An Investigation of the Accuracy of EC5 and 5TE Capacitance Sensors for Soil Moisture Monitoring in Urban Soils-Laboratory and Field CalibrationtextjournalArticleKansoTalaautGromaireMarie-ChristineautRamierDavidautDuboisPhilippeautChebboGhassanauthttp://creativecommons.org/licenses/by/3.0/10.3390/s20226510https://www.mdpi.com/1424-8220/20/22/6510Recently, emphasis has been placed on finding a reliable estimation of soil water content. In this study, two capacitance sensors EC5 and 5TE (METER Group) were utilized. These sensors provide many benefits relative to other sensors in that they are cost-effective and very economical regarding energy use, operate at a high measurement frequency of 70 MHz, and are dedicated to measuring at a small volume because of their small size. This makes them suitable for the context of use in this research, which consists of multiple sustainable drainage systems SuDS. Several studies have evaluated these two types of sensor but not for urban soils with specific characteristics. In addition, results from the literature are divergent and the published calibration data are limited. Therefore, an in-depth investigation of their accuracy is assessed in this paper. At first, the literature’s existing procedures and methods were examined. The sensor-to-sensor variability, as well as repeatability, were tested in soil and solutions. Additionally, a field calibration method was conducted to estimate the effects of soil texture on sensors readings. Two laboratory calibration methods having different principles were also applied, compared to each other and to the field calibration as well. Results revealed weak sensor-to-sensor variability (coefficient of variation up to 15% in soil) and also good repeatability (0.1%), for both sensors. A soil-specific calibration equation has improved the estimation of the volumetric water content. In case of soil having high field bulk density, the undisturbed soil calibration method described and proposed in this paper gives promising results. The latter method yields a volumetric water content (VWC) prediction accuracy of 0.025 m3∙m−3 on a sandy loam soil. This paper presents a large knowledge of capacitance sensors measurement technique as well as their calibration procedures and methods. Limitations of existing procedures have been identified and key elements for selecting the appropriate one are suggested. Derived calibration equations have also been provided for three urban soils with different particle size distribution, ranging from sandy loam to silt loam. Accurate monitoring of soil moisture content in urban soils is thus achievable.calibration methodsmanufacturer calibrationsoil storagesoil water contentsustainable drainage systemsenNumber: 22 Publisher: Multidisciplinary Digital Publishing Institutewww.mdpi.comjournal202265102020/1continuingSensors