défis liés a la gestion de la qualité des
eaux de surface, en particulier dans des environnements fortement urbanisés. Les efforts se sont
concentrés sur la mise en place d’approches innovantes, combinant des outils technologiques
avancés, des modeles prédictifs robustes et le développement de guides méthodologiques, pour
répondre aux exigences croissantes de surveillance et de gestion de la qualité des eaux de surface
et développer des réseaux de surveillance intelligents (smart water). La figure 4.1 propose un
cadre synthétique et structurant des différents aspects liés a la gestion des baignades en ville qui
ont été abordés au cours de cette these. Les paragraphes suivants commentent la figure 4.1.

La gestion des baignades dans les rivieres nécessite une approche intégrée pour optimiser
la surveillance et réduire les incertitudes. Le processus débute avec la surveillance des sites de
baignade pour mesurer le risque sanitaire lié a la présence potentielle de pathogenes dans
les eaux de surface (Avila et al., 2018; Visser et al., 2022). Pour ce faire, des parametres
physico-chimiques et microbiologiques sont habituellement suivis, utilisant des outils comme
des mesures réglementaires et des systemes de mesure en (quasi) temps réel comme les capteurs a
haute résolution (Cazals et al., 2020), les capteurs a bas coflit (Farouk et al., 2022) et les dispositifs
de mesure enzymatique ou microbiologiques automatisés (comme le systeme ColiMinder).
Positionnés de maniere stratégique, ces systemes permettent un suivi en temps réel de parametres
physico-chimiques ou microbiologiques clés. Cependant, la quantité et la fiabilité des données
envoyées sont cruciales (de Camargo et al., 2023). De ce fait, avant I’installation de ces systemes
automatisés in situ, différentes actions doivent €tre menées pour réduire 1’incertitude sur la
mesure (calibration, vérification de la stabilité du signal, correction du signal en fonction de
variables influentes comme la température ou la luminosité). L’envoi des données doit étre aussi
optimisé, afin de s’assurer qu’il n’y aura pas de perte ou de dégradation de la qualité des données
(Wang et al., 2019a). Nous avons ainsi développé un guide pour 'installation et la validation
des capteurs physico-chimiques, tout en réduisant les coflits via I’utilisation de technologies 1dO.
Cependant, la quantité importante de données produites et les maintenances nécessaires sur
les capteurs déployés in situ, posent la question de 1’optimisation de leur installation, de leur

entretien sur le long terme et du traitement des données. L’étape suivante serait de réduire la
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dépendance a la supervision humaine. Pour ce faire, la semi-automatisation des taches pourrait
étre facilitée par I’ utilisation d’algorithmes permettant de détecter lorsqu’un capteur appartenant
aun réseau devient défectueux, dérive ou cesse d’émettre (Chen and Han, 2018). Ainsi, la théorie
des jeux peut offrir un cadre théorique a la création d’algorithmes de détection d’anomalies, ce
qui peut aider a diminuer les cofits et le temps de gestion (Casado-Vara et al., 2018). Cependant,
ce type d’approche pour gérer les réseaux de capteurs repose sur les données des capteurs voisins
pour corriger les anomalies, rendant les résultats potentiellement biaisés en cas de défaillance
généralisée ou dans des environnements dynamiques ou imprévisibles.

Les rivieres sont justement des systemes complexes tres dynamiques et les pollutions mi-
crobiologiques présentent un aspect aléatoire qui les rend difficiles a prédire. En effet, la qualité
des eaux de surface est influencée par des facteurs complexes, incluant 1’hydromorphologie et
I’hydrodynamique de la riviere, les caractéristiques du bassin versant, les événements météoro-
logiques, les flux de rejets urbains et les caractéristiques propres a chaque espece microbienne
suivie (Zhu et al., 2022; Jia et al., 2021). L’approche que nous avons utilisée, basée sur I’analyse
de la résistance et la résilience des sites de baignade, permet une caractérisation dynamique des
contaminations microbiennes affectant ces sites. Afin d’affiner I’analyse du risque microbiolo-
gique associé a I’ouverture d’un site de baignade, un profilage des sources de contamination
en amont du site est requis par la directive 2006/7/CE. Ces informations, combinées au suivi
en temps réel, permettraient une gestion plus effective des plages urbaines pendant la saison de
baignade et une meilleure sélection des stratégies pour améliorer la qualité des eaux. Il existe
désormais un ensemble d’outils permettant de détecter I’origine des contaminations, tels que la
recherche de bactéries ou de virus intestinaux spécifiques de leur hote et la comparaison des com-
munautés bactériennes (Ahmed et al., 2019b). Une meilleure compréhension de la dynamique
de ces marqueurs spécifiques lors des événements polluants serait essentielle pour renforcer
la précision des décisions de gestion mais fait encore largement défaut. Nous avons réalisé
une évaluation de I'incertitude des méthodes d’échantillonnage et de mesure microbiologique
des indicateurs bactériens de contamination fécale (indicateurs réglementaires et indicateurs
spécifiques de sources). Diminuer I’incertitude sur la mesure des indicateurs permettrait de ren-
forcer la robustesse des décisions de gestion tout en s’alignant sur les exigences de la directive
2006/7/CE. Ainsi, nous avons estimé I’incertitude de I’étape d’échantillonnage jusqu’a la me-
sure des BIF, ainsi que I’incertitude d’échantillonnage et de stockage de 3 indicateurs de sources

animales (marqueurs moléculaires Gull2 pour les mouettes et goélands, BacCan pour les chiens

213



Conclusion

et CGOF1 pour les oies bernaches), d’un indicateur de sources humaines (marqueur moléculaire
HF183) et de 2 pathogenes du genre Campylobacter (C. jejuni et C. lari). Cette incertitude sur
la mesure et 1’échantillonnage pourrait étre intégrée au processus de prise de décision quant
a la classe de qualité d’un échantillon d’eau en cours de saison de baignade pour savoir si la
baignade peut étre autorisée. En effet, étant données les incertitudes analysées, lorsque la valeur
mesurée, ajoutée a son incertitude, est proche de la valeur seuil, la classification devient plus
complexe (Branddo et al., 2022). Classer correctement la qualité microbiologique pour fermer
une baignade peut permettre de prévenir 42% des maladies liées a la baignade dans des eaux de
surface urbaines (Rabinovici et al., 2004; Ross, 2005). A 1’aide d’un processus de logique floue
intégrant I’incertitude de la mesure, nous avons démontré qu’il est possible d’utiliser les données
acquises toutes les 2 h par un systeme ColiMinder pour classer correctement les échantillons et
aider a la décision de fermeture d’une baignade le matin en s’appuyant sur les 4 a 24 heures de
suivi précédentes.

Les données acquises en temps réel ou quasi-réel par les systemes de mesure automatisée
et les capteurs pourraient alimenter une base de données structurée permettant d’évaluer les
dynamiques spatiales et temporelles des contaminations microbiologiques et chimiques, facili-
tant ainsi une surveillance via la prédiction intégrant une combinaison de modeles (les modeles
hydrodynamiques et les modeles de machine learning) (Eregno et al., 2018; Qiu et al., 2017). Ce
dernier peut €tre optimisé via des approches comme 1’apprentissage par transfert et 1’apprentis-
sage fédéré permettant le transfert et le partage des connaissances des modeles, tout en assurant
la confidentialité des données. L’association de ces modeles gouvernés par un méta-modele
pourrait permettre une amélioration de la prédiction en sélectionnant, pour chaque événement
polluant sur chaque site surveillé, le modele qui donne la prédiction la plus juste. Cette ar-
chitecture peut augmenter 1’adaptabilité de la modélisation a de nouveaux sites, de nouvelles
conditions météorologiques ou des modifications du bassin versant, tout en prenant en compte
les spécificités de chaque site de baignade. Les concentrations en BIF prédites permettraient
d’alimenter un systeme d’alerte jouant un role clé, en intégrant une surveillance en temps réel
de I’état actuel en utilisant des modeles comme le Random Forest qui se basent sur les données
historiques de la base de données (nowcasting) et une planification en anticipant les tendances
sur des périodes plus longues pour produire des prévisions (forecasting). Le forecasting comme
par exemple avec les modeles LSTM, présente plusieurs avantages, notamment sa capacité a

établir des relations non linéaires entre les variables de qualité de I’eau et a fournir des prévisions
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fiables avec des structures simples (Liu et al., 2019; Shinde and Shah, 2018). Cependant, ses
performances dépendent fortement de la qualité et de la quantité des données disponibles. Il
est généralement recommandé d’avoir des données a intervalles réguliers afin de capturer les
dépendances temporelles et les relations entre les observations passées et futures de manicre
plus précise (Liang et al., 2020). L’ensemble de ces informations sont essentielles pour prendre
des décisions éclairées, telles que la planification des ouvertures ou la fermeture des sites de
baignade en cas de pollution. Ce systéme offrirais également un mécanisme d’alerte pour guider
les prélevements manuels lorsque des incertitudes persistent dans la base de données lors des
prédictions et cela par des approches d’apprentissage actif. Cela permettrait d’augmenter la
base de données efficacement tout en minimisant les cofits et en réduisant les incertitudes des
modeles de prédiction (Bouneffouf, 2016). Nous avons proposé une stratégie pour utiliser les
modeles comme le Random Forest pour identifier les classes de données minoritaires parmi les
paramétres predictifs du modele. A 1’aide de cet outil, il est possible d’augmenter la base de
données soit par échantillonnage ciblé des classes minoritaires, soit par génération de données
synthétiques lorsqu’il n’est pas possible d’obtenir les données manquantes qui déséquilibrent la
distribution des données dans la base de données pour certains parametres.

Les résultats de ce travail de these offrent des perspectives prometteuses pour la gestion
durable des ressources en eau dans des environnements urbains. Ils mettent en avant 1’intérét
de combiner des outils technologiques avancés avec des pratiques opérationnelles adaptées pour
répondre aux défis environnementaux et réglementaires que pose I’ouverture de sites de baignade
dans les rivieres urbaines en période post-industrielle. En tenant compte de I’ensemble de ces
outils et des connaissances disponibles, une décision plus avisée peut étre prise. A long terme,
I’intégration de ces dispositifs dans des réseaux intelligents de surveillance a 1’échelle régionale
pourrait non seulement améliorer la sécurité des usagers des rivieres mais également renforcer
les efforts de préservation des écosystémes aquatiques urbains en permettant une gestion ciblée
du site.

En conclusion, ce travail illustre la nécessité d’une approche transversale et interdisci-
plinaire pour relever les défis complexes liés a la gestion de la qualité de I’eau de surface dans
les environnements urbains. L'amélioration de la surveillance des eaux de surface et la prise
de décision d’ouverture ou fermeture des sites de baignade peut bénéficier de la combinaison
des connaissances scientifiques, de 1I’'innovation technologique, et de la validation sur le ter-

rain. Améliorer la qualité des eaux de surface en vue de permettre la baignade et les activités
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récréatives et sportives dans les rivieres et canaux urbains, est un levier politique et sociétal
puissant qui contribuera en méme temps a I’amélioration de la qualité écologique de ces milieux

aquatiques fortement impactés par I’urbanisation et I’activité humaine.
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Résumé

Ce travail a permis de mettre en lumiere les défis liés a la gestion de la qualité microbiologique des
eaux de surface, en particulier dans des environnements fortement urbanisés. Les efforts se sont concentrés sur
la mise en place d’approches innovantes, combinant des outils technologiques avancés, des modeles prédictifs
robustes, et le développement de guides pratiques méthodologiques, pour répondre aux exigences croissantes de
surveillance et de gestion de la qualité des eaux de surface. Nous avons développé une méthodologie intégrant
des outils d’apprentissage automatique et des dispositifs de mesure en quasi temps réel pour la surveillance
et la prédiction de la qualité de 1’eau. Cette approche souligne le potentiel des réseaux de capteurs continus
combinant des capteurs a bas cofit et des capteurs de haute précision pour améliorer les prises de décision. Les
tests et validations sur le terrain ont démontré la faisabilité et I’efficacité de ces dispositifs pour une gestion
durable et précise. De plus, I’évaluation de I’incertitude, de I’échantillonnage a la mesure s’est révélée cruciale
pour garantir la robustesse des données collectées. L’intégration de I’incertitude sur la mesure d’E. coli dans le
processus de classement des échantillons a 1’aide de la logique floue s’est également révélée étre une approche
intéressante pour améliorer la prise de décision pour 1’ouverture ou la fermeture des sites de baignade. En
complément une meilleure compréhension de la dynamique temporelle des pollutions microbiologiques est
essentielle pour renforcer la surveillance et pour étudier la résistance ainsi que la résilience des sites de baignade
face aux événements polluants liés au temps de pluie ou aux accidents sur le réseau d’assainissement. Ces
approches ont pour objectif de diminuer le risque sanitaire li€ a la baignade dans des eaux soumises a une forte
pression anthropique.

Mots-clés : baignades, riviere urbaine, qualité microbiologique, contamination, E. coli, prédiction,
incertitude, dynamique Abstract

This work has highlighted the challenges associated with managing the microbiological quality
of surface waters, particularly in highly urbanized environments. Efforts have focused on implementing
innovative approaches that combine advanced technological tools, robust predictive models, and the
development of practical methodological guidelines to meet the growing demands for surface water quality
monitoring and management. We developed a methodology integrating machine learning tools and near
real-time measurement devices for water quality monitoring and prediction. This approach underscores the
potential of continuous sensor networks combining low-cost sensors with high-precision ones to enhance
decision-making processes. Field tests and validations demonstrated the feasibility and effectiveness of these
devices for sustainable and accurate management. Furthermore, evaluating the uncertainty from sampling to
measurement proved crucial in ensuring the robustness of collected data. The integration of E. coli uncertainty
into the sample classification process using fuzzy logic also emerged as a promising approach to improve
decision-making regarding the opening or closing of bathing sites. Additionally, a better understanding of the
temporal dynamics of microbiological pollution is essential for strengthening monitoring efforts and studying
the resistance and resilience of bathing sites to pollution events caused by rainfall or accidents in the sanitation
network. hese approaches aim to reduce the health risks associated with swimming in waters subjected to high

anthropogenic pressure.

Keywords : bathing, urban river, microbiological quality, contamination, E. coli, prediction, uncer-

tainty, dynamics
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