Laboratoire Eau Environnement et Systèmes Urbains (Leesu)

Dernières publications

--> Url version détaillée , Url version formatée Structure name contains or id is : "409065;155441;135971;102266;212248;578082", Publication type : "('ART')"
835.
titre
A New Technique for Resolving Benthic Solute Fluxes: Evaluation of Conditional Sampling Using Aquatic Relaxed Eddy Accumulation
auteur
Guilherme Calabro-Souza, Andreas Lorke, C. Noss, P. Dubois, M. Saad, C. Ramos-Sanchez, R. Moilleron, Brigitte Vinçon-Leite, M. Jodeau, Bruno Lemaire
article
, 2024, 10 (9), ⟨10.1029/2023EA003041⟩
titre
Climate change and rivers: The promise offered by infrastructure
auteur
Julie Gobert
article
, 2023, 8, pp.100077. ⟨10.1016/j.totert.2023.100077⟩
titre
Reactivity of performic acid with organic and inorganic compounds: from oxidation kinetic to reaction pathways
auteur
Christelle Nabintu Kajoka, Johnny Gasperi, S. Brosillon, Emilie Caupos, Emmanuelle Mebold, Marcos Oliveira, Vincent Rocher, Ghassan Chebbo, Julien Le Roux
article
, 2023, 3 (9), pp.3121-3131. ⟨10.1021/acsestwater.3c00279⟩
titre
Halogenation of Pharmaceuticals Is an Impediment to Ready Biodegradability
auteur
Jürg Oliver Straub, Julien Le Roux, Damien Tedoldi
article
, 2023, 15 (13), pp.2430. ⟨10.3390/w15132430⟩
titre
Toward a comprehensive functional typology of stormwater control measures for hydrological and water quality modeling purposes
auteur
José Manuel Tunqui Neira, Marie-Christine Gromaire, Katia Chancibault, Ghassan Chebbo
article
, 2023, 5 (1), pp.41-56. ⟨10.2166/bgs.2023.026⟩

Tutelles

Membre de

Séminaire d’Allen Hunt le 14 mars 2011

publié le , mis à jour le

Séminaire d’Allen Hunt le 14 mars 2011

Dans le cadre des séminaires du LEESU, le professeur Allen Hunt, de l’université Wright State (USA) a fait une intervention intitulée "Solute dispersion in porous media" le lundi 14 mars à l’École des Ponts ParisTech, à Champs sur Marne.

Le résumé de son séminaire est :

Percolation cluster statistics and critical path analysis can be combined to generate the probability that a given volume of a porous medium can be covered by a network of paths with a given minimum conductance value. The topology of percolation clusters can then be applied to find the time required for solutes to cross such clusters. An appropriate probabilistic identity gives the probability that solute will arrive at, say, the right end of the volume if it enters the left end at a given time. The calculation yields the observed distribution of arrival times in simulations as well as the long-time tail of the distribution in fracture flow. The spatial moments are obtained from an analogous calculation for the spatial distribution at an instant in time. When the input distribution of local conductance values is monomodal with a single scale of heterogeneity and in the case that diffusive processes are explicitly neglected, the output distribution of dispersivity values matches a compilation of 2200 observation over ten orders of magnitude of length scale. This result requires a complete rethinking of the role of multiple scales of heterogeneity as well as a reevaluation of the appropriateness of stochastic subsurface hydrology and the role of diffusion-like processes in dispersion.